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Abstract. The integration of potentially untrustworthy intellectual prop-
erty (IP) blocks into a System-on-Chip (SoC) poses significant risks, in-
cluding data exfiltration and corruption due to unauthorized writes to
memory or peripheral devices. Conventional countermeasures, such as
memory protection or management units, tend to provide coarse protec-
tion granularity and impose substantial hardware overhead for embedded
devices.

In this paper, we introduce DD-MPU, a custom memory protection unit
specifically designed for individual third-party IPs. Our proposed solu-
tion features low area overhead and fine protection granularity while
automatically adapting to dynamic system states by actively monitoring
bus transfers and switching between different protection rules.

In our evaluation, we demonstrate the efficacy of the DD-MPU by inte-
grating it into an SoC to isolate a potentially malicious accelerator block
from the rest of the system. The area overhead of our approach for a
single instance in a 22 nm technology ASIC node is a mere 0.3 %.
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1 Introduction

As System-on-Chip (SoC) designs become increasingly complex, even small em-
bedded SoCs necessitate the integration of intricate peripherals to improve as-
pects such as power consumption. This rising complexity requires significant
development effort, which is frequently addressed by reusing external intellec-
tual property (IP). However, incorporating third-party, untrusted IPs presents
risks to hardware design [3].

In this paper, we introduce DD-MPU, a lightweight, dynamic, and distributed
memory protection unit specifically designed for small embedded SoCs without
virtual addressing. DD-MPU safeguards against malicious or malfunctioning IPs
attempting to (a) manipulate the system by writing to unauthorized memory
locations, and (b) exfiltrate information from memory.

Our proposed solution, DD-MPU, delivers protection against security threats
posed by third-party IPs with a lightweight and easy-to-integrate hardware mod-
ule. This module effectively segregates third-party IPs with master access to the
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memory bus from in-house designed SoC components. Each DD-MPU unit is
configured during design time according to the associated third-party IP’s spec-
ifications, thus permitting only memory accesses described in the IP’s specifica-
tions. The DD-MPU can dynamically alter rules during runtime by monitoring
data from a configuration interface and incorporating it into the rules.

This approach is suitable for peripherals such as a network controller, which
necessitates reading and writing packets to DRAM memory. In order to con-
figure this controller, the CPU writes pointers to memory locations into the
controller’s configuration registers. Considering that packet locations may be
dispersed throughout the entire memory, a fixed protection rule would prove
inadequate. Thus, the DD-MPU detects the data written to the network con-
troller’s control register and dynamically adapts the rules accordingly.

For multiple peripherals, each peripheral is encapsulated by an individual
DD-MPU unit, reducing routing overhead, blocking malicious operations directly
at the source, and minimizing the need for global address decoding.

In contrast to traditional security monitors that secure input interfaces, our
approach analyzes outgoing traffic from IPs, eliminating the need to track traffic
origin and often resulting in simpler transfer filtering rules. The granularity of
memory protection is not restricted by page size and can be as small as one word.
Dynamic monitoring is implemented in hardware, with no software modifications
required.

The remainder of this paper is organized as follows: Section 2 provides a
review of related work. Section 3 introduces our proposed architecture, which
is applied to a hardware accelerator integrated into an SoC in Section 4 and
evaluated in Section 5.

2 Related Work

Memory protection is typically managed by a Memory Protection Unit (MPU),
which restricts memory accesses of tasks running on a core in non-virtual memory
real-time operating systems, such as FreeRTOS [6]. However, since the MPU is
integrated into the CPU, it does not offer protection for other bus masters on
the SoC.

In more complex systems that employ virtual addressing, the MPU is re-
placed by a Memory Management Unit (MMU) to handle the lookup of physical
addresses. While this approach can be extended to bus master devices in the form
of an IO-MMU, virtual addressing is generally not utilized in low-power /cost,
embedded SoCs. For instance, the ARM Cortex-M series, which lacks an MMU,
is the industry-leading architecture in this domain. As we target the same do-
main in this paper, we will assume that an (IO)MMU is not present in the
smaller systems under consideration.

