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Abstract—Multi-versioning and MVCC are the foundations
of many modern DBMSs. Under mixed workloads and large
datasets, the creation of the transactional snapshot can become
very expensive, as long-running analytical transactions may
request old versions, residing on cold storage, for reasons of
transactional consistency. Furthermore, analytical queries oper-
ate on cold data, stored on slow persistent storage. Due to the
poor data locality, snapshot creation may cause massive data
transfers and thus lower performance. Given the current trend
towards computational storage and near-data processing, it has
become viable to perform such operations in-storage to reduce
data transfers and improve scalability. neoDBMS is a DBMS
designed for near-data processing and computational storage. In
this paper, we demonstrate how neoDBMS performs snapshot
computation in-situ. We showcase different interactive scenarios,
where neoDBMS outperforms PostgreSQL 12 by up to 5×.

Index Terms—ndp, smart storage, disaggregated memory

I. INTRODUCTION

The foundation of many modern DBMS architectures is

multi-versioning. It fits current workloads, such as Hybrid

Transactional and Analytical Processing (HTAP), that combine

long-running analytical queries (OLAP) with frequent and

low-latency update transactions (OLTP) on the same dataset

and DBMS [7]. Multi-versioning offers good performance, as

readers never block writers. It also matches key properties of

modern hardware, in terms of parallelism, data placement, or

copy-on-write.

Background. With multi-versioning and MVCC, multiple

versions of each data item (i.e. tuple) may physically co-exist.

For consistent execution, every transaction operates against a

snapshot of the database that comprises all currently visible

tuple-versions. An update transaction (i.e. TXU1, Fig. 1)

produces a new version (i.e. t.v1, Fig. 1) of the data item

(i.e. tuple t) and invalidates the predecessor version (i.e.

t.v0). All versions of a tuple form a version-chain, for which

many organizations exist [13]. Timestamps determine, which

of the existing tuple-versions is visible to a transaction. Read

transactions (i.e. QR in TXR) operate on the latest committed

version visible to them (i.e. t.v0) and never stall.

Motivation. Snapshot creation and visibility checking may

become very expensive with long version chains that occur

naturally under mixed workloads. Intermediate versions along

the chain cannot always be garbage collected and snowball to

cold storage. In large industrial HTAP settings, the number of
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Fig. 1. Transactional snapshot creation in HTAP settings: TXU1 . . .TXU3

create new versions of tuple t and commit, while a long-running transaction
TXR queries t causing an expensive retrieval of t.v0 from cold storage.

active versions can be as high as several hundred millions [6].

Long analytical queries that process cold data must perform

visibility checking, which is slow and I/O intensive.

NDP and Computational Storage. Near-Data Processing

makes it possible for the storage to perform visibility checking

in-situ, i.e. as close as possible to the physical data location

of the cold data. NDP has become viable, as hardware manu-

facturers can economically fabricate and package combined
storage and compute elements in the same storage device

(computational storage). In addition, with semiconductor stor-

age, the device-internal bandwidth, parallelism, and latencies

are much better than external ones.

In this paper, we introduce neoDBMS, which is a DBMS

designed for NDP and computational storage. In particular,

we demonstrate how neoDBMS performs version visibility

checks in-situ. The core insight is that computational storage

can quickly return the tuple version visible to a certain transac-

tion, thus creating the transactional snapshot efficiently in-situ.

It can be consumed by both the host-DBMS, or a follow-up in-

situ NDP-operation. Our contributions are: (i) we demonstrate

how neoDBMS performs version visibility checks in-situ.

neoDBMS outperforms the baseline PostgreSQL 12 by up

to 5×; (ii) the process is performed in-situ without any in-

teraction with the host as an intervention-free NDP-operation;

(iii) neoDBMS creates the NDP snapshot with transactional
guarantees; (iv) neoDBMS interprets the data layout in-

situ (DBMS pages and the version records) to extract the
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transaction timestamps with the help of in-situ format parsers

and layout accessors; (v) in doing so neoDBMS relies on

the byte-addressable nature of non-volatile memory (NVM)

storage to reduce read-amplification.

II. ARCHITECTURE OF NEODBMS
We now provide a brief overview of neoDBMS. It is

based on PostgreSQL, however it employs different version

organization, native storage management, and NDP handling.

