
Direct Device-to-Device Physical Page Migrations
in Multi-FPGA Shared Virtual Memory Systems

Torben Kalkhof, Andreas Koch
Embedded Systems and Applications Group

Technical University of Darmstadt
Darmstadt, Germany

{kalkhof, koch}@esa.tu-darmstadt.de

Abstract—Shared Virtual Memory (SVM) is a proven ap-
proach to simplify the programming of heterogeneous comput-
ing systems. It enables a single virtual address space across
all computing devices, even for systems having Non-Uniform
Memory Accesses (NUMA) across devices. Access time spikes
due to NUMA can be reduced, though, by performing physical
page migrations in SVM. These migrations ensure high data
locality by moving the underlying memory pages close to the
computing device currently working on the contained data, and
allow the devices to fault-in pages from remote to local memories
autonomously.

The main contribution of this work is the implementation
of an open-source framework enabling scalable SVM for multi-
FPGA architectures, and providing efficient device-to-device page
migrations. We compare the runtime of on-demand and user-
managed migrations, and examine three different communica-
tion mechanisms for the actual board-to-board data transfers.
Our framework supports both low-latency and high-throughput
operations, requiring, e.g., only 11.6 µs to migrate a single 4 kB
page between physical memories on different boards, and 760 µs
to migrate an entire 4MB range of memory.

Index Terms—FPGA, shared virtual memory, SVM, page
migration, demand paging

I. INTRODUCTION

The ever-growing complexity and specialization of com-
putational problems requires more and more domain-specific
solutions. Reconfigurable devices such as Field-Programmable
Gate Arrays (FPGAs) are predestined to provide high flex-
ibility for individual accelerator solutions, and are increas-
ingly used to accelerate compute-intensive applications in
both single and also multi-FPGA-settings [1], [2]. However,
the resulting heterogeneous architecture of general purpose
and domain-specific processing elements introduces additional
challenges in programming these systems. Distinct address
spaces between these processing elements are one challenge,
and complicate the offloading of computations, especially if
pointer-based data structures are involved. Additionally, FPGA
boards offer fast locally attached memories requiring manual
memory management and data movements by the programmer.

Originally developed for loosely-coupled multi-processor
systems in the 80s [3], Shared Virtual Memory (SVM)
considerably simplifies including domain-specific processing
elements by providing a common virtual address space across

This research was funded by the German Federal Ministry for Education
and Research (BMBF) with the funding ID 01 IS 21007 B.

all processing elements, thus allowing the free exchange
of data pointers between user-space software and hardware
accelerators. In CPU-GPU systems, SVM is already widely-
used, and often combined with physical page migrations and
Demand Paging. Here, the underlying memory pages are
moved from host to GPU memory to provide the fastest
possible access, with the GPU faulting-in the required memory
pages autonomously. This completely relieves the programmer
of manual memory management and data movement tasks.
Due to their pointer-rich data structures, graph algorithms
are a popular application for SVM [4], [5]. Furthermore,
González et al. [6] have shown that SVM can improve both
programmability and performance of multi-GPU systems for
a wide range of scientific applications by porting parts of the
multi-zone NAS benchmark [7].

Although FPGAs are an energy-efficient alternative to GPUs
for many applications, a comparable framework for multi-
FPGA systems is currently missing. Hence, we extend the
existing SVM framework by Kalkhof et al. [8] to support
multiple FPGA boards, and propose, to the best of our knowl-
edge, the first SVM implementation with a direct Device-to-
Device (D2D) page migration mechanism. We compare three
different approaches, using both PCIe and 100G Ethernet links,
to perform our direct D2D transfers.

This work is structured as follows: First, we introduce some
basic terminology in Section II, and give a survey of related
work in Section III. In Section IV we present the existing
single-device TaPaSCo SVM feature, and propose our imple-
mented extension for multiple devices. Finally, we evaluate
our different approaches for D2D migrations in Section V,
before we conclude our work in Section VI.

II. BACKGROUND

In most modern Operating Systems (OSs), every user space
process runs in a separate virtual address space. The OS saves
the mappings between virtual and physical memory pages
in multi-level page tables. Translating a virtual address by
iterating over the levels of a page table is called a Page
Table Walk (PTW). CPUs usually support virtual memory by
providing a Memory Management Unit (MMU). The MMU is
capable of performing PTWs autonomously, and caches recent
translations in a Translation Lookaside Buffer (TLB). If an
address is requested for which no mapping is found, the MMU

raises a page fault, and the OS populates the missing page,
e.g., by retrieving it from disk.

In contrast, hardware accelerators implemented on FPGAs
traditionally work directly on physical addresses to access data
in memory. In case of PCIe-attached FPGA boards, such as
the Alveo U280 [9], the required data is usually copied to on-
board or on-device memory prior to launching the accelerator
to benefit from higher bandwidth and lower latency of memory
accesses to local memory, compared to data accesses to host
memory via the PCIe bus.

However, this need for explicit data movements and the
handling of distinct address spaces between user space soft-
ware and a hardware accelerator complicate programming.
SVM is a proven solution to simplify this task, namely by
extending the virtual address space of the user process to
the hardware accelerator on the FPGA. Thus, SVM relieves
the programmer from performing explicit data movements or
data pointer relocations, which are especially expensive on
indirectly addressed dynamic data structures. SVM can be
realized either with shared physical memory, which is the
more common solution these days in the FPGA world, or
physical page migrations, where memory pages retain their
virtual address, but are moved (migrated) between different
physical memories to be closer to specific processing elements
(e.g., CPUs, GPUs, FPGAs).

III. RELATED WORK

On embedded System-on-Chips (SoCs), CPU cores and
FPGA parts often share physical memory, which is exploited
by various existing SVM implementations such as [10]–[12].

In the HPC domain, shared physical memory platforms
have been used to implement SVM as well. The Convey
Hybrid-core machine [13] provides a host CPU and an FPGA-
based co-processor, which share host and device memory pools
coherently. To allow faster memory accesses, the user may
move data between these two pools manually. However, there
are no means for automatic migrations [14]. Ng et al. [15]
propose SVM for PCIe-attached FPGA boards by providing
the accelerator direct access to pages located in host memory
via the PCIe bus. CAPI [16] is layered on top of PCIe as
well, but allows cache-coherent accesses to host memory, in
contrast to Ng et al. [15]. However, both approaches suffer
under the rather high latency of accesses via PCIe. Hence,
upcoming cache-coherent bus standards such as CCIX [17],
CXL [18] and OpenCAPI [19] aim to achieve much lower
access latency to host memory. Even closer coupling between
CPU and FPGA is achieved on the Intel HARP platform by
using UPI [20], and by the Enzian [21] research computer with
its custom interconnect ECI.