In the open instruction set architecture RISC-V, an MPU, referred to as
physical memory protection (PMP), is defined as part of the privileged specifi-
cation [2]. However, PMP is based on different execution privilege modes and
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does not provide protection against malicious peripherals. Recently, some ven-
dors have begun addressing this issue: SiFive introduced security gaskets [5]
and their improved successor, WorldGuard [11], while Andes extended the PMP
concept to DMA masters with IOPMP [1]. Although these solutions offer en-
hanced protection against malicious or compromised peripherals, they lack the
flexibility of our dynamic rule sets and are generally aimed at more complex,
higher-performance applications, such as those employing virtualization.

Other current research already includes security monitors in one form or an-
other, e.g., [7,8]. Here, rules are stored in memory and require a bus master to
write updates for changes. Compared to our proposed dynamic rules, this ap-
proach results in higher latency when modifying, for example, the base address in
a rule. Moreover, the inclusion of these security monitors results in a substantial
overhead. NoCF [7] reports a LUT increase of more than 23 % in their FPGA
implementation. Additionally, [8] states a 9.18 % overhead in standard-cell area
for their chiplet-based system. The evaluation of our proposed solution validates
its lightweight nature, as indicated by a mere 0.3 % overhead in cell area.

3 Architecture

DD-MPU is a hardware module that connects to the interface ports of untrusted
IPs. Serving as a firewall on the master interface, DD-MPU can interrupt trans-
fers through its Protection Unit. On the slave interface, which typically functions
as a configuration interface, DD-MPU monitors transfers using its Detection
Logic. Figure 1 illustrates a simplified SoC containing a third-party IP with
DD-MPU protection.

3.1 Detection Logic

The detection unit provides input to dynamic rules based on values extracted
from transfers on the IP’s configuration interface. Contrary to a conventional
MPU, which necessitates rule configuration by a specific unit, the DD-MPU
eliminates this requirement. Consequently, it can respond to configuration steps
already implemented in systems without a DD-MPU. By monitoring an inter-
face, the unit extracts information, such as address, length, and content, from
data transfers. This extracted information is subsequently processed by a user-
provided trigger module, which can range from simple matching to a given reg-
ister address to more complex actions requiring state tracking. The processed
data stream is then forwarded to the rules within a protection unit.

For example, an IP might have a register to configure an Ethernet frame’s
packet length. In this case, the trigger module detects write accesses to this
register and utilizes the monitored value for the dynamic rule. Figure 2 depicts
an example detection unit providing input for dynamic rules in protection units.
In this example, two protection units (corresponding to two memory interfaces
of an accelerator) are paired with two separate trigger modules. The extracted
information from the monitored bus is forwarded to the trigger modules, which
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Fig. 1. DD-MPU with detection module (DM) and protection unit (PU) in an example
SoC with a shared system bus.

check for specific addresses and use the transmitted data as DATA input for the
protection units. This could be related to different memory pointers written into
control registers at addresses 0xBO and 0xCO, allowing both protection units to
access the specific memory location.
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Trigger 1
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Fig. 2. The detection module extracts information from the control bus, which connects
the central interconnect to the slave port of an peripheral IP, and forwards it to the
dynamic rules of the two protection units.

3.2 Protection Unit

The decision to permit or deny a memory transfer is made within the protec-
tion unit, safeguarding memory from unauthorized access. This decision-making
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process involves analyzing the memory transfer’s base address, transfer length,
and whether it is a read or write transfer.

This information is combined with the current state of the detection logic
to evaluate a set of rules. If the transfer matches at least one rule, it is allowed
to proceed and forwarded to the memory. If not, the transfer is redirected to a
dummy sink, which responds with protocol-compliant messages without reveal-
ing any real information (refer to Figure 4).

Common bus protocols require handshakes for data exchange, necessitating a
response from the other party. In the absence of a response, the IP stalls during a
transfer and typically halts until the entire chip is reset. The dummy sink allows
transfers to complete without side effects, enabling subsequent IP executions
with updated firewall rules to succeed.

