
Noname manuscript No.
(will be inserted by the editor)

DExIE - An IoT-Class Hardware Monitor for Real-Time
Fine-Grained Control-Flow Integrity

Christoph Spang · Yannick Lavan · Marco Hartmann · Florian Meisel ·
Andreas Koch

Received: 04/2021 / Accepted: 12/2021

Abstract The Dynamic Execution Integrity Engine

(DExIE) is a lightweight hardware monitor that can be

flexibly attached to many IoT-class processor pipelines.

It is guaranteed to catch both inter- and intra-function

illegal control flows in time to prevent any illegal in-

structions from touching memory. The performance im-

pact of attaching DExIE to a core depends on the con-

crete pipeline structure. In some especially suitable

cases, extending a processor with DExIE will have no

performance penalty. DExIE is real-time capable, as it

causes no or only up to 10.4% additional and then pre-

dictable pipeline stalls. Depending on the monitored

processor’s size and structure, DExIE is faster than

software-based monitoring and often smaller than a sep-

arate guard processor. We present not just the hard-

ware architecture, but also the automated program-
ming flow, and discuss compact adaptable storage for-

mats to hold fine-grained control flow information.

Keywords IoT Security · Runtime-Dynamic In-

tegrity · Fine-Grained Control Flow Integrity ·
RISC-V · Code Reuse Attacks · Real Time

1 Introduction

Internet of Things (IoT) devices have become omni-

present. Due to their resource constrained nature, they

often provide insufficient security, making them vulner-

able to different categories of code-reuse runtime at-

tacks such as Return- and Jump Oriented Programming

(RoP, JoP) [1, 32]. We propose the Dynamic Execu-

tion Integrity Engine (DExIE), which defends against

Christoph Spang, Yannick Lavan, Marco Hartmann, Florian
Meisel, Andreas Koch
E-mail: {spang, koch}@esa.tu-darmstadt.de
TU Darmstadt, Embedded Systems & Applications Group

both of these kinds of attacks. With minimally inva-

sive changes, DExIE can be easily attached to existing

processor pipelines, which we demonstrate on four very

different RISC-V cores. In most cases, it requires less

area than the processor itself, thus making it more at-

tractive than using a second core acting as a guard pro-

cessor for the first one (which would incur 100% area

overhead). The DExIE architecture is guaranteed to al-

ways catch illegal control flows before illegal instruc-

tions are able to affect memory (which could be disas-

trous in case of memory-mapped I/O devices). To do so,

DExIE causes only a very limited number of additional

pipeline stall cycles (we observed at most 10%) that

are statically perfectly predictable. The resulting execu-

tion behavior leads to very tight Worst-Case Execution

Time (WCET) computations and makes DExIE suit-

able for monitoring real-time capable systems. A key

contribution of our work is the development of highly

compact adaptable storage layouts for fine-grained inter

and intra-function control flow information. Thus, even

for small-scale SoCs, practically useful configurations

of DExIE require just 4.4-12.1% more on-chip memory

capacity than an unmonitored system. In addition to

the hardware architecture, we also introduce a toolchain

that can extract the Enforcement Finite State Machines

(EFSMs), which lie at the heart of DExIE’s monitor-

ing, from generic ELF binaries. In most of the cases we

examined, DExIE monitoring incurs a wall-clock exe-

cution time slowdown of just 1.5-1.75x, which is better

than pure software-based approaches that often exceed

2x [6]. Some base processors are especially suitable for

DExIE, in that they induce neither a clock frequency

penalty, nor a wall-clock execution-time slowdown.

After extensively covering related work (Sec. 2), the

basic mechanism and security considerations are pre-

sented in Sec. 3. Next, the software toolchain and the

2 Spang, Lavan, Hartmann, Meisel, Koch

transformation of code into DExIE EFSMs is discussed

(Sec. 4.1). This is followed by our hardware design (Sec.

4.2), optimization (Sec. 4.2.3), and microarchitecture

(Sec. 4.2.4). Finally, we report evaluation results (Sec.

5) and conclude by looking to further work (Sec. 6).

2 Related Work

We will first introduce code-reuse attacks and counter-

measures in Sec. 2.1. The next subsections (Sec. 2.2 -

2.6) discuss fundamental design decisions. Also, we cat-

egorize DExIE’s main design choices.

2.1 Attacks, Countermeasures, and Granularity

In case of JoP [1] and RoP [32] code-reuse attacks, an

attacker first analyses an application to collate a poten-

tially large collection of abusable code snippets (gad-

gets). After exploiting a program bug as entry point,

these gadgets are executed in an order unintended by

the original developers. This creates a malicious and

under some conditions even Turing-complete exploit

without relying on the modification of existing, or the

insertion of new code. As discussed by [32], a tradi-

tional Address Space Layout Randomization or W ⊕E

(Write Xor Execute) cannot fully mitigate such tempo-

ral anomalies. As RoP attack gadgets are concatenated

via return address manipulation, a well-known and ef-

fective mitigation is a shadow stack holding a duplicate

[6] [28] or hash [22] of the return address. Manipulation

is detected by comparing the valid copy to the core’s

computed, possibly manipulated, return address.

In contrast to RoP attacks, a JoP attack’s dispatcher

gadget can be located in the heap memory, thereby by-

passing the shadow stack. To stop JoP attacks, verifica-

tion of inter- and intra-function Control Flow Instruc-

tions (CFI) is an effective method that can be real-

ized in different ways and different levels of detail, with

DExIE being just one possible solution. Pure-Call ori-

ented Programming (PCoP) is a similar attack, chain-

ing code gadgets via manipulated call statements [33].

Dover Microsystem’s “Inherently Secure Processor”

implements a stateful word-based tag-map [36] for re-

turn address CF policies but, depending on other poli-

cies, also supports dataflow integrity. We expect over-

heads to grow with the implemented policies and that

their caches are likely being unsuitable for real-time ap-

plications. In contrast, DExIE stores its constraints in

constant-latency BRAM with fully-predictable stalls.

The ARMv8.3 ISA [30], e.g., used by Apple and

Qualcomm, implements Pointer Authentication Codes

(PACs) by repurposing formerly unused address bits.

Each PAC’s value is computed using a combination

of target address, context, and a chosen key. This ap-

proach requires extra instructions, which we avoid in

DExIE, and an adapted compiler toolchain. Only lim-

ited documentation exists on the associated overheads.

By running a simulation, [24] shows 12 to 16 extra clock

cycles being required for safeguarding a return instruc-

tion, and 6 to 8 clock cycles for an indirect call. DExIE

only requires up to two clock cycles for checking legality

of a CF instruction, and it runs mostly parallel to the

core’s execution. Depending on the desired level of in-

tegrity, PAC’s overhead was simulated to range between

0.5% to 39.5% (including data pointer integrity). For

this aspect, a direct comparison with DExIE is diffi-

cult, since the performance of DExIE depends on the

specifics of the monitored core. It may thus be both

slower or faster than the overheads observed for PACs.

Intel Control Enforcement Technology [20] deploys

a combination of a shadow stack and indirect branch

tracking. The latter is realized in hardware, checking

that each indirect CF is followed by an ENDBRANCH in-

struction. An attacker could still manipulate an indirect

CF to target any other (at some point-in-time legal) in-

direct target address, though. DExIE can solve this by

enforcing a finer CF granularity, ideally allowing only

a single legal target address.

Li et al. [23] combine tight instruction and memory

tagging, and deploy the Bell-LaPadula confidentiality

and the Biba integrity model. Their highly-specialized

solution’s memory overhead is around 3.13%, and the

logic, register, and mux overheads range between 9.01%

and 12.06%, which are all smaller than DExIE’s over-

heads. However, they do not discuss stalls, real-time ca-

pability and performance overheads. Their model also

cannot fulfill our portability and granularity require-

ments (Sec. 2.4).

Runtime-dynamic remote attestation often imple-

ments a hash that changes either for any executed CF

instruction, or which changes only per executed indirect

CF instruction. After execution finished the resulting fi-

nal hash value allows to verify that a specific CF path

has been taken. Unfortunately, computation of hashes

for all legal CF paths (potentially thousands) can be

difficult and attacks are detected only late (after al-

ready being successful) at the next attestation event.