Physical page migrations allow to combine the advantages
of SVM with the low latency and high bandwidth of locally
attached memories for off-the-shelf FPGA boards. After the
required memory page is moved to more local device memory,
the accelerator can access the data very efficiently. Hence,
in HelmGemm Diamantopoulos et al. [22] extend CAPI [19]
by Demand Paging. As soon as an accelerator on the FPGA

issues a memory request, the respective memory page is
moved entirely to device local memory if possible. Although
HelmGemm uses an SVM platform providing two FPGA
boards and four GPUs, it does explicitly not implement means
to directly migrate pages between FPGA boards, or FPGA
board and GPU.

Coyote [23] provides page migration capabilities without
requiring dedicated hardware support on host side. It splits the
FPGA in multiple sub-regions equipped with a separate on-
FPGA TLB each. Address translations and on-demand page
migrations after TLB misses are handled in software on the
host. Coyote supports the migration of standard 4 kB and huge
2MB pages. The framework of Kalkhof et al. [8] implements
SVM with physical page migrations as well, however includes
deeper OS integration by using the Linux Heterogeneous
Memory Management (HMM) API [24]. The HMM API
allows to manage device memory using device private Page
Table Entrys (PTEs) together with the OS page tables. Addi-
tionally, it provides MMU Notifiers to keep on-device TLBs
consistent, and helper functions for page migrations to and
from device memory. This ensures data consistency at all time,
and enables automatic back-migrations to host memory after a
data access by software on a CPU causes page faults. However,
the HMM API is limited to standard 4 kB pages. In addition
to demand migrations, Kalkhof et al. [8] offer a user-managed
approach, in which the programmer explicitly initiates the
migration of an address range to or from device memory
to allow more efficient migrations of large buffers. They
integrated their framework as an additional feature into the
open-source TaPaSCo framework [25], which previously just
supported traditional DMA copy-based memory management.

Since both Coyote [23] and the framework of Kalkhof et
al. [8] are currently limited to one FPGA board, and even the
extended CAPI version of HelmGemm [22] does not support
FPGA board-to-board migrations, we extend the TaPaSCo
SVM feature of Kalkhof et al. to support multiple FPGA
boards connected to the same host with direct migration capa-
bilities in this work. We examine variants using the PCIe root
complex on the host for Device-to-Device (D2D) transfers,
as well as more scalable ones relying on 100G Ethernet
links between FPGA boards to move the pages without host
intervention.

SVM is already commonly used in GPU programming. It is
included in CUDA (as Unified Virtual Memory (UVM)) [26]
and OpenCL [27], and state-of-the-art GPUs provide hardware
support in the form of powerful IOMMUs. A major benefit
of GPUs is the very high available memory bandwidth of on-
device memory. Hence, SVM on GPUs is usually implemented
with page migrations and demand paging.

Both the AMDKFD [28] and NVIDIA UVM drivers [29]
support SVM across multiple GPUs, and therefore use the
Linux HMM API [24]. However, the AMDKFD driver always
performs GPU-to-GPU page migrations in two steps. First, the
pages are completely migrated to host memory, before they are
migrated to the destination device in a second step. In contrast,
the NVIDIA UVM driver is able to perform direct GPU-to-

User PEsUser PEsUser PEs On-FPGA
IOMMU

PCIe
Bridge

PageDMA

MSI-X
Controller

Memory
Controller

AXI4 Lite AXI4 MM IRQ

Fig. 1. Simplified hardware design of the existing TaPaSCo SVM feature.
The SVM specific components are marked in orange.

GPU migrations using peer-to-peer transfers if supported by
the respective GPUs.

Recent research on improving performance of SVM in
multi-GPU systems covers, e.g., advanced page placement
techniques [30], caching remote pages [31], or replicating
pages on multiple devices [32].

IV. IMPLEMENTATION

In this section, we first give an overview of the existing
TaPaSCo SVM feature by Kalkhof et al. [8], which we use
as a baseline. Afterwards, we describe our extension of the
feature to support more than one FPGA board without changes
to the application hardware design, and finally present how
we leverage the direct D2D migration capabilities with an
additional 100G Ethernet link between the FPGA boards.

A. Existing TaPaSCo SVM Feature

Figure 1 shows the simplified hardware design of the
TaPaSCo SVM feature. It uses an on-FPGA IOMMU, which
is located between the user Processing Elements (PEs) and the
device memory controller, to translate the virtual to physical
addresses. The IOMMU has a two-level TLB structure. While
the Level 1 TLB is a fully-associative LUT- and register-
based design with two cycles lookup latency, the Level 2
TLB follows the set-associative BRAM-based approach of
Vogel et al. [12] to achieve higher capacity than typical on-
FPGA TLBs, however at the cost of variable lookup latency
and lower throughput. In parallel to this two-level structure,
there is a third TLB with entries of flexible length, which is
used to map large virtually and physically contiguous memory
regions more efficiently. The number of in-flight read and write
requests is limited to 16 each, since the IOMMU has only finite
capacity to track the state of every request (e.g. TLB hit/miss)
until its completion. TLB misses and page faults need to be
resolved in software.

The SVM feature uses a custom DMA engine, named
PageDMA, instead of the default TaPaSCo DMA engine. It
has a very simple structure, since during SVM operation
only entire 4 kB pages are moved between device and host
memory, which corresponds exactly to the maximum burst
size of AXI4 [33]. Physically contiguous blocks of pages can
be copied in-flight with only one copy command. Additionally,

the core allows to initialize pages in device memory with
known values. This is handy if uninitialized buffers consisting
of zero-pages are migrated to the device, since no actual data
needs to be copied and all initialization occurs on-device.