A protection unit is configured with a list of rules during design time. Each
rule specifies a start address and length for the allowed memory region and
can enforce write-only or read-only transfers. In addition to fixed addresses,
one can choose to dynamically update start address or length using values from
the detection module. Additionally, a rule can be enabled or disabled by the
detection module. Figure 3 presents the grammar for specifying rules.

<dd-mpu-rule> ::= <start_addr> <length> <configuration> <direction>
<is_dynamic> <outstanding>

<start_addr> ::= <ADDRESS> | dynamic

<length> ::= <LENGTH> | dynamic

<configuration> ::= DEFAULT_DISABLED | DEFAULT_ENABLED | ALWAYS_ENABLED

<direction> ::= READ_WRITE | WRITE_ONLY | READ_ONLY

<is_dynamic> ::= NONE | DYN_ADDRESS | DYN_LENGTH | DYN_ADDRESS_LENGTH
| DYN_ENABLE

<outstanding> : := <NUMBER>

Fig. 3. Grammar for defining rules for DD-MPU

Apart from dynamic rules, DD-MPU properties can only be modified during
design time, reducing the attack surface but making it challenging to accommo-
date fundamental changes in an IP’s functionality (e.g., due to new firmware).
As a compromise between the security of hardened rules and the flexibility of
full configurability, DD-MPU offers the option to dynamically enable/disable
statically defined rules: It is possible to define additional rules that are initially
marked as DEFAULT_DISABLED. The secure configuration interface, distinct from
the main interconnect, can then be utilized to enable these additional rules, and
disable the now obsolete rules to stop the from interfering with the new firmware.
This configuration could be facilitated by a central instance, such as a Secure
Element. In contrast, enabling a more flexible runtime configuration would re-
quire the utilization of registers, rather than hard-wired signals. However, this
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approach introduces additional hardware overhead and timing path complexi-
ties, which directly contradicts our objective of achieving a lightweight solution.
Thus, we impose restrictions on the available configuration options to ensure the
desired levels of both efficiency and security.

Information from the detection unit is used to update rules during runtime,
such as updating an address range. After updating, the previous content of the
rule becomes invalid, and transfers are approved based on the updated rule.
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Fig. 4. Protection Unit of DD-MPU with rules and rate limiting.

To address the issue of outstanding transfers in IPs, DD-MPU optionally
supports outstanding rules. Here, rules are replicated by a given number and are
initially disabled. Dynamic updates are distributed across the rules in round-
robin order, enabling a rule after the first dynamic update. This approach allows
DD-MPU to store information about outstanding transfers and avoid refusing
an IP’s outstanding transfers.

An additional optional feature of the protection unit is rate-limiting. Typi-
cally, a memory bus shared among different modules is negatively affected by a
high number of transfers. A malicious (or erroneous) IP could exploit this for
a Denial-of-Service attack by issuing numerous transfers in a short time. DD-
MPU can be configured to restrict memory bus utilization, blocking additional
transfers when the IP attempts to perform more transfers than allowed within
a given time. This rate-limiting is implemented by counting all transfers and
decrementing the counter according to the allowed utilization at specific points
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in time. Transfers are denied once the counter reaches the limit and resumed
when the counter falls below the limit.

3.3 Customization for IPs

For ease-of-use, it could be expected that we would define a standalone Domain-
Specific Language (DSL) which would express the DD-MPU rules and protocol
parsers at a high level, and which could then be automatically compiled, e.g., to
Verilog, for actual hardware synthesis. This was actually our initial plan when
starting this project.

However, it turned out that we can achieve the same goal with far less de-
velopment effort by instead embedding our DSL into Bluespec SystemVerilog
(BSV), which provides a much higher level of abstraction (e.g., in terms of type
systems and model of computation) than existing HDLs, or the the more modern
Hardware Construction Languages (HCLs) such as Chisel. By proceeding in this
manner, we can then leverage the very robust BSV RTL generation capabilities
to create efficient synthesizable hardware descriptions.

A custom DD-MPU designed to protect against (wrap) a new IP block re-
quires only two components: (1) a list of rules, and (2) trigger functions. Rules
define allowed memory accesses and specify which parts are provided dynami-
cally. For simple blocks where existing static MPU-like functionality is sufficient,
trigger functions can be omitted. These two components allow the instantiation
and connection of firewall and trigger modules to bus protocol-specific adapters.