Depending on the implementation, hash computations

may have a significant performance cost and hardware

overhead [7, 8, 26, 27, 40].

Safeguarding only indirect CF is reasonable for re-

ducing overheads, but possibly insufficient, as [16] and

[19] demonstrate attacks running on legal CFGs. On the

other hand, legalizing only a single path may cause in-

compatibility especially for more complex or interactive

DExIE - Dynamic Execution and Integrity Engine 3

applications. Therefore, and depending on the supplied

EFSMs, DExIE supports flexibly going beyond CFG-

grade granularity. This functionality is implemented via

a One-to-N relationship between a function and its pos-

sibly many context-specific EFSMs. For any function

call, and according to the caller’s EFSM’s state, this

allows to individually constrain a called function to

an alternative, possibly even tighter, EFSM. DExIE’s

hardware also provides an option for decoupling indi-

vidual branch and jump CF instructions from their cor-

responding EFSM’s state. With functions correspond-

ing to alternative EFSMs, and CFIs corresponding to

alternative states, this variable granularity allows to

flexibly tighten the number of legal CF paths, ideally

down to one, thereby mitigating any CF-attack, even

one based on a single CF-deviation. In this work, we dis-

cusses DExIE in conjunction with auto-generated EF-

SMs at the CFG-level, that can optionally be annotated

to reach finer granularity (Sec. 4.1).

2.2 Software-Hardware Partitioning

Runtime-dynamic integrity, implemented as a software-

only solution, requires additional integrity-checking in-

structions, which can dramatically increase binary size

and wall clock execution time. The actual overhead de-

pends on the granularity of control flow integrity and

can be higher than a factor of 2.5 x even for RoP-only

mitigation [6]. Besides safeguarding fewer indirect CF

instructions [38], extra hardware and power can be traded

to limit wall clock-penalty. Running integrity-checking

on a second dedicated core, called a “Guard Processor”,

doubles the hardware area [39]. As an alternative, a spe-

cialized hardware unit can implement the desired func-

tionality, thereby optimizing attack response latency,

runtime-penalty, and hardware overhead.

2.3 Attack Response Latency: Monitoring vs.

Low-Latency Enforcement

Fully-committed instructions can be monitored via a

number of existing RISC-V specific interfaces [12–14]

(Fig. 1). An attack’s execution of evil instructions can

be either just logged, or actually be prevented in time.

For the latter and more secure approach, which is imple-

mented by DExIE, monitoring already fully-committed

instructions is not sufficient, as this would be too late to

prevent in-flight instructions from being committed and

taking effect [35]. Depending on the individual imple-

mentation, attack response latency varies between a few

[34] or many thousand clock cycles [23], and can even be

Sample RISC-V Core

FE DE EX MEM WB

Monitoring
Unit

Capturing
fully-committed
instructions

Fig. 1 One-way monitoring of fully-committed instructions.
Monitoring can be used for debugging and tracing, but is not
capable of preventing the most recent (evil) instructions from
being (potentially irreversibly) executed.

Sample RISC-V Core

FE DE EX MEM WB
Security Enforcement Unit

Capturing uncommitted
instructions

Stall or
Reset

Fig. 2 A Security Enforcement Unit taps uncommitted in-
structions early from a RISC-V core’s pipeline, and has only
very limited time to react to prevent an evil instruction from
being (potentially irreversibly) committed to memory (MEM)
or the write-back (WB) stage.

hours or weeks for remote attestation approaches (de-

pending on the attestation interval) [7, 8, 26, 27, 40].

To reduce attack response latency and ideally achieve

attack prevention at the very first evil instruction in

flight, capturing uncommitted instructions in an ear-

lier pipeline stage is a key requirement (Fig. 2). With

only a very limited time budget, a Security Enforce-

ment Unit can then check the legality and prevent the

illegal instruction from being fully-committed in a later

pipeline stage. Statically or dynamically increasing the

available time budget is not desirable, as it either af-

fects attack response latency, or impacts performance,

either by slowing the maximum clock frequency or by

causing additional stall cycles [34, 35]. The alternative

idea of tracing read accesses on the instruction memory

bus could provide shorter latency, but is prone to extra
traffic due to speculative accesses and pipeline flushes.

2.4 Location of an Integrity Enforcement Unit

Beyond software-only solutions [6], a hardware integrity

unit can be either located within the core’s pipeline [23],

on-chip (without deeply affecting the pipeline) [34] or

on a separate chip (Fig. 3).

Deep pipeline-specific integration yields best attack

response latency but limits portability. Both the result-

ing increase of word width and new instructions necessi-

tate deep changes of the existing design (memory word

width, ALU, executable binary image, compiler tool-

chain [23]). This is sub-optimal for portable solutions

such as DExIE that are aiming for compatibility with

many different IoT cores.

Deeply integrated designs often store their

constraints within a modified instruction memory. When

loading constraints (e.g., memory tags), either together

4 Spang, Lavan, Hartmann, Meisel, Koch

System
on Chip

Sample RISC-V Core

FE DE EX MEM WB

1. In-Pipeline

2. On-Chip

Dedicated
Hardware

3. Off-Chip

Fig. 3 Possible Architectural Locations: 1. In-Pipeline, 2.
On-Chip, 3. Off-Chip. Deep integration limits inter-core
portability. Transmission latency lengthens minimum attack
response latency.

with the corresponding CF instruction or with its target

instruction, the constraints required for checking only

become available late during the instruction execution

cycle [23] [30]. In contrast for each CFI the correspond-

ing DExIE EFSM directly transitions to the next state

and then waits there for the core to catch-up by exe-

cuting straight-line code. As DExIE loads the new con-

straints at the activation time of the previous transition

with only a single or double-cycle latency, even with-

out cache, the number of stall cycles per CFI is ideally

reduced to zero, see Sec. 4.2.4.

Compared to deeply integrated designs, on-chip out-

of-pipeline monitors require only limited changes to the

pipeline and instruction memory [34]. Ideally, existing

debug/trace interfaces could be re-purposed for con-

necting them [12–14]. Since enforcement requires a low-

latency trace of uncommitted instructions, which is not

provided by any existing interface, we implemented such

an interface for four different RISC-V cores [35]. Our

interface taps the relevant status signals and provides

a stall and a reset input. As DExIE’s constraints are

stored in separated BRAM memories, all of the cores

presented in Sec. 5 can be safeguarded with a single

common DExIE implementation.

Finally, off-chip monitors reach highest portability,

as no changes to the System-On-Chip are made at all

(Sec. 7 in [4]). However, the inter-chip communication

comes with bandwidth and latency limitations. There-

fore, these devices cannot be used to prevent instruc-

tions in flight from being executed, without imposing

significant runtime overheads (stalls). Yet, when secu-

rity timing requirements are relaxed, and without guar-

anteed timing, some longer-running network-based at-

tacks might still be stopped in time before information

secrets are leaked through the network [23].

2.5 Performance: Parallelism of Instruction Checking

Enforcement requires continuous integrity checking,

which can be either realized serial or in parallel to the

actual program execution (Fig. 4). The former requires

Serial
Checking: Execution Stall Execution Stall

Evaluation Evaluation

CF Instr. CF Instr.

Parallel
Checking: Execution

Evaluation

Execution

Evaluation

CF Instr. CF Instr.

Hybrid
Checking: Execution

Evaluation

Execution Stall

Evaluation

Typical CF Instr. Rare CF Instr.

Execution Flow

Fig. 4 Serial vs. parallel vs. hybrid integrity checking: Pro-
gram execution is either stalled on a regular basis, not stalled
at all, or only stalled for handling edge cases. Pipelining the
processing of CF events would improve performance, but de-
lay the attack responses, and thus is avoided.

program execution to be paused and the evaluation to

run exclusively, eventually causing a high performance

impact. Alternatively, a fully-parallel implementation

will never cause the program execution to be stalled.

However, we have shown that this may come at high

hardware overhead or clock frequency reduction [34].

Finally, the hybrid approach runs in parallel most of

the time, but can induce stalls. Depending on the im-

plementation (e.g., avoidance of caches), the hybrid ap-

proach can still allow to exactly compute the Worst

Case Execution Time (WCET), as required for real-

time applications.