The page migrations are managed in the device driver.
Kalkhof et al. [8] introduced two different types of page
migrations, namely On-Demand Page Migrations (ODPMs)
and User-Managed Page Migrations (UMPMs). ODPMs are
triggered by a page fault, either a CPU page fault on a
page located in device memory, or a device page fault of
the on-FPGA IOMMU after a TLB miss. Device page faults
are handled in a kernel worker thread of the concurrency
managed workqueue (cmwq) [34]. This worker thread handles
all pending device page faults in-flight to reduce migration
overhead by migrating virtually contiguous pages together.
First, it performs a PTW over the CPU page table to check
whether the requested pages are already located in device
memory, and it is sufficient to re-add the evicted TLB entries.
Afterwards, the remaining faults are sorted to allow more
efficient migration of adjacent memory pages in the following
steps.

In contrast to the possible in-flight handling of multiple
pending faults in Host-to-Device (H2D) direction, CPU page
faults must be handled one-by-one. Here, the fault handler of
the Linux kernel calls the respective migration function for
every page separately, and the device driver has no option to
postpone a fault.

As an alternative to ODPMs, the SVM feature also offers
UMPMs, where the programmer specifies virtual memory
ranges which need to be migrated to device memory prior
to launching the accelerator, or back to host memory after
the accelerator has finished its computation respectively. This
reduces the overhead compared to ODPMs significantly, as
it allows to handle page migrations in larger batches, while
during ODPMs the fault handling - and thus also the migration
- can only be performed in small batches, or even one-by-one.
Note that it is also possible to combine ODPMs and UMPMs,
e.g., to handle larger known bulk transfers using UMPMs, and
rely on ODPMs for less-predictable accesses (e.g., traversing
dynamic data structures).

The required steps to migrate a virtual memory range are
as follows. In case of Device-to-Host (D2H) migrations, the
driver invalidates the corresponding TLB entries in the on-
FPGA IOMMU first, and may have to wait for in-flight
memory accesses to device memory by querying the IOMMU
for active requests before starting the migration. Then, it
collects all source pages, which need to be migrated, in a
PTW using the Linux HMM API [24]. The HMM API also
ensures to invalidate mappings for these pages in other TLBs
in the system, e.g., in the host CPU’s MMU. Next, all required
memory pages are allocated in destination memory. To this
end, the HMM API offers special device private PTEs, which
are retrieved by the driver during initialization, to represent
the device memory in the same manner as system memory.
Now, the actual DMA transfer to copy the data from source
to destination memory follows. During H2D migrations the

driver adds new TLB entries to the on-FPGA IOMMU for
the migrated range next. Finally, the migration is completed
by using the HMM API to update the CPU page table with
the new PTEs in destination memory, and to free the source
pages.

During the integration of their work into TaPaSCo [25],
Kalkhof et al. improved the allocation of destination pages as
follows. When migrating virtually contiguous pages, these are
then mapped to a physically contiguous memory block. This
reduces the number of required DMA commands, increases the
efficiency of DMA copies, and guarantees that the additional
TLB with flexible length entries can be used for larger
mappings. For more details on the prior work, please see [8].

B. Multi-FPGA Support and Direct Device-to-device Migra-
tions

With the existing TaPaSCo SVM feature, only one device
can be used in parallel. We extend this feature here in order to
allow scaling to multiple FPGA boards in a user application.
Since there are more than two physical memories in the
shared address space now, namely host memory and at least
two distinct device memories, the physical pages of a virtual
memory range we would like to migrate to a specific device
may be distributed over multiple source memories. This is
unfortunately no longer compatible with the Linux HMM
subsystem, as the helper functions for page migrations in
the HMM API [24] always expect exactly one source and
one destination memory to be specified. Hence, we need to
split the migration of a virtual address range which includes
pages located in different source memories, into multiple page
migrations, one for each source memory. Our changes to the
framework are therefore threefold. First, we add a means to
efficiently track which virtual address ranges are currently
located in which memory. Second, we introduce direct D2D
migrations in addition to H2D and D2H migrations. And third,
we extend the migration flow to handle page migrations with
multiple source memories.

1) Tracking of virtual address ranges: In principle, a PTE
contains the information on which physical device the page
is located. However, checking all PTEs of a virtual address
range prior to starting the migration to get the respective
source memories would require many additional slow PTWs.
Hence, the driver stores all virtual address ranges currently
located on a specific device, in one interval tree per-device.
Since we do not store the corresponding physical addresses
in these interval trees, we can keep them small by merging
virtually contiguous address ranges, although the underlying
physical pages may actually be discontiguous. We chose the
distributed approach with per-device interval trees to match
the modular design of TaPaSCo [25], and also to run multiple
application processes, having separate per-process address-
spaces, on different (subsets of) devices. Our implementation
relies on the interval tree provided by the Linux kernel [35].

2) Device-to-device page migrations: Our newly imple-
mented D2D migrations follow the steps described in Sec-
tion IV-A. However, the baseline hardware design used in the

Host CPU

PCIe Root Complex

Memory
Controller

Host
Memory

Processor
Core 1

. . . Processor
Core N

FPGA
Board

FPGA
Board

1a 1b
2

3

Ethernet

Fig. 2. Data flow for D2D transfers using PCIe and a bounce buffer in host
memory (1⃝), PCIe E2E transfers (2⃝), and Ethernet (3⃝).

prior work (Figure 1) does not support direct DMA transfers
from one device to another and needs to be extended. To
this end, we examine three different approaches to achieve
the desired D2D capabilities, shown in Figure 2.

a) Page migrations using the existing hardware design:
With the existing hardware design of the TaPaSCo SVM
feature, a direct copy between two devices is not possible,
since the DMA engine of one device cannot accesses the
second device’s memory. A simple solution around this is to
copy the data in two steps similar to AMD’s approach. First,
we copy the data from source device memory to a DMA buffer
in host memory, and afterwards to destination device memory.
Note that the AMDKFD driver [28] uses a more involved
process, as it performs a complete D2H migration, followed
by a H2D migration to the destination device, including page
table updates in both steps, if a page migration from one GPU
to another is required. In contrast, we streamline the process
to split the actual data movement, but only update the CPU
page table once, namely directly with the PTEs in destination
device memory.

b) Page migrations using PCIe E2E Transfers: Obvi-
ously, splitting the data movement into separate copy steps
adds additional overhead to our migration. Also, it is desirable
to skip the bouncing of data through host memory. One way
to achieve this are direct Endpoint-to-Endpoint (E2E) transfers
using the PCIe bus. We expose the device memory to the PCIe
bus using an additional Base Address Register (BAR). Hence,
the DMA engine of one device can now access the memory
of other devices as well, and we use the DMA engine on the
source device to copy the data to destination memory.