To enhance portability across a wide range of IP blocks, DD-MPU internally
uses an intermediate bus description, while protocol-specific adapters provide
the actual bus interface. This approach simplifies the addition of new protocols.
The current implementation supports AXI4, AXI4 lite, APB, and the Tightly-
Coupled-Data-Memory (TCDM) bus from PULP [9].

Figure 5 demonstrates an example involving mkAddressTrigger (the trigger
module) and mkMyDDMPU (the custom DD-MPU module), which contains bus
abstractions, custom trigger modules, detection modules with a list of trigger
modules and communication type to the protection unit, and protection units
with a list of rules.

4 Case Study

We present a demonstration of DD-MPU using PULPissimo [10], a low-power,
embedded System-on-Chip (SoC) built around a RISC-V core with various pe-
ripherals. PULPissimo does not incorporate virtual addressing and lacks mem-
ory protection. The SoC enables the addition of hardware processing engines
(HWPEs) with direct memory access for hardware acceleration. We examine an
HWPE, the Hardware MAC Engine, to showcase the application of DD-MPU.
The Hardware MAC Engine, derived from the XNOR Neural Engine in-
frastructure [4], performs simpler computations. It features a control interface
connected to the RISC-V core via an APB bus and four data interfaces linked
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// Formulate the detection properties ("protocol parsing")
module mkAddressTrigger (TriggerModule) ;
method ActionValue#(DetectionType) evaluate(Trace t);
if (t.addr == 'hBO) begin // CPU writes to peripheral register 0zB0
return tagged Address pack(t.data); // eztract the data
end else begin
return tagged Invalid; // do nothing for other accesses
end
endmethod
endmodule

// Create customized DD-MPU module

module mkMyDDMPU(MyDDMPU) ;
let apb_mon <- mkAPB_Monitor; // Monitoring logic for APB bus
let my_trigger <- mkAddressTrigger; // Trigger module

// Instantiate Detection Module to comnect Trigger to Protection Units
let dm <- mkDetectionModule(List::cons(
Channel {f: my_trigger, impl: FIF0}, Nil
));
// Connect APB monitor to Detection Module
mkConnection(apb_mon.trace, dm.trace[0]);

// Instantiate protection unit (PU)
PUServer pu <- mkPU(defaultConfig, List::cons(
Rule { start_addr: O, length: 'h60,
configuration: DEFAULT_DISABLED, direction: WRITE_ONLY,
is_dynamic: DYN_ADDRESS, outstanding: 2
}, Nil
))s
let tcdm_adapter <- mkTCDMAdapter; // peripheral master port is TCDM
mkConnection(tcdm_adapter.pu, pu.check); // connect adapter to PU
mkConnection(dm.pul[0], pu.trigger_in); // connect DM to PU

/* connect interfaces to external world */
interface APB_Monitor_Fab apb_slave_ifc = apb_mon.monitor;
interface tcdm_master_ifc = tcdm_adapter.master;
interface tcdm_slave_ifc = tcdm_adapter.slave;
endmodule

Fig. 5. Simplified code snippet showing a sample DD-MPU using the Bluespec Sys-
temVerilog library
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to PULPissimo’s memory subsystem. The data interfaces are employed for load-
ing values and writing computed results back to memory. This example can be
applied to HWPEs with proprietary RTL.

We attach the DD-MPU monitor to the control interface, where it observes
protocol transactions to extract base addresses and sizes of input and output
data. The HWPE’s master interfaces connect to the DD-MPU’s protection units,
allowing only permitted traffic to access memory. Our approach supports the
development of more sophisticated transaction parsers to extract information
from complex custom protocols.

In the HWPE scenario, the protection units’ rules only require address and
length of the allowed memory regions, provided by the detection logic after
straightforward extraction. Additionally, transfer direction enforcement ensures
that the first three units allow read transfers only, while the last unit permits
write transfers exclusively.