Version organization. neoDBMS introduces a different ver-

sion organization and invalidation model [2] to allow for

append behavior and version placement. neoDBMS organizes

version records as a singly-linked list in a new-to-old (N2O)
manner (Fig. 3), where every successor version has a reference

to the predecessor. PostgreSQL relies on an old-to-new (O2N)
organization. Furthermore, neoDBMS introduces a different

version invalidation model, where each version contains the

timestamp of the creating transaction (one-point invalidation),

and gets implicitly invalidated by the existence of a successor

version. PostgreSQL places the timestamps of both the cre-

ating and the invalidating transactions on the version record,

causing in-place updates. To mark the entry-point of a chain,

neoDBMS introduces a VIDMap containing the RecordID

of the latest version for each tuple. As a result, neoDBMS
optimizes for append-based storage (physically disjoint) and

OLTP, while PostgreSQL has the better organization for OLAP

and speedy visibility checks.

Architecture. Based on its version model, all new version

records in neoDBMS are placed in a small delta-buffer (Fig.

2.b). It comprises a set of pre-reserved logical database pages,

which are flushed to storage once they get full. For NDP

execution, the current state of the delta buffer is transferred

and cached on-storage, and NDP-execution is initiated.

Native Computational Storage. neoDBMS, like NoFTL [3]

and nKV [10], relies on native storage (Fig. 2) and eliminates

intermediary layers (e.g. file systems) along the critical I/O

path, and operates directly on NVM storage. neoDBMS can

therefore control the physical placement of DB pages, which is

critical for utilizing the on-device I/O and compute parallelism.

neoDBMS places pages of a DB-object on physical entities

chips/channels (using regions [4]) to utilize the on-device

parallelism and reduce the processing latency. Parallelism is

essential for scaling the number of in-situ processing elements

(PE), as they can utilize the bandwidth of the independent

on-device channels. Another property of native storage is its

ability to reduce read- and write-amplification, which in [9],

[10] refers to operating at page-granularity. In neoDBMS we

Executor

Storage Manager

Shared Buffer Pool

File System
Block Device

NVM, Flash. SSD U280

Executor

Native Storage Manager

Delta
Buffer

NVM

NDP-Sheduler

RISC-VRISC-VRISC-V arraydata
transfers

gather
results

load and
invoke
operation

read, write

a bTraditional Storage Native Computational Storage

Shared
Buffer Pool

neoDBMSPostgreSQL

U280

Fig. 2. Architecture of neoDBMS

Tuple t
version t.v2 t.v2 C TXu2 TXu3...

Tuple t
version t.v1 t.v1 B TXu1 TXu2...

Invalidation: Two-Point One-Point
Tuple t
version t.v2t.v2 1 TXu2...

Tuple t
version t.v1t.v1 3 TXu1...

Newer
version t.v3 ... TXu3 NULL

Older
Version t.v2 ... TXu2 TXu3

New-to-OldVersion Ordering: Old-to-New

New-to-old Reference

Newer
versiont.v3 ... TXu3 NULL

Older
Versiont.v2 ... TXu2 TXu3

Old-to-New Reference

t.v3...

y.v1

t.v0

y.v0

VID(t)
RecID Tuple

VID

VID(y)

entry-point to version chain of tuple y

VIDMAP

PostgreSQL neoDBMS

creation timestamp invalidation timestamp

Logical
Page

Physical
Page

L2PMAPAddress Resolution

ResolveAddress
(RecID)

Physical
Page

Fig. 3. Multi-versioning with neoDBMS and PostgreSQL.

extend it to exploit the byte-addressability provided by the

underlying NVM storage.

Storage Processing Elements. neoDBMS can utilize up to

16 RISC-V soft-cores as PEs for intervention-free, in-situ

visibility checks, and follow-up in-situ NDP-operations. These

are located on the FPGA chip of the computational storage

and have direct access to NVM. The RISC-V PEs can be

programmed in C, for easy development and dynamic deploy-

ment. When an NDP-operation is invoked, the purpose-built

binary file is determined and loaded into the PEs ahead of

the execution. The current HW design is efficient, as the PE

array and the NDP architecture require only approx. 10% of

the FPGA resources (Table II).