c) Page migrations using Ethernet: Exposing gigabytes
of memory to the PCIe bus using a BAR is not always
desirable or even possible, e.g., if 64-bit addressing is not
available, as in many mid-size embedded systems (Linux
capable, but still using 32-bit addressing). Also, the PCIe E2E
transfers put additional load on the PCIe root complex, which
is usually used by many other devices as well. Hence, we add
an additional more direct connection between our devices to
perform the data movements independently of the host. We
choose 100G Ethernet as an easily scalable solution, since we
can build a low-cost network across all devices using cheap
off-the-shelf switches, and use the integrated 100G subsystem

on the FPGAs [36]. We extend the PageDMA core so that it
packages the pages to be migrated into Ethernet frames on
the source device, and sends the frames to the destination
device. The respective destination MAC address is provided
by the driver. Also, the driver notifies the DMA engine on the
destination device about how many pages are arriving, and at
which address they need to be written to destination memory.

To prevent possible frame loss due to a congested receiver,
we implement a flow control mechanism using the IEEE
802.3x pause frame extension [37]. As soon as the main
frame buffer in the destination device is full, the flow control
core advises the Ethernet core to send a priority pause frame
to all connected devices. The transmitting device will then
immediately stop sending more data frames until pause frames
stop arriving. Already transmitted frames between the buffer
overflow at the destination device and the arrival of the pause
frame at the source device are buffered in an additional small
overflow buffer on destination side, to prevent data loss or
frame re-transmissions.

3) Extending the overall migration flow: Figure 3 shows
our extended flow to migrate a virtual address range to a
specific device memory. The migration is either initiated on-
demand by one or more device page faults occurring, and
being handled by our on-FPGA IOMMU (1⃝), or by a UMPM
(5⃝). In the former case, we proceed with 2⃝ by checking
whether the page is already located on the respective device,
and only the TLB entry has been evicted. In contrast to the
baseline SVM feature, we can use our interval tree here, and
only have to perform a PTW if the page is indeed already
present on the device to just retrieve the physical address (3⃝).
We then re-add the TLB entry to our IOMMU (4⃝), and return
immediately to the caller (8⃝), which is the page fault handling
thread in this case.

If the requested pages are not already located on the device,
or the migration is initiated by the user, we need to search
the interval trees of all devices for address ranges matching
the requested range in step 6⃝. Sub-ranges not found in
any interval tree are located in host memory. Afterwards,
we perform the corresponding D2H, H2D and D2D page
migrations following the steps described in Section IV-A for
all sub-ranges retrieved in step 6⃝, before we finally return to
the caller, which is either the page fault handling thread or the
user-space API in case of a UMPM.

V. EVALUATION

In this section we evaluate and compare different aspects of
our variants of D2D page migrations. We start by comparing
the runtime of ODPMs and UMPMs in Section V-A. In
Section V-B we evaluate how the copy method and memory
fragmentation affects D2D transfers, and analyze how long
different steps in the migration process take in Section V-C.
Section V-D concludes with a comparison of D2D transfers to
the existing H2D and D2H migrations.

Our test setup consists of a Xilinx Alveo U280 [9] and a
BittWare XUP-VVH card [38], which are both connected via
PCIe 3.0 x16 to an AMD EPYC 7302P 16-Core processor [39]

H2D/D2D/D2H
migrations

H2D/D2D/D2H
migrations

Device page
fault(s)

Page(s)
on device?

PTW

Re-add TLB
entry(s)

UMPM

Search interval
trees for
matching

address ranges

H2D/D2D/D2H
migrations

Return to caller

1

2

3

4

5

6

7

8

no

yes

Fig. 3. Extended flow of the migration of a virtual address range. The
migration is either initiated by device page faults (ODPM) or ahead-of-time
by the user (UMPM).

4 kB 32 kB 128 kB 1 MB 4 MB 32 MB
Buffer Size

0.0

0.5

1.0

1.5

2.0

2.5

S
pe

ed
up

ODPM via PCIe
(baseline)

Comparison of accelerator runtimes with D2D ODPMs and UMPMs

ODPM via PCIe E2E
ODPM via Ethernet
UMPM via PCIe

UMPM via PCIe E2E
UMPM via Ethernet

Fig. 4. Runtime comparison of the synthetic accelerator for different buffer
sizes. The times include the D2D migration to move the input data to
the corresponding device using ODPMs or UMPMs, and the different copy
approaches. ODPMs using the two-step copy approach via PCIe and a bounce
buffer in host memory are used as baseline.

running at 3GHz and equipped with 128GB RAM. Addi-
tionally, there is a direct 100G Ethernet connection without
an intermediate switch between both FPGAs. The runtimes
of D2D transfers were measured during migrations from the
Alveo U280 to the XUP-VVH, while H2D and D2H transfers
were measured during migrations from host to the Alveo
U280, and from the XUP-VVH to host respectively. We did
not observe significant deviations during runs with an opposite
migration direction. Also, the measurement results are the
mean values collected over 100,000 runs each for buffer sizes
below 1MB. For larger buffers, we reduced the number of runs
to 10,000 or 1,000 runs, depending on the observed jitter.

A. ODPMs vs. UMPMs

In order to compare D2D transfers using ODPMs and
UMPMs, we use a synthetic workload on the accelerator,
which simply reads and updates all values in an array consec-
utively. We measure the runtime from launching the TaPaSCo
task until its completion, without a back migration of data
to host memory. The accelerator runtime is included, since
ODPMs require the accelerator to be already running and
actually cause the device page faults which trigger the page
migrations. However, the runtime of the accelerator itself is

TABLE I
TOTAL RUNTIMES OF THE SYNTHETIC ACCELERATOR FOR DIFFERENT

BUFFER SIZES. THE TIMES INCLUDE THE D2D MIGRATION TO MOVE THE
INPUT DATA TO THE CORRESPONDING DEVICE USING ODPMS OR

UMPMS, AND THE DIFFERENT COPY APPROACHES.