Remote Attestation often performs queuing of con-

trol flow events. In this case, execution can temporarily

overtake the monitoring unit for improved performance,

but at the cost of a longer attack response latency. In

their literature, remote attestation often does not state

stalls during the process of monitoring (hash computa-

tion). However, program execution is typically paused

at attestation time [7, 8]. In contrast, and depending

on the supervised core, DExIE induces no or only few

stalls, which are also statically-predictable, for handling

edge cases.

2.6 Location of the Trust Anchor

A trust anchor is an authoritative entity (or a device

component) for which trust is assumed and not derived

[18]. Related work differentiates between device-local

or remote trust anchors. The basis of a local trust an-

chor can be a trusted local memory, which cannot be

manipulated during runtime by any (untrusted) appli-

cation [34]. Alternatively, with reduced local hardware

DExIE - Dynamic Execution and Integrity Engine 5

overhead, runtime-dynamic remote attestation allows

to verify device integrity without local trust anchors

[7, 8, 26, 27, 40]. Beyond continuous logging, runtime-

dynamic remote attestation only allows sporadic in-

tegrity checking, thus increasing attack response times,

and lacks code-reuse attack prevention guarantees.

3 Mechanism and Security Considerations

DExIE by default uses one CFG-based EFSM per func-

tion to statefully constrain an application function’s le-

gal CF. To show a practical code-to-EFSM-mapping ex-

ample, Columns (a) and (f) in the later Figure 7 intro-

duce the idea. Whereas inter-function control flows such

as calls and returns switch the currently active EFSM,

function-local control flows such as branches and jumps

cause an EFSM-internal transition, thereby replicat-

ing the application’s CFG. As we focus on single-core

RISC-V implementations, exactly one pair of EFSM

and software-function is active at any point in time

(Fig. 5) with exactly one state being active. In the hard-

ware, narrow bit-width numerical IDs are used to rep-

resent wider CF target addresses, different EFSMs, and

their states. DExIE has been designed with the follow-

ing in mind:

Attacker model: The attacker can (in)directly and

arbitrarily tamper with control flow instructions [1] [32].

Guarantees: DExIE will react to any CFI violat-

ing the currently active EFSM. It will stop an attacker

from targeting (calling, jumping to, branching to) a

violating code gadget (address). Using a small num-

ber of predictable stalls, DExIE guarantees to react

faster than the core can execute any subsequent ille-

gal (Memory Mapped I/O - MMIO) memory write in-

struction, thus preventing an attack’s potentially irre-

versible malicious outside world effects. As faster attack

response times would require further stall cycles, the

implemented and guaranteed attack response latency

is a trade-off between security and performance, mak-

ing DExIE especially suitable for safeguarding realtime-

capable IoT devices that come attached to potentially

irreversibly harmful MMIO periphery. For example, this

could be a smart doorlock or a medical radiation device,

which would quickly and automatically reboot and re-

cover after a DExIE-induced device reset.

Assumptions: DExIE is designed with a focus on

code-reuse attacks. An unprotected program memory

would potentially allow an attacker to exploit a soft-

ware weakness (e.g. a buffer overflow) for replacing a

function with malicious code. If the malicious code had

similar CF structure to the original, or lacked any CF

at all, it potentially would not violate the active EFSM,

and thus would be undetectable. Therefore, we assume

Application: main() getR() main()

DExIE: EFSM #0 EFSM #1 EFSM #0
Runtime:

Call Ret

Fig. 5 Active pairs of (function, EFSM) over time

the existence of a mechanism, e.g., a separate address

space or a Memory Protection Unit, to enforce program

memory being read-only for defending against code in-

jections.

Real-time:DExIE is real-time capable. Specifically,

this means that DExIE’s runtime enforcement process

always takes identical time for a given supervised in-

struction type. DExIE also introduces only very limited

(if any) stall cycles, that are also statically predictable,

compared to an unmonitored execution (Sec. 4.2.4, 5).

4 Implementation

We will first focus on DExIE’s static analysis based soft-

ware toolchain (Sec. 4.1) and later-on explain DExIE’s

hardware architecture for enforcing hierarchical EFSMs

(Sec. 4.2).

4.1 Software Toolchain

Specifying DExIE’s configurations by hand is possible

but time-consuming. Thus, the goal of our software

toolchain is the automatic construction of DExIE con-

figurations for arbitrary software applications. A con-

figuration contains a set of EFSMs and corresponding

mappings from wide addresses to narrow IDs.

As an advantage, our toolflow (Fig. 6) uses an un-

changed conventional RISC-V ISA compliant compiler

to compile the program code into an Executable and

Linking Format (ELF) object file. The object file is used

twice: First, it is converted into a binary image to be

executed by the RISC-V core using objcopy. Second, the

object file is also fed into the DExIE-EFSM-Generator,

which generates DExIE’s EFSM and address-to-ID map-

ping configuration. We make use of the freely available

Capstone disassembly library [9], which we utilize to

reconstruct each function’s DExIE Code Graph (DCG)

from the CFG via static analysis (further details in Sec.

4.1.1). We use this somewhat indirect approach to en-

sure that the generated EFSMs match the actual ma-

chine instructions in the binary executable file. The eas-

ier approach of constructing the EFSMs, e.g., from the

assembly-level instructions during compiler code gener-

ation, might be inaccurate, as later tools, such as the

assembler or linker, could change the binary code again.

6 Spang, Lavan, Hartmann, Meisel, Koch

Program
Code

Compiler Toolchain
LLVM or GCC

ELF
Object File

Object
Copy

Binary
Image

RISC-V
Core

DExIE
EFSM-Generator

DExIE
Config. Image DExIE

Build one
DCG per
function

Convert
DCGs to
EFSMs

Map CF
target Addr.

to IDs

Store
EFSMs and

Address Maps

Fig. 6 Compilation into RISC-V and DExIE binaries: The DExIE-EFSM-Generator reads the ELF file, constructs the DExIE
Code Graphs (DCGs) and EFSMs, performs the address-to-ID mapping, and writes the DExIE configuration image.

Using a later-explained set of transformation steps,

the Capstone-generated DCGs get converted into EF-

SMs. Next, 32 bit addresses are mapped to narrow IDs,

reducing DExIE’s memory overhead. Lastly, EFSMs

and mapping IDs are converted into a dense encoding

and stored as a DExIE configuration image.

Statically disambiguating legal target addresses of

indirect control flows (e.g., jumps via runtime-dynamic

register) can be difficult. Manual code annotations or

hand annotated assembly can resolve this uncertainty

(Listing 1). Additionally, DExIE’s hardware is not only

compatible with EFSMs from static analysis similar to

[3], but already supports runtime-profiling-based EF-

SMs generated using the Spike simulator [15], thereby

also covering the profiled indirect CFs. As a benefit,

profiling EFSMs ideally specify a single CF path, thereby

mitigating any CF-deviating attacks. Symbolic execu-

tion is another possible source for EFSMs [2] [29].

i n t a () { [. . .] } //Not to be c a l l e d
i n t b () { [. . .] } //To be c a l l e d
i n t main () {

typede f i n t (∗ f p t) () ;
f p t a r r [2] = {&a , &b } ;
i n t a = 1 ;

call ing b : //DExIE annotat ion as C l a b e l
r e turn (∗ ar r [a]) () ; //The i n d i r e c t c a l l

}
Listing 1 Code example for an indirect control flow: Using
compiler optimization and the Capstone framework [9], our
toolchain will identify the function (b), which is to be called in
this example. Additionally, the optional comma-separable la-
bel also specifies that only function (b) will be legally callable.

4.1.1 Toolchain Details - Creation of EFSMs

Figure 7 shows an example code-to-EFSM-transforma-

tion containing two functions main() and getR(). Each

column contains an individual toolflow stage’s result.

Column (a) contains each function’s source code.