5 Evaluation

In the evaluation, we implemented a PULPissimo SoC featuring the Hardware
MAC Engine and its associated DD-MPU (as discussed in the previous sec-
tion) using a GlobalFoundries 22 nm FDX process with Synopsys standard cells.
The synthesis and implementation flow employed Cadence Genus and Innovus.
The design was constrained for a frequency of 200 MHz at multiple temperature
points and an operating voltage of 0.72 V. For the L2 memory component of the
PULPissimo, we utilized Synopsys SRAM macros.

Upon analyzing the results from the firewall described in the previous section,
we observed 1595 cells for the firewall module and a total area of 1562 pm?2,
which includes the routing area in addition to the cells. In comparison to the
unsecured Hardware MAC Engine, this constitutes an area overhead of 13 %. It is
important to note that the MAC engine is a relatively small module, primarily
consisting of a 32-bit multiplication and basic logic for data fetch and store
operations. In contrast, compared to the entire PULPissimo, the overhead of
DD-MPU accounts for just 0.28 % of the total area. In Table 1, we also analyzed
the overhead when securing only a subset of the data ports. As anticipated, the
scaling is proportional to the port count. When examining the area of the entire
SoC, no distinct trend is observable, likely due to variations within the place-
and-route algorithms, which appear to be greater than the minor overhead of
DD-MPU. The same applies to power measurements in Table 1, where no clear
trend can be discerned. Furthermore, the table contains results when protecting
a single data port only with static rules.

The DD-MPU approach does have an impact on the timing of an SoC. The
trigger module connects to the control interface and increases fan-out. This can
be mitigated using pipeline registers, with a minor latency cost for rule updates.
For many applications, this penalty will be tolerable without any adverse im-
pact: With a post-pipelining latency of three cycles, meaning that the value
becomes active in a rule in the third clock cycle after the handshake occurred
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on the control interface, we no longer observe any negative impact on timing.
When considered within a broader context, this apparent latency increase be-
comes negligible: In a typical hardware accelerator, both the control registers and
memory bus are already driven by registers, equivalent to a pipelining depth of
two. Moreover, address generation or other computations that take place before
the first memory request soccur, thus increasing the base latency to three or
more. In such settings, the rule update latency of the DD-MPU will be entirely
concealed by the regular operation latency.

Table 1. Area overhead and power consumption of DD-MPU in the PULPissimo SoC.
The base design is a PULPissimo without any DD-MPU, compared to designs with
a DD-MPU configured to protect one to four master ports. This is contrasted with a
DD-MPU configuration for a single master port, containing only static firewall rules
without any dynamic updates or monitoring.

Configuration Area (nm?) Power (mW)
DD-MPU  (rel. to base) ~ Total | Total Dynamic
Base design - - 548,670 ‘ 67.69 10.91
Dyn. 1 port 471.8 0.086 % 547,454 | 68.68 10.88
Dyn. 2 ports 779.1 0.14% 550,527 | 68.25 10.55
Dyn. 3 ports 1149.2 0.21% 547,112 | 68.32 10.87
Dyn. 4 ports 1562.0 0.28% 556,677 | 68.42 10.59
1 static rule 59.37 0.01% 551,121 | 68.11 10.77
8 static rules 63.94 0.01% 545,224 | 68.90 10.88
16 static rules 69.15 0.01% 547,456 | 68.64 10.96

After examining the DD-MPU control path for timing penalties, we also need
to consider the data path of the protection unit, which is added to the client IP’s
(in this case, the MAC HWPE) memory access logic. It would again be possible
to reduce that path delay by pipelining, incurring a latency penalty. However, we
observed an increase of only 87 ps, which corresponds to two additional standard
cells on the relevant path. Even with the lengthened memory bus, the path delay
is not the SoC-level critical path, and thus, no additional registers are needed
at all.

6 Conclusion

In this paper, we have introduced the DD-MPU approach as a method to restrict
memory access by malicious IP cores. Our proposed solution offers protection
without necessitating software modifications, as the DD-MPU autonomously re-
sponds to hardware transactions, and incurs no performance impact. The min-
imal area overhead of DD-MPU renders it suitable for implementation in even
small SoCs.
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