Type 4 kB 32kB 128 kB 1MB 4MB 32MB

ODPM (PCIe) 45.7 µs 60.4 µs 0.16ms 1.01ms 3.90ms 30.3ms
ODPM (PCIe E2E) 33.5 µs 54.2 µs 0.14ms 0.83ms 3.20ms 23.7ms
ODPM (Ethernet) 34.4 µs 55.2 µs 0.15ms 0.87ms 3.31ms 25.7ms
UMPM (PCIe) 38.2 µs 47.4 µs 0.11ms 0.61ms 2.18ms 16.9ms
UMPM (PCIe E2E) 27.0 µs 41.2 µs 0.09ms 0.53ms 1.91ms 14.8ms
UMPM (Ethernet) 27.6 µs 42.1 µs 0.10ms 0.52ms 1.86ms 14.5ms

relatively short compared the migration times and overall
runtime, and we obtain a close approximation of the actual
migration runtimes when using UMPMs compared to ODPMs.
Note that for this round of measurements, all pages are located
in virtually and physically contiguous memory on the source
device before the migration. In Figure 4, we compare the
runtimes using different buffer sizes and the three different
migration methods we employ. As baseline, we always use
the simplest approach, which relies on ODPMs and migrates
the data in two steps by bouncing it via host memory, and
show the relative speedup of the remaining variants. Absolute
numbers of all runs are listed in Table I.

It is not surprising that UMPMs outperform ODPMs with
all migration methods, especially for larger buffer sizes. With
ODPMs, the pages must be migrated in small batches of just
16 pages each in this scenario, since this is the maximum
number of read requests the IOMMU can handle in-flight
and issue page faults for (see Section IV-A). This leads to
increased overall migration overhead. However, even if all
page faults can be handled in-flight, as it is the case for runs
up to 64 kB, UMPMs are still faster than ODPMs. Here, the
time required to send the page fault interrupt and schedule
the fault handling worker thread is not negligible. This effect
is slightly larger for 4 kB buffers due to the shorter overall
runtime, and hence the relative speedup of UMPMs is higher
than for 32 kB buffers. The highest speedup is achieved with
UMPMs over Ethernet for buffer sizes from 4MB on with
over 2x compared to the baseline. E.g., in the 4MB case,
UMPMs speed-up from 3.90ms to 1.86ms. Kalkhof et al.
show that, depending on the application, the use of ODPMs
may be beneficial, nonetheless [8]. Also, the implementation
of algorithms such as traversing pointer-based dynamic data
structures is considerably simplified using ODPMs, as the
designer does not have to manually orchestrate the data
transfers.

Independent of the used type of page migrations, we achieve
lower runtimes with the direct data migration methods, namely
PCIe E2E transfers, and transfers via 100G Ethernet, than
with two-step copies via a bounce buffer in host memory. For
UMPMs, PCIe E2E transfers are slightly faster than Ethernet
transfers for small buffer sizes. However, with increasing
buffer size, Ethernet transfers achieve a higher speedup. In
contrast, PCIe E2E transfers perform better for all buffer sizes
when using ODPMs, since here the pages are always migrated
in multiple batches, each with a maximum size of 64 kB (16

4 kB 32 kB 128 kB 1 MB 4 MB 32 MB
Buffer Size

0.0

0.5

1.0

1.5

2.0

2.5

S
pe

ed
up

PCIe, contiguous (baseline)

Comparison of migration runtimes using the different copy approaches

PCIe E2E, contiguous
Ethernet, contiguous
PCIe, scattered

PCIe E2E, scattered
Ethernet, scattered

Fig. 5. Runtime comparison of D2D buffer migrations for different buffer
sizes using the different migration approaches, and measured during UMPMs.
The source pages may be contiguous or scattered in source memory. The
migration of contiguous pages using the two-step copy approach via PCIe
and a bounce buffer in host memory is used as baseline.

TABLE II
RUNTIMES OF A SINGLE D2D BUFFER MIGRATION MEASURED DURING A

UMPM USING THE TWO-STEP COPY APPROACH VIA PCIE AND A BOUNCE
BUFFER IN HOST MEMORY, PCIE E2E TRANSFERS, OR ETHERNET

TRANSFERS. ALL PAGES ARE LOCATED IN A PHYSICALLY CONTIGUOUS
MEMORY BLOCK IN SOURCE MEMORY.

Approach 4 kB 32kB 128kB 1MB 4MB 32MB

PCIe 16.3 µs 24.6 µs 50.4 µs 0.31ms 1.08ms 8.42ms
PCIe E2E 11.6 µs 16.4 µs 36.4 µs 0.22ms 0.81ms 6.30ms
Ethernet 12.7 µs 18.5 µs 37.5 µs 0.21ms 0.76ms 5.97ms

pages).
In general, the measured times of runs with small buffer

sizes up to 128 kB are subject to significant jitter, which is
due to interrupt handling. To reduce this jitter, we use polling
instead of a interrupt-based signalling for buffer sizes smaller
than 512 kB while waiting for the DMA transfer to finish.
Even with this optimized DMA polling, the runtime always
includes the page fault interrupt, after which the fault handling
thread needs to be scheduled, as well as the PE interrupt
which signals the completed computation of the accelerator,
and wakes up the user application. Hence, the results reported
here still have some jitter, even though we already take the
mean of up to 100,000 measurements. This does not affect
the ranking of the different migration mechanisms shown in
Figure 4, though. Furthermore, the results may vary slightly
if more than two FPGAs are used, as e.g., a switch in the
Ethernet network could add latency to the data transfers.

B. Effect of Copy Method and Memory Fragmentation

Figure 5 compares the runtimes of D2D page migrations
using the three different migration approaches and different
buffer sizes. It contrasts the extreme cases how pages may be
arranged in source memory: On the one hand, all pages can
already be located in one contiguous block, and be copied with
a single DMA command to the destination device. On the other
hand, they may be scattered over the source memory, which
requires individual per-page copy commands in the worst case.
As baseline, we use the migration of a contiguous memory
region copied in two steps via PCIe and a bounce buffer in
host memory. Absolute runtimes of the runs with contiguous

TABLE III
PARTITIONING OF THE MIGRATION PROCESS IN FOUR STEPS.

Migration Step Operations

Setup Collect source pages, invalidate TLB(s), wait for in-
flight memory accesses to complete

Allocate Allocate destination memory/pages
DMA Data transfer
Finalize Update CPU page table, add TLB entries

source pages are listed in Table II. In contrast to Section V-A,
we only consider the actual migration runtimes in this case,
which are measured during a UMPM.