Using a toolchain like LLVM or GCC, the code gets

compiled into an ELF file, containing the assembly code

shown in Column (b). For reference, Column (c) holds

each function’s traditional compiler CFG. Its nodes con-

tain control flow instructions (CFI) and non-CFI (nCFI)

and its edges are intra-function CFI (jumps and

branches). Column (d) shows our refined DExIE Code

Graph (DCG). Its nodes are code addresses. Each edge

represents a single CFI, or sequences of nCFIs. Based

on DCGs, Algorithm 1 constructs the Function-Local

FSMs (FL-FSM) (Column (e)). After getting intercon-

nected, they become the Whole-Program EFSMs ac-

tually being used for enforcement (Column (f)). The

automatically created result can optionally be hand-

tightened. One can deactivate edges, define explicit states

per loop iteration, or specify a function’s alternative

EFSMs per call.

Applying Algorithm 1 to getR() function’s DCG

results in a single-state EFSM. Its entry state is also

the return state. Because the function does not contain

any CFI, the EFSM lacks any transitions. For main(),

these rules lead to the removal of nodes 164 (no CFI),

144 (another function) and 184 (no CFI). The result

of the algorithm are two FL-FSMs, which are shown in

Column (e) of Figure 7.

The final transformation step performs the intercon-

nection between FL-FSMs. The result can be seen in the

figure’s last Column (f). The purple intra-FSM arrow

(e1) is split up into two arrows, namely one call (f1) to

the first state of the called function’s EFSM and one re-

turn (f2) from its accepting state. As result, we create a

model consisting of two interconnected Whole-Program

Enforcement FSMs. The main function’s EFSM is ca-

Algorithm 1: EFSM generation algorithm

1 Input: One DExIE Code Graph (DCG)
2 Output: One Function-Local FSM
3 for each DCG-node do
4 rename node to state;
5 if state is exit state then
6 mark state accepting, allow return to caller;

7 else if a state’s single out edge has no CFI then
8 delete state & out-edge, transfer in-edges &

address to next state;

9 else if state is located in other function then
10 delete state & out-edge, forward in-edge to

next state, assign state’s address to edge;

DExIE - Dynamic Execution and Integrity Engine 7

a) C
Code

b) RISC-V
Assembly

c) Compiler
CFGs

d) DExIE Code
Graphs (DCGs)

e) Function-Local
FSMs (FL-FSMs)

f) Whole-Program
Enforcement FSMs

int getR(){
int i=42;
return i;
}

int main(){
int b=0;
if(b){
getR();
}
return 0;
}

144: <getR>
144-15c: non-CFI
160: ret

164: <main>
164-178: non-CFI
17c: beqz 184
180: jalr<getR>
184-194: non-CFI
198: ret

BB 1:
<144-160>

BB 1:
<164-17c>

BB 2:
<180>

BB 3:
<184-198>

144

160

non-CFI

164

17c

180

144

184

198

non-CFI

branch

non-CFI

non-CFI

call

ret

144-160
State 0

164-17c
State 0

180-180
State 1

184-198
State 2

(e1):
call 144,
ret

untaken
branch

taken
branch

144-160
State 0

164-17c
State 0

180-180
State 1

184-198
State 2

taken
branch

u. br.

(f1): call

(f2):
ret

EFSM #1

EFSM #0

EFSM #1

EFSM #0

Fig. 7 From left to right: Two functions are transformed into interconnected whole-program Enforcement FSMs (EFSM).
DExIE’s attack mitigation capability depends on the ESFM’s granularity. In the given example, manipulated calls and returns
will be detected via ESFM (PCoP) or shadow stack violations (RoP). Fine-granular (e.g. profiling-generated) EFSMs can also
selectively enforce branches (JoP, DoP).

pable of calling getR()’s EFSM, which in turn allows to

return back to main()’s EFSM. The example demon-

strates our concepts for intra- and inter-function CF.

This is an alternative to prior work, which employs

EFSMs only for inter-function CF [31], or system calls

[37], thereby limiting overheads and CF granularity.

This simplified example does not use compiler op-

timizations, and no optimization is performed on the

EFSMs. Currently, inter-function CF is limited to Call

and Return instructions. Thus, DExIE does not yet al-

low Branches and Jumps between functions and EFSMs.

Typically, these result from compiler optimizations for

inter-function CF without stack interaction (e.g., tail-
calls), and have to be avoided for now as DExIE would

misinterpret them as CF violations and reset the core.

We use the -fno-optimize-sibling-calls GCC flag for

deactivating the optimization of sibling and tail recur-

sive calls, and thus making DExIE compatible with all

other optimizations at the -O3 level.

4.1.2 DExIE Enforcement FSM (EFSM) Rules

Non-optimized non-edited DExIE EFSMs (Column (f),

Fig. 7) obey a set of basic rules: Only one FSM and state

is active at a time. Each function has one EFSM. Each

CF target address corresponds to one EFSM-state.

EFSM-states begin with a CFI, or alternatively the

function’s first instruction. Execution of a CF instruc-

tion always triggers an EFSM state transition. EFSM-

edges specify the legal transitions. In case of a function

call, an EFSM-state can call the first state of another

EFSM. States containing a return instruction are des-

ignated as “accepting” states. A return instruction also

reactivates the caller’s EFSM at the correct state.

4.2 Hardware Architecture

4.2.1 System Architecture and DExIE Interface

Figure 8 shows a sample RISC-V core with a common

5-stage RISC pipeline, the DExIE component, corre-

sponding memories, and a Secure Platform Controller

for initiating the startup sequence.

As part of the startup sequence a Secure Platform

Controller first loads and activates DExIE’s configura-

tion (1.). Next, the application is loaded (2.). Finally,

DExIE releases the processor core’s reset (3.), thereby

starting the supervised program execution, which is

guaranteed to not miss any control flow events.

For the DExIE pipeline taps, we initially considered

using standard interfaces [12][13][14] to attach DExIE

to the core. But as these interfaces only report retired

instructions or instruction blocks, respectively, they

come too late and would lead to DExIE missing its

goal of detecting a violation earlier than the next in-

struction’s commit, which might be a write instruction

to a dangerous memory-mapped device, having irre-

versible real-world impact. As part of prior work, we

thus implemented the RT-LIFE interface, which taps

early pipeline stages [35]. DExIE uses this RT-LIFE in-

terface to obtain the current Program Counter (PC),

the current instruction, and the next PC.

At runtime, DExIE first identifies the obtained con-

trol flow instructions. Next, the current EFSM’s state’s

8 Spang, Lavan, Hartmann, Meisel, Koch

Secure
Platform
Controller

Instruction Memory

Data Memory

RISC-V Core

Fe De Ex Mem WB

Transition Table (TT)

Global Address Mapping (GAM) Table

Local Address Mapping (LAM) Table

DExIE

Identify
CF instruction

Transition
Lookup

Address validation &
EFSM transition

2. Load
Appli-
cation

1. Load &
Activate
DExIE

Stall
Reset (3. Start)

P
C

In
s
t
r
.

n
e
x
t

P
C

RT-LIFE

Fig. 8 RISC-V core with an attached DExIE monitor, memories and a Secure Platform Controller. The core provides the
current PC, instruction, and the next PC. For any CF anomaly, DExIE resets the core in time, and thus prevents any
subsequent malicious instruction from being committed to memory. Depending on the individual core’s signal taps, its pipeline
structure, and its latency for memory writes, stalling the core mitigates latency-related security risks. With its close coupling
to the monitored processor’s pipeline, DExIE will also have far tighter, low-latency control than would be possible with a more
loosely-coupled Guard Processor. DExIE’s precise microarchitecture and latency (1-2 cycles) are discussed in Sec. 4.2.4.

legal transitions are retrieved from the Transition Ta-

ble. Each transition contains a narrow Address ID, which

indexes one out of two address mapping memory ta-

bles in order to determine the corresponding full-width

legal CF target address. Finally, the state’s transition

addresses are compared against the core’s next PC (CF

target address). If a match is found, the CF is valid and

the corresponding transition into the next EFSM and

the next EFSM state fires. For an unknown address,

or non-matching transitions, the CF is deemed invalid,

and DExIE immediately resets the core.

4.2.2 Data Structures, Lookup Sequence and Scaling

This section describes DExIE’s configuration memories

(Fig. 8) and refers to our previous code example (Fig.

7) to discuss the corresponding memory contents. In

addition, DExIE’s Shadow Stack (DSS) is introduced.