In-situ Data Interpretation. Being able to interpret the data

format (pages, records) and navigate over the layout (e.g.,

NSM pages) is crucial for in-situ data processing. To this

end, neoDBMS employs layout accessors and format parsers,

like [11]. Whenever new DB-objects are created, the page and

record formats are extracted and used for the configuration

of format parsers and layout accessors. These pre-compiled

and optimized RISC-V binaries, specific for a data layout and

adapted to the requirements of a NDP-operation, are stored

for later use (Fig 4). Hence, the small PE resource footprint

and better FPGA utilization (Table II).

NDP Interface. Interaction with the NDP storage employs a

native storage interface [3] with commands like PAGE_READ
or PAGE_WRITE. The low-level device interaction is per-

formed with TaPaSCo [5], which provides a fast layer for the

integration of FPGA-based accelerators. Based on the execu-

tion plan created by PostgreSQL, neoDBMS first identifies

operations supported by the computational storage and invokes

an CALL_NDP() command with the physical address of

VIDMap and delta-buffer (DB-Object specific), timestamp of

the calling transaction, operation details like involved columns,

result handling behavior, and other parameters.

In-situ Snapshot Computation. To perform in-situ snapshot

creation, the NDP invocation takes the transaction timestamp

of the calling transaction (TxID) as well as the delta-buffer

and latest modifications to the logical-to-physical address

mapping (L2PMap) and the VIDMap (Fig. 3). Given the

N2O version organization in neoDBMS (Fig. 3), the visibility
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Fig. 4. In-situ FPGA-assisted visibility checking.

check is performed by traversing the linked version-chains

backwards, and extracting and comparing the creation times-

tamps against the TxID. To compute the snapshot neoDBMS
(Fig. 4), first splits the VIDMap into equal sized partitions,

and assigns a partition to each of the PEs. Next, neoDBMS
spawns an independent visibility check task on each RISC-

V, calling the respective binary. Next, the PEs process the

VIDMap entries in order. The visibility task on each PE

extracts the entry-point RecordID of each entry and resolves

it in-situ. This RecordID resolution is based on the L2PMap
and yields the physical page pointer and a slot offset. It

is then passed to the layout accessor on the PE, which

retrieves the slot. In a follow-up transfer, the layout accessor
retrieves the record header and passes it to the format parser

to retrieve the transaction timestamp and compare it to TxID.

The invalidation timestamp is available from the predecessor

that has already been processed. Based on both, the visibly

check can be performed.

Byte-addressability and NDP. Both the in-situ visibility

check and the layout accessors utilize the byte-addressability

of the underlying NVM storage. This is possible within the

storage device, since PEs can operate on physical persistent

pointers, address byte-locations, and precisely transfer byte-

sequences according to the data formats. Consider, for instance

the transfer size depicted in Fig. 4. To check a version record,

neoDBMS must read just 20B in five 32b transfers. In this

way, read amplification is reduced, while I/O parallelism

and on-device bandwidth are efficiently utilized. At the same

time, all PEs are kept busy, performing useful work, and the

scalability grows almost linearly for up to 12 cores (Table I).

TABLE I
ON-DEVICE BANDWIDTH UTILIZATION

Cores 1 4 8 12 16

4B transfers [IOPS·106] 7.0 27.0 53.5 77.5 83.2

III. DEMONSTRATION WALK-THROUGH

Demo Setup. The demo setup comprises the ARM Neo-

verse N1 Platform as host with 4 ARM-CPUs operating at

2.6GHz and 3GB RAM. Connected via PCIe Gen3 x16 is a

Xilinx Alveo U280 FPGA board using 2GB DDR4 memory,

which serves as computational storage. We slow down the

DRAM accesses to emulate NVM latencies. The TaPaSCo-

Framework [5] is utilized to create the FPGA design in

advance and to manage and control multiple RISC-V PEs at

runtime. We benchmark the default PostgreSQL12 implemen-

tation, using either a Samsung NVMe SSD 970 EVO 500GB,

or the U280 via a custom block device driver, both as “dumb

storage”, against NDP on the U280 in neoDBMS. We keep

the datasets relatively small, to allow for shorter run-times and

better interaction with the audience.

Baselines. We demonstrate neoDBMS under a mixed work-

load on the TPC-C Orderline table and showcase the impact on

snapshot creation by varying the number of active versions in

a chain, and setting the snapshot marker to an arbitrary version

along the chain. The performance of neoDBMS is compared

against PostgreSQL12 on top of ext4 on “dumb storage”. Here,

both the NVMe SSD and the U280 in block-mode yield very

similar DBMS performance for the benchmark.