We achieve a quite constant speedup of 1.3x - 1.4x, indepen-
dent of the buffer size, with direct D2D transfers, compared
to the two-step bounce copy approach. The highest speedup
of 1.5x is measured for PCIe E2E transfers and a buffer size
of 32 kB. Direct E2E transfers reduce the migration time from
24.6 µs to 16.4 µs in this case. Conforming with the results for
UMPMs in Figure 4, Figure 5 also shows PCIe E2E transfers
are slightly faster than Ethernet transfers for buffer sizes below
1MB, but slower for larger buffers.

Overall, there is no significant runtime penalty if the source
pages are scattered in source memory. Only two steps of
the migration process are affected by the physically scattered
pages: copying the data and freeing the source memory
after the successful migration. Freeing the source memory is
postponed after finalizing the migration so that it does not
influence the migration runtime at all. The data transfer is more
complicated, since the pages must be copied one-by-one with
distinct commands to our DMA engine. The driver constantly
monitors the number of active requests in our DMA engine,
in order to not exceed the maximum number of outstanding
DMA commands. Nevertheless, there is also a slight decrease
in performance for 4 kB buffers, since these buffer allocations
are often unaligned to the page boundaries, and we actually
have to migrate two pages.

C. Migration Step Analysis

For a more detailed analysis, we divide the migration
process into the four steps listed in Table III. Figure 6 shows
the relative execution time of each step for all three copy
methods. Note that the behavior is very similar across all of
the methods.

First, we discuss the case that all source pages are located
in a contiguous memory block. The Allocate step is negligible
in all cases and independent of the migrated buffer size. Also,
the fraction of the Setup step on the total migration runtime
decreases as the number of migrated pages increases. While
it has a fraction of 18 - 25% for 4 kB buffers, the fraction
falls below 10% for 1MB buffers. In comparison to Kalkhof
et al. [8], we save time during Setup by invalidating the entire
address range in the TLB of the on-FPGA IOMMU with a
single command, and also avoid checking for in-flight memory
accesses on a per-page basis.

Most of the time is spent for the data transfer itself. In the
case of direct D2D transfers over PCIe (Figure 6c) or Ethernet

(Figure 6a), copying the data takes about 50% of the total
migration runtime for 4 kB buffers. After a slight decrease,
we observe a jump to about 55% at a buffer size of 1MB,
before the fraction decreases again to about 50% for 32MB.
This jump occurs when we switch from polling to interrupt-
based signalling for the DMA transfer to finish. For buffers
smaller than 512 kB, we use polling to avoid the jitter caused
by having to wake the waiting thread after the DMA interrupt
arrives. However, for larger buffers, we do not want to block
the CPU with long periods of busy waiting, and use interrupts
at the cost of a slight performance penalty. Figure 6b shows a
similar trend for the fraction of the DMA step if the two-step
copy approach is used, however in the range of 60% - 75%.
This indicates that the longer runtimes of migrations using the
two-step copy approach is indeed caused by the less efficient
data transfer.

With increasing buffer size, the time for the Finalize step
is lengthening as well. However, we observe a drop at 1MB,
where we switch from polling to interrupts, and thus have
longer data transfer latency, before the fraction is increasing
further. For 32MB buffers, the Finalize step reaches a fraction
of 30% when using the two-step copy approach, slightly over
40% with PCIe E2E transfers, and about 45% while using
Ethernet. In this step, the HMM API [24] updates the CPU
page table with the new PTEs in destination memory, and
frees the source PTEs. Although we mitigate the overhead by
decoupling the freeing of the PTEs from the actual memory
allocation, and postponing it to after the migration, the page
table update still causes more overhead with a larger number
of pages to migrate.

The source pages being scattered in memory has only little
effect on the fraction of the migration steps. For buffer sizes up
to 32 kB, the fraction of the Finalize step is up to 5% higher,
which is most visible for PCIe E2E transfers in Figure 6c.
Also, the Setup step is slightly higher for buffers in the kilobyte
range in this case. Apart from that, no significant changes are
observable compared to the contiguous case.

D. Comparison to Host-based Migrations

In Figure 7, we compare the runtime of D2D transfers with
the runtime of H2D and D2H transfers, while using H2D
transfers as the baseline. We use the results with contiguous
source pages, since we have shown in Section V-B that mem-
ory fragmentation has only very little impact on the migration
time. For buffer sizes smaller than 1MB, all D2D variants are
slower than H2D migrations. However, with growing buffer
size, both variants with direct D2D copy transfers are faster
than H2D transfers, with a maximum observed speedup of
almost 1.4x for 32MB and Ethernet transfers. Even the two-
step copy/bounce approach over PCIe almost reaches the
runtime of H2D transfers for 32MB buffers. D2H transfers
show a similar picture, however, D2D transfers outperform
D2H transfers for larger buffer sizes as well.

The underlying measurement results show that the speedup
of D2D transfers is not achieved by faster data transfers. To
the contrary, the DMA step actually takes even longer than for

4 kB 32 kB 128 kB 1 MB 4 MB 32 MB
Buffer Size

0.0

0.2

0.4

0.6

Fr
ac

tio
n

(a) 100G Ethernet

4 kB 32 kB 128 kB 1 MB 4 MB 32 MB
Buffer Size

0.0

0.2

0.4

0.6

Fr
ac

tio
n

(b) PCIe (two-step copy/bounce approach)

4 kB 32 kB 128 kB 1 MB 4 MB 32 MB
Buffer Size

0.0

0.2

0.4

0.6

Fr
ac

tio
n

Migration Step
Setup
Allocate
DMA
Finalize
Type
contiguous
scattered

(c) PCIe (E2E transfers)

Fig. 6. Fraction of the migration steps during D2D buffer migrations of different sizes and using the different copy methods. The source pages may be located
contiguously or scattered in source memory.

4 kB 32 kB 128 kB 1 MB 4 MB 32 MB
Buffer Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
pe

ed
up

H2D (baseline)

Comparison of D2D migrations to H2D and D2H migrations

D2H
D2D PCIe
D2D PCIe E2E
D2D Ethernet

Fig. 7. Comparison of D2D buffer migrations of different sizes and using
the different copy methods to H2D and D2H migrations. H2D migrations are
used as baseline.