In Figure 9, DExIE’s on-chip memories are shown as

grey boxes (A), (B) and (C). For larger designs, these

could be extended by cached DRAM memory, introduc-

ing new stalls. The transition memory (A) contains a

legal set of transitions for all states and EFSMs (Tran-

sition Table, TT). A transition consists of activation

information (Boolean: branch or call, and an Address

ID), as well as the transition’s next EFSM and next

EFSM state. Each inter- or intra-EFSM CF-target ad-

dress must be known in advance. In particular, these ad-

dresses are stored in one of the two DExIE address map-

ping tables, namely the (B) intra-function Local Ad-

dress Mapping (LAM) table and the (C) inter-function

Global Address Mapping (GAM) table. Both tables are

indexed by narrow Address IDs, and contain one full-

width address per index. Depending on its purpose, an

Address ID can either be a Local Address ID (LAID) or

a Global Address ID (GAID). Each EFSM has its own

LAM table, but only a single GAM table is used for

the entire program. Again focusing on the TT, notice

the possibility for decoupling GAIDs and next-EFSM

IDs (enabling independence of functions and EFSMs),

as well as LAIDs and next-state IDs (enabling indepen-

dence of CFIs and states), for an optional refinement of

CF granularity.

Next, we focus on the colors shown in Figure 9

to demonstrate sample lookups. The yellow (untaken

branch), green (taken branch), and purple (call) colours

correspond to the same-colored transitions in Figure 7.

Yellow and green refers to the taken and un-taken

branches from State 0 of EFSM 0. First, the instruc-

tion is identified as function-internal CF. Next, from the

Transition Table (A) the LAIDs of the current state’s

(State=0) transitions are both speculatively accessed

in parallel (LAID= 1&2), and used to index the LAM

Table (B) to read the addresses 0x180 (untaken branch

target) and 0x184 (taken branch target). Finally, both

addresses are compared against the next PC computed

by the core. In case of a match, DExIE performs the

corresponding EFSM-internal transition into EFSM 0

and State 1 or 2, as set by the jump decision.

The purple marker refers to the call in State 1

of EFSM 0. Analogously, the instruction is identified

as inter-EFSM call. GAIDs are read from the Tran-

sition Table (A). Each legal transition’s GAID (here:

GAID=0) speculatively indexes the GAM Table (C)

to obtain the corresponding legal target function entry

point address (0x144), which is then validated against

the actual next PC value to finally transition into the

entry state of EFSM 1. Called EFSMs are always en-

tered in their State 0. Thus, the call transition’s next

State ID entry is not used. Instead, and in case of

calls, DExIE repurposes the entry to hold the Return

State Identifier. It is temporarily stored on DExIE’s

Shadow Stack (DSS) (Fig. 10), and indicates the caller’s

EFSM’s state when the callee’s EFSM returns.

Return instructions are enabled via the DSS (Fig.

10) - a second independent stack, which is not accessi-

ble by the core, similar to [28]. As in a traditional stack,

entries are pushed and popped for function calls and re-

DExIE - Dynamic Execution and Integrity Engine 9

Legal CFIs
for EFSM0:

EFSM 0, State 0
Instruction:
Untaken Branch
to: 0x180
EFSM 0, State 0
Instruction:
Branch to: 0x184
EFSM 0, State 1
Instruction:
Call to: 0x144

(A) Transition Table (TT)

State 0:
Branch

or
Call

LAID
or

GAID

Next
State
ID

Next
EFSM
ID

Br
Br

LAID:1
LAID:2

1
2

0
0

State 1:
Branch

or
Call

LAID
or

GAID

Next
State
ID

Next
EFSM
ID

Call
...

GAID:0
...

2
...

1
...

State 2:
No valid transitions except

ret from ret. state

(B) Local Address
Map (LAM)

0x164 <LAID: 0>
0x180 <LAID: 1>
0x184 <LAID: 2>

(C) Global Address
Map (GAM)

0x144 <GAID: 0>
0x164 <GAID: 1>
0xFFF <GAID: 2>

Fig. 9 DExIE’s memory contents: (A) Transition Table, (B)
Local Address Mapping (LAM) for (branches and jumps) and
(C) Global Address Mapping (GAM) table table (for calls).
Colors and contents correspond to Figure 7.

Verify Ret. Addr. Specify caller’s EFSM and state
for a return

Ret. Address

0x00000184

<empty>

<empty>

Ret. EFSM ID

0 <main>

<empty>

<empty>

Ret. State ID

2 <Accept. State>

<empty>

<empty> St
ac
k
di
re
ct
io
n

Fig. 10 When calling a function, DExIE’s Shadow Stack
stores the return address, the ESFM ID, and its state, which
are restored (verified) at return time.

turns. As shown in the first column of Figure 10, each

entry holds a copy of the RISC-V core’s return address.

The Columns 2 and 3 show that each entry also con-

tains DExIE’s return EFSM ID and Return State ID.

For any call transition, like the one described in the pre-

vious example (Fig. 9), DExIE pushes this information

onto the stack and enters the called EFSM’s entry state.
For a return from a previously called function, DExIE

pops the top-most entry, verifies the return address, and

activates the return EFSM in the given return state.

A naive implementation would scale approximately

according to the simplified Fomulae 1 – 4. These assume

one legal target address per CFI, no manual state du-

plication, e.g. via FSM state loop unrolling, a constant

size for all functions, and CFIs targeting only Basic

Block (BB) entrypoints.

Dupl. Stacksize = RISC-V-Addr.-Width · Call-Depth (1)

GAMsize = RISC-V-Addr.-Width · #Funcs (2)

LAMsize = (RISC-V-Addr.-Width · #BBs) · #Funcs (3)

TTsize = #BBs · (1 + max(log2(#BBs), log2(#Funcs))

+ log2(#BBs) + log2(#Funcs))
(4)

4.2.3 Optimization of Data Structures

In practice, our design implements optimizations, which

were not described in the simplified example, but which

significantly reduce memory requirements by more than

50%. For hardware/software systems that do not fully

leverage a 32-bit address space, DExIE address entries

within the GAM table can be narrowed to match the ex-

tent of the address space actually used. Next, our LAM

table does not implement wide absolute, but narrow

function-local addresses, which can be sized to fit the

largest function expected to be executed on this proces-

sor. Finally, un-taken branches that transition into the

current EFSM’s next state can be encoded using just

a single additional bit per state. This lazy-next-state

encoding (LNSE) requires sequential state IDs for sub-

sequent untaken branches, which is realized by a prior

automatic reordering of states. When looking again at

Figure 9, LNSE significantly reduces overheads for the

TT and LAM tables, as the yellow untaken branch tran-

sition to 0x180 is expressed by a single bit. Notice that

the transition connects State 0 and State 1 (+1), thus

no reordering is needed in this example (Fig. 7).

In the discussion so far, all tables were assumed

to have the same fixed sizes. By analyzing typical IoT

baremetal applications from the Embench benchmark

suite, as well as a sample program using Contiki-NG

(an embedded OS) [10], we verified that common ap-

plications contain a broad range of function sizes (Fig.

11). This would lead to wasted memory space in the

”one size fits all” approach, since all memory blocks for

TT and LAM tables would have to be configured to

fit the largest function’s EFSM number of the states.

Therefore, DExIE allows to dynamically re-partition

its internal memory at configuration load-time, right

before the system boots. Multiples of 2n are used to

define the number of EFSM-instances and the num-

ber of states per EFSM-type, for up to four EFSM-

types. As completely flexible EFSM sizes would require

a more complex additional layer of indirection (for flex-

ible addressing of constraints), we consider our decision

to yield a viable trade-off. For the experiments in Sec.

5, four different EFSM table sizes (2, 16, 64 and 512

states), as well as 8,16,4, and 1 table instances of these

sizes are configured. As smaller EFSMs can be placed

in larger EFSM tables, this configuration fits all bench-

marks (Fig. 11).