TABLE II
FPGA-RESOURCE UTILIZATION.

LUTs Registers DSPs BRAM36KB
Available 1303680 2607360 9024 2016

Whole Design1 20.31% 10.56% 0.74% 37.55%

neoDBMS2 10.35% 4.39% 0.71% 32.14%
single ORCA 0.42% 0.17% 0.04% 1.22%

1Resources for neoDBMS, PCIe-controller, Memory-controller, TaPaSCo.
2Includes 16× ORCA 32b RISC-V soft-core and interconnects (300 MHz).

Demo Overview. The audience can compose their own work-

loads via a GUI (Fig. 5), which allows them to insert, update,

or delete a user defined number of records. In addition, the

workload composer (left, Fig. 5) allows placing snapshot

markers between individual operations. The operations prior to

the snapshot marker represent the initial data state, while the

marker itself specifies a snapshot of the analytical transaction.

The workload operations past the marker are executed and

committed before the analytical transaction completes. This

simulates the impact of short transactions that create new

and active versions, together with long-running transactions

that still read older versions. In addition, the audience can

choose from different operations, such as sum, min, max,

or average, to be executed in-situ on visible records. A

configurable number of PEs is instantiated on the FPGA for

each execution. To examine the effect of PostgreSQL parallel
workers/scans, we showcase both. We also allow configuring

different transaction isolation levels (SERIALIZABLE and

REPEATABLE READ), as neoDBMS ensures transactional

consistency.

Fig. 5. Demo GUI.

Scenario 1: Snapshot creation with increasing data volume.
The demonstration begins by allowing the audience to pick an

initial number of tuples for the Orderline table. Each tuple

is created in a single initial physical version. Afterwards,

the audience is invited to select a simple aggregate function
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(e.g., MAX, SUM) as an NDP-operation to be executed in-

situ on top of the transactional snapshot of the single-version

dataset. The process is repeated for different numbers of PEs

and dataset sizes. The objective is to establish a performance

baseline (Fig. 6).

Observation: Although parallel scans yield a performance

improvement, neoDBMS outperforms both baselines.
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Fig. 6. Performance on varying dataset sizes (Scenario 1).

Scenario 2: Increasing number of active versions. Now

the audience can start varying the update frequency of each

record, and hence the number of active versions. To this end,

the audience uses the workload composer to create a series of

updating (which commit) and reading transactions (that remain

active to keep the versions alive). The snapshot marker is set

so that the latest version in the chain is indeed visible. The

objective is to demonstrate the effect of the in-situ snapshot

creation and neoDBMS’s new-to-old organization for OLTP-

style NDP-operations on the latest version of a long chain.

Observation: neoDBMS offers constant executions for

OLTP-style NDP-operations that require the latest version.
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Fig. 7. Snapshot on the first version of a chain (Scenario2).

Scenario 3: NDP Snapshot in time on long version chains.
In this final scenario, we let the audience pick a point-

in-time, and create an in-situ transactional snapshot for an

NDP-operation injected into it. To this end, the audience

can compose a workload as shown for the previous scenar-

ios. We then execute a series of updating transactions (that

commit) and snapshot markers, which start transactions that

remain active. We encourage the audience to set snapshot

markers in different positions of the version chain. To this

end, the audience can compose an additional workload that

will be appended after the snapshot marker. In this manner,

we demonstrate the impact of short-running transactions on

long-running transactions, as more old versions need to be

requested. As shown in Fig. 8, in-situ snapshot creation in

neoDBMS outperforms the baselines for different snapshots

on different chain positions.

Observation: NDP snapshots in neoDBMS are beneficial for

HTAP workloads, where operations on cold data are executed

at different points in time with transactional guarantees.
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Fig. 8. NDP snapshots in neoDBMS in different points-in-time (Scenario 3).

IV. RELATED WORK

The concept of NDP is based on well-known techniques,

such as database machines or Active Disks. With widespread

use of semiconductor storage, FPGA Smart SSDs [1], [8] well

as IBEX [12] were proposed as intelligent storage for DBMS.

JAFAR [14] is one of the first systems to target NDP for

DBMS use. Much of the prior work on persistent KV-Stores

and NDP focuses on bandwidth optimizations. Commercially,

IBM Netezza or Swarm64 target NDP for RDMBS. But

neoDBMS is the first system to describe snapshot compu-

tation with transactional guarantees.
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