H2D and D2H migrations. However, the Setup and Finalize
steps become much less time consuming for D2D migrations
with increasing buffer size in comparison to H2D migrations.
The speedup of D2D migrations over D2H migrations is solely
achieved by lower runtimes during the Finalize step. These
observations suggest that dealing with device private PTEs
during the PTW in the Setup step, and page table update during
the Finalize step is easier for the HMM API [24] than handling
regular system memory PTEs. E.g. device private pages can
never be pinned in memory, and are not managed by the LRU
framework.

VI. CONCLUSION

SVM in conjunction with physical page migrations and
Demand Paging considerably simplifies the programming of
heterogeneous CPU-FPGA systems by avoiding pointer relo-
cations and explicitly orchestrated data movements between
device and host memory. Our extension to the TaPaSCo SVM
feature provides SVM with physical page migrations across
multiple FPGAs in parallel. To the best of our knowledge, this
is the first implementation providing the means for direct D2D
page migrations between two FPGA boards.

We investigated three different approaches to perform the
actual data transfers during our D2D migrations: (1) a two-
step approach via PCIe and a bounce buffer in host memory,
which does not require any changes of the existing hardware
design, (2) direct PCIe E2E transfers, by exposing device
memory with an additional BAR to the PCIe bus, and (3)
transfers via additional 100G Ethernet links. Our evaluation

shows that direct transfers speed-up the migration by up to
50%, e.g., from 0.31ms to 0.21ms when migrating 1MB
over Ethernet. While PCIe E2E transfers are slightly faster
for buffer sizes smaller than 1MB, Ethernet transfers perform
better for larger buffers. The measured migration runtimes are
nearly independent of whether the source pages are located in
a contiguous block, or scattered over source memory. Using
UMPMs instead of ODPMs for D2D migrations may reduce
accelerator runtimes even further. Here, we achieve a speedup
over 2x for buffers from 4MB on with a synthetic accelerator.
This is similar to the observations of Kalkhof et al. [8] for H2D
and D2H migrations.

Our analysis of the different migration steps shows that
despite various optimizations, the migration overhead takes up
to 50% of the overall migration runtime, especially for buffers
in the megabyte range. The use of 2MB huge pages could
help to simplify both collecting pages in the PTW as well
as updating the CPU page tables, and reduce the migration
overhead further. Unfortunately, the HMM API [24] at this
time only supports standard 4 kB pages.

In comparison to H2D migrations, our D2D migrations with
direct data transfers via PCIe or Ethernet are faster for buffer
sizes of 1MB or higher, although the actual DMA transfer still
takes longer. However, the handling with only device private
PTEs reduces the migration overhead during the collection of
the source pages and the updates of the CPU page table.

While the data transfers via Ethernet become faster than
PCIe E2E transfers with increasing buffer size, we see the
additional Ethernet link also as the more scalable solution.
For PCIe E2E transfers, every device must expose its entire
memory to the PCIe bus, which is only possible if 64 bit
addressing is available. Additionally, the PCIe E2E transfers
put extra load on the PCIe root complex, which is often used
by many other devices as well. The Ethernet link between the
FPGAs provides an additional and truly separated communica-
tion channel, and thus relieves load on the PCIe bus (and host
memory banbdwidth, for the two-step copy/bounce approach).
Furthermore, in a future enhancement of the framework, the
Ethernet network could be used to extend the shared address
space and allow page migrations to even more FPGAs that are
not even directly connected to the host via PCIe.

We will publish our source code in an open-source release
on Github [40].

REFERENCES

[1] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang,
“ForeGraph: Exploring Large-scale Graph Processing on Multi-FPGA
Architecture,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. Monterey California
USA: ACM, Feb. 2017, pp. 217–226. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3020078.3021739

[2] S. Biookaghazadeh, P. K. Ravi, and M. Zhao, “Toward Multi-FPGA
Acceleration of the Neural Networks,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 17, no. 2, pp. 1–23, Apr.
2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3432816

[3] K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing.”
ICPP (2), vol. 88, p. 94, 1988.

[4] P. Wang, L. Zhang, C. Li, and M. Guo, “Excavating the Potential of
GPU for Accelerating Graph Traversal,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). Rio de
Janeiro, Brazil: IEEE, May 2019, pp. 221–230. [Online]. Available:
https://ieeexplore.ieee.org/document/8821041/

[5] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo,
“Grus: Toward Unified-memory-efficient High-performance Graph
Processing on GPU,” ACM Transactions on Architecture and Code
Optimization, vol. 18, no. 2, pp. 1–25, Jun. 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/3444844

[6] M. González and E. Morancho, “Multi-GPU systems and Unified
Virtual Memory for scientific applications: The case of the NAS
multi-zone parallel benchmarks,” Journal of Parallel and Distributed
Computing, vol. 158, pp. 138–150, Dec. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0743731521001672

[7] R. F. vanderWijngaart and J. Haopiang, “Nas parallel benchmarks, multi-
zone versions,” in Supercomputing 2003, 2003.

[8] T. Kalkhof and A. Koch, “Efficient Physical Page Migrations in
Shared Virtual Memory Reconfigurable Computing Systems,” in 2021
International Conference on Field-Programmable Technology (ICFPT).
Auckland, New Zealand: IEEE, Dec. 2021, pp. 1–10. [Online].
Available: https://ieeexplore.ieee.org/document/9609831/

[9] Xilinx Inc., “Alveo U280 Data Center Accelerator Card Data Sheet,”
Sep. 2021. [Online]. Available: https://www.xilinx.com/content/dam/
xilinx/support/documentation/data sheets/ds963-u280.pdf

[10] H. Lange and A. Koch, “Architectures and Execution Models for
Hardware/Software Compilation and Their System-Level Realization,”
IEEE Transactions on Computers, vol. 59, no. 10, pp. 1363–1377, Oct.
2010. [Online]. Available: http://ieeexplore.ieee.org/document/5374369/

[11] F. Winterstein and G. Constantinides, “Pass a pointer: Exploring shared
virtual memory abstractions in OpenCL tools for FPGAs,” in 2017
International Conference on Field Programmable Technology (ICFPT).
Melbourne, VIC: IEEE, Dec. 2017, pp. 104–111. [Online]. Available:
http://ieeexplore.ieee.org/document/8280127/

[12] P. Vogel, A. Marongiu, and L. Benini, “Exploring Shared Virtual
Memory for FPGA Accelerators with a Configurable IOMMU,” IEEE
Transactions on Computers, vol. 68, no. 4, pp. 510–525, Apr. 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8519631/

[13] B. Klauer, “The Convey Hybrid-Core Architecture,” in High-
Performance Computing Using FPGAs, W. Vanderbauwhede and
K. Benkrid, Eds. New York, NY: Springer New York, 2013, pp. 431–
451. [Online]. Available: https://doi.org/10.1007/978-1-4614-1791-0 14

[14] Convey Computer Corporation, “Convey Programmers Guide,” Nov.
2010.