In our first design, we marked accepting states in a

dedicated accepting table with one bit per EFSM per

state. A more recent attempt avoided the additional

accepting table, and defined an EFSM’s highest state

as implicitly accepting. However, this requirement fails

with more complex EFSMs having more than one ac-

cepting state, as we could only define one accepting

state. It also conflicts with EFSMs that have a num-

ber of states other than 2n and contain sequences of

LNSE-encoded untaken branches, which in turn must

10 Spang, Lavan, Hartmann, Meisel, Koch

1 2 4 8 16 32 64 128 256 512
0

2

4

6

States per EFSM

#
o
f
E
F
S
M
s

Aha-Mont64 Edn Matmult-Int Ud

Fig. 11 Benchmarks and their corresponding EFSM sizes in grouped by 2n states per EFSM. Function size and complexity
largely varies, thus should be reflected by flexible hardware EFSM sizes (flexible configuration memory partitioning required).

have ascending State IDs from lowest to highest state;

in this case, no legal sequence can be represented.

We first solved this by implementing untaken branch

transitions in the traditional encoding (Fig. 9), which

required additional memory. For sequences of untaken

branches, our next approach solved the problem of

ascending-only State IDs by auto-inserting single spe-

cial states, that implicitly automatically transitioned

to freely configurable State IDs. This solved the incom-

patibility, but required two instead of one hardware-

transitions, and therefore affected either performance or

latency-related security guarantees (Sec. 3). Finally, we

decided to not mark accepting states, but instead mark

transitions to the accepting states (with all transition

bits set to one). As a result, accepting states them-

selves are not encoded within the Transition Table, re-

ducing memory overhead. Returning into the previous

EFSM is still constrained to take place at accepting

EFSM States, and is also safeguarded by our EFSM-

aware DExIE Shadow Stack (Fig. 10).

4.2.4 Microarchitecture and Parallel Table Lookups

In contrast to our efforts, most related work (Sec. 2) fo-

cuses on solutions that are either not real-time capable,

or do not explicitly guarantee stopping execution ear-

lier than any subsequent malicious access to a MMIO

device can happen [5].

The performance overhead of a CF integrity enforce-

ment depends on the dynamic frequency of CFIs. We

express this as the CFRate, defined as the number of

CFIs per clock cycle. A CFRate = 1 indicates a CFI

every clock cycle, = 1/2 one every second clock cycle

etc. Without pipelining EFSM transitions, DExIE has

a maximum CFRate it can process without requiring

stalls. This depends on the core-specific latency be-

tween getting the data from the taps and when DExIE

has to make the valid/invalid decision. In case the core’s

CFRate is temporarily higher than DExIE’s, automatic

stalls are used, preventing DExIE from being overtaken.

Our actual microarchitecture targets at CFRates

between 1 and 1/2 (Fig. 12). In order to achieve such

high throughput/ low-latency monitoring, speculative

queries to our TT held in FPGA BRAM are imple-

mented, with a maximum number of legal CF targets

per EFSM state configured to 2. These accesses can be

performed in parallel using Dual-Ported BRAM. There-

fore, this implementation supports all directly addressed

CFI, but limits indirectly addressed CFIs to a max-

imum of 2 targets. Note that for more complex codes

using a larger number of indirect targets, DExIE can be

configured to either employ slower sequential lookups,

or use multiple memory blocks to perform multiple

lookups in parallel. Another compiler-based solution

would be to split valid targets by constructing a binary

tree of branches via a compiler plugin.

Fig. 12 shows DExIE’s operation at the microarchi-

tecture level. First, the CFI is identified as a branch/

jump (a), call (b) or return (c). In case of branches

and jumps (a) at a CFRate up to 1/2, valid LAIDs

and their corresponding next states are read from the

state’s TT entry (queried in advance). The LAIDs in-

dex the LAM Table, which provides both valid target

Next Instruction is:

a) br/jump
CFRate = 1/2
Latency = 2

b) call
CFRate = 1
Latency = 1

c) ret
CFRate = 1
Latency = 1

Get valid LAIDs
from TT

Get valid next
states from TT

Get valid next
EFSMs from TT

Get valid GAIDs
from TT

Pop stack

LAM Table: LAID
to local address

GAM Table: GAID
to function addr.

Next PC == A or B?,
transition to
next state A or B,
request next TT

Next PC == A or B?,
transition into EFSM
A’s or B’s entry state,
push stack, req. next TT

Perform transition

Verify return address

LAID A
LAID B

Address A
Address B
Next PC

Next state A
Next state B

GAID A
GAID B

Address A
Address B

Next PC
EFSM A
EFSM B

Return state
Return EFSM

Expected return address
Next PC

Fig. 12 DExIE’s microarchitecture: TT lookup before address mapping, TT BRAM is queried at transition time, two alter-
native CF targets are loaded in parallel to hide memory latency. BRAM reads are marked blue, LUTRAM reads green.

DExIE - Dynamic Execution and Integrity Engine 11

addresses at the beginning of the next cycle. Next, the

valid addresses are compared against the next PC ad-

dress. If a match is found, the CF is valid, and DExIE

requests the next state’s TT entry and transitions to

the current EFSM’s next state. The call (b) mech-

anism is similar. The GAIDs of the valid targets are

read from the TT entry (queried in advance), which

are then used to combinationally index the LUTRAM-

based GAM Table to retrieve the corresponding func-

tion addresses. In parallel, both target EFSM IDs are

read from the TT entry. Finally, the RISC-V core’s next

PC address is compared to both legal addresses, and

if a match is found, the corresponding transition into

the EFSM’s entry state, as well as a stack push and

the next state’s TT query, are performed. Because the

GAM Table holds far fewer entries than all of the LAM

Tables combined, the GAM Table is implemented in

LUTRAM, which is faster than BRAM, thus support-

ing a CFRate of 1. Returns (c) are also supported at

a CFRate of 1: First, the DExIE stack in LUTRAM is

popped. DExIE transitions into that return state in the

return EFSM. In parallel, DExIE verifies the next PC

by comparison with the popped valid return address.

5 Evaluation

Using its default configuration with up to 2 clock cycles

attack response latency, DExIE is attached and evalu-

ated in combination with different RISC-V cores. As

stated in the title, our project focuses on small IoT-

class RISC-V cores, for which we selected Piccolo, Pi-

coRV32, Taiga, and VexRiscv [25]. We selected these

cores, which are detailed in [35], to demonstrate DExIE’s

potability. Each FPGA design’s clock frequency, LUTs,

Register and BRAM usage is compared to the corre-

sponding core-only implementation. We evaluate our

design using four benchmarks from Embench-IoT [11],

which covers real-world IoT tasks. In the prior Figure

11, the benchmark’s corresponding EFSMs are grouped

by their number of states in multiples of 2n.

The size of DExIE’s maximum total configuration

memory should be chosen to fit all applications that

are expected to run on the processor (here: the four

benchmarks). At boot-time, the configuration memory

can then be re-partitioned to fit a specific application’s

EFSMs. As all benchmarks need only one legal call and

branch-taken target per CFI, we configure DExIE to

use only single- instead of dual-ported memories.

All CPU cores are implemented as Processing El-

ements (PE) in the Task Parallel System Composer

(TaPaSCo) FPGA SoC framework [17] [21] targeting

the VC709 Virtex 7 device prototyping board using Xil-

inx Vivado 2018.3, which, in our case, yields better re-

sults than more recent versions. On the software side,

we use GCC 9.2.0 and Embench 0.5 Draft compiled

at Embench default -O2 with RV32IM, but disallow-

ing inter-function branches and jumps (as described in

Sec. 4.1.1) for DExIE. To find each design’s highest fre-

quency, synthesis was run iteratively using TaPaSCo’s

Design Space Exploration feature. Note that perfor-

mance baselines for the cores can be found in [17].

While not being part of our project, we expect DExIE

to scale even when combined with larger processor cores.

However, and to prevent evil attacks in flight, low-latency

tracing of uncommitted instructions from an out-of-

order pipeline is expected to be more complex, likely

causing extra overhead on the tracing interface [35].

Figure 13(a) shows the achieved maximum clock fre-

quencies for the core-only and DExIE-extended imple-

mentations. As expected, achieving DExIE’s strong se-

curity guarantee of preventing any outside-world im-

pact via MMIO-Devices, and at the same time staying

real-time capable at CFRates between 1 and 1/2, often

comes at the price of a slower clock frequency. Using an

asynchronous reset, all cores but VexRiscv give DExIE

two cycles of latency between sending their combined

<PC, instruction, next PC>message to DExIE and the

commit of the next instruction to the memory inter-

face, which is the point where the valid/invalid deci-

sion has to have been made by DExIE. For all cores

but VexRiscv, single-cycle stalls only occur for back-to-

back CFIs (which rarely occurs in typical applications).