[15] H.-C. Ng, Y.-M. Choi, and H. K.-H. So, “Direct virtual memory access
from FPGA for high-productivity heterogeneous computing,” in 2013
International Conference on Field-Programmable Technology (FPT).
Kyoto, Japan: IEEE, Dec. 2013, pp. 458–461. [Online]. Available:
http://ieeexplore.ieee.org/document/6718414/

[16] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI:
A Coherent Accelerator Processor Interface,” IBM Journal of
Research and Development, vol. 59, no. 1, pp. 7:1–7:7, Jan. 2015.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7029171

[17] CCIX Consortium, “Cache Coherent Interconnect for Accelerators.”
[Online]. Available: https://www.ccixconsortium.com

[18] CXL Consortium, “Compute Express Link.” [Online]. Available:
https://www.computeexpresslink.org

[19] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps,
B. Blaner, C. Wollbrink, and B. Allison, “IBM POWER9 opens up

a new era of acceleration enablement: OpenCAPI,” IBM Journal of
Research and Development, vol. 62, no. 4/5, pp. 8:1–8:8, Jul. 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8413085/

[20] Intel Corp. (2019, Nov.) Intel Acceleration Stack
for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
683193/current/acceleration-stack-for-cpu-with-fpgas.html

[21] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski,
Z. He, N. Hossle, D. Korolija, M. Licciardello, K. Martsenko,
R. Achermann, G. Alonso, and T. Roscoe, “Enzian: an open, general,
CPU/FPGA platform for systems software research,” in Proceedings
of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. Lausanne
Switzerland: ACM, Feb. 2022, pp. 434–451. [Online]. Available:
https://dl.acm.org/doi/10.1145/3503222.3507742

[22] D. Diamantopoulos and C. Hagleitner, “HelmGemm: Managing GPUs
and FPGAs for Transprecision GEMM Workloads in Containerized
Environments,” in 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP).
New York, NY, USA: IEEE, Jul. 2019, pp. 71–74. [Online]. Available:
https://ieeexplore.ieee.org/document/8825124/

[23] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense
on FPGAs?” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, Nov. 2020,
pp. 991–1010. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/roscoe

[24] The Linux Kernel Developement Community, “Heterogenous Memory
Managemet API.” [Online]. Available: https://www.kernel.org/doc/html/
latest/vm/hmm.html

[25] C. Heinz, J. Hofmann, J. Korinth, L. Sommer, L. Weber,
and A. Koch, “The TaPaSCo Open-Source Toolflow: for the
Automated Composition of Task-Based Parallel Reconfigurable
Computing Systems,” Journal of Signal Processing Systems,
vol. 93, no. 5, pp. 545–563, May 2021. [Online]. Available:
https://link.springer.com/10.1007/s11265-021-01640-8

[26] NVIDIA Corp., “Unified Memory Programming.” [Online]. Avail-
able: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#um-unified-memory-programming-hd

[27] Intel Corp., “OpenCL 2.0 Shared Virtual Memory Overview.”
[Online]. Available: https://software.intel.com/content/www/us/en/
develop/articles/opencl-20-shared-virtual-memory-overview.html

[28] The Linux Kernel Developement Community, “AMDKFD
Driver Source Code (version 5.16).” [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/
drivers/gpu/drm/amd/amdkfd?h=v5.16.15

[29] NVIDIA Corp., “NVIDIA UVM Driver Source Code (version
510.47).” [Online]. Available: https://www.nvidia.com/Download/index.
aspx?lang=en-us

[30] T. Baruah, Y. Sun, A. T. Dincer, S. A. Mojumder, J. L.
Abellan, Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli,
“Griffin: Hardware-Software Support for Efficient Page Migration
in Multi-GPU Systems,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA). San Diego,
CA, USA: IEEE, Feb. 2020, pp. 596–609. [Online]. Available:
https://ieeexplore.ieee.org/document/9065453/

[31] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining HW/SW Mechanisms to Improve NUMA Performance of
Multi-GPU Systems,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Fukuoka: IEEE, Oct.
2018, pp. 339–351. [Online]. Available: https://ieeexplore.ieee.org/
document/8574552/

[32] H. Muthukrishnan, D. Lustig, D. Nellans, and T. Wenisch, “GPS: A
Global Publish-Subscribe Model for Multi-GPU Memory Management,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture. Virtual Event Greece: ACM, Oct. 2021, pp. 46–58.
[Online]. Available: https://dl.acm.org/doi/10.1145/3466752.3480088

[33] ARM Ltd., “AMBA AXI and ACE Protocol Specification,” Jan.
2021. [Online]. Available: https://documentation-service.arm.com/static/
602a9df190ee6824a1e02b98

[34] T. Heo and F. Mickler, “Concurrency Managed Workqueue,”
Sep. 2010. [Online]. Available: https://www.kernel.org/doc/html/latest/
core-api/workqueue.html

[35] The Linux Kernel Developement Community, “Interval Tree
Header.” [Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/tree/include/linux/interval tree.h?h=v5.16.15

[36] Xilinx Inc., “https://docs.xilinx.com/v/u/en-US/pg203-cmac-usplus,”
Feb. 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
pg203-cmac-usplus

[37] “IEEE Standard for Ethernet,” IEEE Std 802.3-2018 (Revision of IEEE
Std 802.3-2015), pp. 1–5600, Aug. 2018.

[38] BittWare, “BittWare XUP-VVH Data Sheet,” Oct. 2020. [Online].
Available: https://www.bittware.com/files/ds-xup-vvh.pdf

[39] Advanced Micro Devices, Inc, “AMD EPYC 7302P Product
Overview.” [Online]. Available: https://www.amd.com/en/products/cpu/
amd-epyc-7302p

[40] Embedded Systems and Applications Group, TU Darmstadt, “Tapasco
on Github.” [Online]. Available: https://github.com/esa-tu-darmstadt/
tapasco