VexRiscv is stalled an additional cycle, if a CFI is fol-

lowed by a memory write instruction.

Depending on the core’s size, which in turn varies

with the scope of the instruction set being supported

(Table 1), LUT requirements increase by 54% to 124%,

as shown in Figure 13(b). The absolute overhead de-

pends on the core-specific interface and Vivado’s op-

timization algorithm, which duplicates logic for better

timings. Figure 13(c) shows an increased register us-

age between 2.24 and 7.04 kilobit (kb). This is mainly

caused by the GAM table being implemented in LU-

TRAM. When comparing the BRAM cost of using

DExIE (Fig. 13(d)), we use the minimal Embench tar-

get system as a baseline, which has 64 kB data + 64

kB of instruction memories in BRAM.

The slight performance improvement for Piccolo is

due to variations in the Vivado toolchain, and not re-

lated to DExIE. Depending on the core, the perfor-

mance overhead ranges from 0% to more than 100%

(Table 1). PicoRV32 has been optimized for very high

fmax and small area. It thus is a ”worst-case” for DExIE

monitoring, which carries a comparatively high area

and performance overhead. At the other end of the

spectrum lies the Piccolo core, which carries a far lower

12 Spang, Lavan, Hartmann, Meisel, Koch

Benchmark Core’s ISA Aha-Mont64 Edn Matmult-Int Ud
/ Core w/o w w/o w w/o w w/o w
Piccolo RV32ACIMU 5.17 s 4.88 s 31.56 s 29.82 s 38.86 s 36.73 s 15.83 s 14.96 s
PicoRV32 RV32IM 17.43 s 40.88 s 23.75 s 55.70 s 24.40 s 57.20 s 16.32 s 38.28 s
Taiga RV32IMA 1.79 s 2.65 s 1.86 s 2.75 s 2.03 s 3.01 s 1.57 s 2.33 s
VexRiscv RV32IM 8.79 s 15.34 s 6.68 s 11.61 s 6.93 s 12.06 s 6.99 s 12.00 s

Table 1 Each core’s ISA as well as wall-clock execution time per core and benchmark, without and with the DExIE unit
attached. As described, Piccolo’s improvement is not caused by DExIE, but relates to the proprietary FPGA toolchain.

overhead and no performance slowdown. The percent-

age of DExIE’s extra clock cycles for stalls ranges from

0% for the fast-clocking and higher-latency PicoRV32,

to 10.4% for Taiga with its partially independent exe-

cution units.

When referring back to Sec. 2 and comparing DExIE

with related work other approaches, such as [23], im-

ply less memory overhead (no performance overhead is

mentioned, deep pipeline-specific integration, low porta-

bility to other cores, not real-time capable), but do not

guarantee tight timing for attack prevention. For im-

proved performance, they implement queuing for up to

2000 control flows.

DExIE instead does not use any queuing, but im-

mediately stalls program execution to prevent the core

from overtaking DExIE (to guarantee tight attack re-

sponse latency). To achieve smaller overheads, other ap-

proaches limit CF granularity, and thus are not capable

of mitigating DoP or JoP attacks [6, 20, 22, 28, 36].

In contrast, runtime dynamic remote attestation is

capable of detecting very fine granular CF deviations.

But densely storing the logged taken-path information

can lead to unacceptable (>100%) memory overheads

[26]. This can be reduced by hashing the taken-path

information, and by offloading the attestor to a server

class machine [8]. DExIE guarantees very short attack

response times, which are required to guarantee attack

prevention, and still reaches a relatively high maximum

clock frequency of 145MHz in our experiments, with no

or only very few statically predictable stalls. Even Re-

mote Attestation approaches, which do not implement

tight latency guarantees, and thus should easily achieve

higher clock frequencies, are often limited to lower fre-

quencies (70 - 80MHz) [7, 40], or at best achieve com-

parable clock frequencies to DExIE (150MHz) [8]. For

a more detailed comparison, please see [4].

Overall, we have not found any prior work, which is

compatible with a number of different processor cores

and is capable of actually preventing runtime-dynamic

code-reuse attacks with tight and guaranteed latency,

with real-time support, and a flexible (EFSM-defined)

CF checking granularity.

Piccolo PicoRV32 Taiga VexRiscv
0

50
100
150
200
250
300

MHz

69

340

200
235

73

145 135 135

only core with DExIE

+5.8% -57.35% -32.5% -42.55%

(a) Clock frequencies

Piccolo PicoRV32 Taiga VexRiscv
0
3
6
9

12
15
18
21
k

13.62

4.34 4.66 3.83

20.96

8.48 8.02 8.59

only core with DExIE

+53.89% +95.39% +72.10% +124.28%

(b) Look Up Tables (LUTs)

Piccolo PicoRV32 Taiga VexRiscv
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
kb

10.7

3.52 3.09 3.52

17.74

6.95
5.33

7.34

only core with DExIE

+65.79% +97,44% +72.49% +108.52%

(c) Registers in Kilobit

Piccolo PicoRV32 Taiga VexRiscv
100
110
120
130
140
150
160
170
kB

132
128

136
140

148
142 142

154
only core with DExIE

+12.12% +10.94% +4.41% +10%

(d) BRAM in Kilobyte

Fig. 13 Results for Piccolo, PicoRV32, Taiga and VexRiscv.

6 Conclusion

DExIE is an on-chip low-overhead fine-grained CF in-

tegrity enforcement device that guarantees to react

faster than a subsequent illegal instruction may per-

form a memory write, blocking an attack’s potentially

irreversible malicious real-world impact. Its limited area

DExIE - Dynamic Execution and Integrity Engine 13

and performance costs often make DExIE a better so-

lution than alternative approaches, such as software in-

strumentation, or the use of a full-scale guard processor.

DExIE is especially attractive when it can be attached

to a suitable base pipeline. For such pipelines, which are

not primarily optimized for fmax, DExIE can operate

with no clock frequency penalty or wallclock slowdown.

Because it is designed with reduced latency in mind,

DExIE causes no stalls for PicoRV32 and only few and

fully-predictable stalls for other cores. As future work,

we will extend DExIE to support context-switching by

alternating per-context EFSM groups, thereby safe-

guarding IoT using more complex operating systems.

Acknowledgements This research work has been funded
by the German Federal Ministry of Education and Research
and the Hessian Ministry of Higher Education, Research, Sci-
ence and the Arts within their joint support of the National
Research Center for Applied Cybersecurity ATHENE.

References

1. Bletsch T, Jiang X, Freeh V, Liang Z (2011) Jump-

oriented programming: a new class of code-reuse

attack. pp 30–40, DOI 10.1145/1966913.1966919

2. Busse F, Nowack M, Cadar C (2020) Running sym-

bolic execution forever. In: Proceedings of the 29th

ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, Association for Com-

puting Machinery, New York, NY, USA, ISSTA

2020, p 63–74, DOI 10.1145/3395363.3397360, URL

https://doi.org/10.1145/3395363.3397360

3. Chen, et al. (2019) Automated finite state
machine extraction. In: Proceedings of the

3rd ACM Workshop on Forming an Ecosys-

tem Around Software Transformation, Association

for Computing Machinery, FEAST’19, DOI 10.

1145/3338502.3359760, URL https://doi.org/

10.1145/3338502.3359760

4. de Clercq R, Verbauwhede I (2017) A survey of

hardware-based control flow integrity (CFI). 1706.

07257

5. Das S, Zhang W, Liu Y (2016) A fine-grained con-

trol flow integrity approach against runtime mem-

ory attacks for embedded systems. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Sys-

tems 24(11):3193–3207

6. Davi L, Sadeghi AR, Winandy M (2011) ROPde-

fender: A detection tool to defend against return-

oriented programming attacks. In: Proceedings of

the 6th International Symposium on Information,

Computer and Communications Security, ASI-

ACCS 2011, pp 40–51

7. Dessouky G, Zeitouni S, Nyman T, Paverd A,

Davi L, Koeberl P, Asokan N, Sadeghi AR (2017)

LO-FAT: Low-overhead control flow attestation in

hardware. pp 1–6, DOI 10.1145/3061639.3062276

8. Dessouky G, Abera T, Ibrahim A, Sadeghi AR

(2018) LiteHAX: Lightweight hardware-assisted at-

testation of program execution. In: Proceedings

of the International Conference on Computer-

Aided Design, Association for Computing Machin-

ery, New York, NY, USA, ICCAD ’18, DOI 10.

1145/3240765.3240821, URL https://doi.org/

10.1145/3240765.3240821

9. Div (2021) Capstone the ultimate disassembly

framework. URL http://www.capstone-engine.

org/

10. Div (2021) Contiki-NG: The os for next generation

iot devices. URL https://github.com/contiki-

ng/contiki-ng

11. Div (2021) Embench-iot github repository. URL

https://github.com/embench/embench-iot

12. Div (2021) RISC-V debug specification. URL

https://github.com/riscv/riscv-debug-spec

13. Div (2021) RISC-V Formal verification frame-

work. URL https://github.com/SymbioticEDA/

riscv-formal

14. Div (2021) RISC-V trace specification. URL

https://github.com/riscv/riscv-trace-spec

15. Div (2021) Spike RISC-V ISA simulator. URL

https://github.com/riscv/riscv-isa-sim

16. Evans, et al. (2015) Control jujutsu: On the weak-

nesses of fine-grained control flow integrity. In:

Proceedings of the 22nd ACM SIGSAC Confer-

ence on Computer and Communications Secu-

rity, Association for Computing Machinery, New

York, NY, USA, CCS ’15, p 901–913, DOI 10.

1145/2810103.2813646, URL https://doi.org/

10.1145/2810103.2813646

17. Heinz C, Lavan Y, Hofmann J, Koch A (2019)

A Catalog and In-Hardware Evaluation of Open-

Source Drop-In Compatible RISC-V Softcore Pro-

cessors. In: IEEE Proc. International Conference on

ReConFigurable Computing and FPGAs (ReCon-

Fig), IEEE

18. Housley R, Ashmore S, Wallace C (2010) Trust An-

chor Format. RFC 5914, RFC Editor, URL https:

//www.rfc-editor.org/rfc/rfc5914.txt

19. Hu H, Shinde S, Adrian S, Chua ZL, Saxena P,

Liang Z (2016) Data-oriented programming: On the

expressiveness of non-control data attacks. In: 2016

IEEE Symposium on Security and Privacy (SP), pp

969–986

20. Intel (2020) Control-flow Enforcement Tech-

nology specification, rev. 3.0. URL https:

14 Spang, Lavan, Hartmann, Meisel, Koch

//software.intel.com/sites/default/files/

managed/4d/2a/control-flow-enforcement-

technology-preview.pdf

21. Korinth J, Hofmann J, Heinz C, Koch A (2019)

The TaPaSCo open-source toolflow for the auto-

mated composition of task-based parallel reconfig-

urable computing systems. In: Applied Reconfig-

urable Computing, Springer International Publish-

ing, Cham, pp 214–229

22. Li J, Chen L, Xu Q, et al. (2019) Zipper stack:

Shadow stacks without shadow. ArXiv

23. LI Y, LI Jw (2018) A technique preventing code

reuse attacks based on RISC processor. DEStech

Transactions on Computer Science and Engineering

DOI 10.12783/dtcse/CCNT2018/24682

24. Liljestrand H, Nyman T, Wang K, Perez CC,

Ekberg JE, Asokan N (2019) PAC it up: To-

wards pointer integrity using ARM pointer

authentication. In: 28th USENIX Security

Symposium (USENIX Security 19), USENIX

Association, Santa Clara, CA, pp 177–194,

URL https://www.usenix.org/conference/

usenixsecurity19/presentation/liljestrand

25. MultiMedia LLC (2021) RISC-V Cores list. URL

https://github.com/riscv/riscv-cores-list

26. Nunes IDO, Jakkamsetti S, Tsudik G (2020) Tiny-

CFA: A minimalistic approach for control-flow at-

testation using verified proofs of execution. 2011.

07400

27. Nyman T, Dessouky G, Zeitouni S, Lehikoinen A,

Paverd A, Asokan N, Sadeghi AR (2018) Hard-

Scope: Thwarting DOP with hardware-assisted

run-time scope enforcement. 1705.10295

28. Ozdoganoglu H, Vijaykumar TN, Brodley CE,

Kuperman BA, Jalote A (2006) SmashGuard: A

hardware solution to prevent security attacks on

the function return address. IEEE Transactions

on Computers 55(10):1271–1285, DOI 10.1109/TC.

2006.166

29. Phu TN, Hoang L, Toan N, Tho ND, Binh NN

(2019) C500-CFG: A novel algorithm to extract

control flow-based features for iot malware detec-

tion. 2019 19th International Symposium on Com-

munications and Information Technologies (ISCIT)

30. Qualcomm (2017) Pointer Authentication on

ARMv8.3. URL https://www.qualcomm.com/

media/documents/files/whitepaper-pointer-

authentication-on-armv8-3.pdf

31. Rahmatian M, Kooti H, Harris IG, Bozorgzadeh

E (2012) Hardware-assisted detection of malicious

software in embedded systems. IEEE Embedded

Systems Letters 4(4):94–97, DOI 10.1109/LES.

2012.2218630

32. Roemer R, Buchanan E, Shacham H, Savage

S (2012) Return-oriented programming: Systems,

languages, and applications. ACM Trans Inf Syst

Secur 15(1), DOI 10.1145/2133375.2133377, URL

https://doi.org/10.1145/2133375.2133377

33. Sadeghi A, Niksefat S, Rostamipour M (2018)

Pure-call oriented programming (PCOP): chaining

the gadgets using call instructions. Journal of Com-

puter Virology and Hacking Techniques 14:1–18,

DOI 10.1007/s11416-017-0299-1

34. Spang C, Lavan Y, Hartmann M, Meisel F,

Koch A (2021) DExIE - an IoT-class hardware

monitor for real-time fine-grained control-flow in-

tegrity. In: Workshop on Design and Architec-

tures for Signal and Image Processing (14th Edi-

tion), Association for Computing Machinery, New

York, NY, USA, DASIP ’21, p 26–34, DOI 10.

1145/3441110.3441146, URL https://doi.org/

10.1145/3441110.3441146

35. Spang C, Meisel F, Koch A (2021) RT-LIFE:

Portable RISC-V interface for real-time lightweight

security enforcement. In: Intl. Conf. on Embedded

Computer Systems: Architectures, MOdeling and

Simulation (SAMOS), Springer International Pub-

lishing

36. Sullivan GT, DeHon A, Milburn S, Boling E, Ciaffi

M, Rosenberg J, Sutherland A (2017) The dover

inherently secure processor. In: 2017 IEEE Inter-

national Symposium on Technologies for Homeland

Security (HST), pp 1–5

37. Xia N, Mao B, Zeng Q, Xie L (2007) Efficient and

practical control flow monitoring for program secu-

rity. In: Okada M, Satoh I (eds) Advances in Com-

puter Science - ASIAN 2006. Secure Software and

Related Issues, Springer Berlin Heidelberg, Berlin,

Heidelberg, pp 90–104

38. Yuan P, Zeng Q, Ding X (2015) Hardware-assisted

fine-grained code-reuse attack detection. In: Bos H,

Monrose F, Blanc G (eds) Research in Attacks, In-

trusions, and Defenses, Springer International Pub-

lishing, Cham, pp 66–85

39. Yubin Xia, Yutao Liu, Chen H, Zang B (2012)

CFIMon: Detecting violation of control flow in-

tegrity using performance counters. In: IEEE/I-

FIP International Conference on Dependable Sys-

tems and Networks (DSN 2012), pp 1–12, DOI

10.1109/DSN.2012.6263958

40. Zeitouni S, Dessouky G, Arias O, Sullivan D,

Ibrahim A, Jin Y, Sadeghi A (2017) ATRIUM:

Runtime attestation resilient under memory at-

tacks. In: 2017 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD), pp 384–

391, DOI 10.1109/ICCAD.2017.8203803

