
DeLiBA: An Open-Source Hardware/Software
Framework for the Development of Linux Block

I/O Accelerators
Babar Khan, Carsten Heinz, Andreas Koch

Embedded Systems and Applications Group
TU Darmstadt, Germany

{khan,heinz,koch}@esa.tu-darmstadt.de

Abstract—With the trend towards ever larger “big data”
applications, many of the gains achievable by using specialized
compute accelerators become diminished due to the growing I/O
overheads. While there have been a number of research efforts
into computational storage and FPGA implementations of the
NVMe interface, to our knowledge there have been only very
limited efforts to move larger parts of the Linux block I/O stack
into FPGA-based hardware accelerators. Our hardware/software
framework DeLiBA aims to address this deficiency by allowing
high-productivity development of software components of the I/O
stack in user instead of kernel space, and leverages a proven
FPGA SoC framework to quickly compose and deploy the actual
FPGA-based I/O accelerators.

While the current version of DeLiBA is focused on enabling
more productive research instead of on raw performance, even
in its current form it achieves 10% higher throughput and up to
2.3x the I/Os per second for a proof-of-concept Ceph accelerator
realized using the system. These initial results show the large
potential of performing further research in this acceleration
domain.

I. INTRODUCTION

With the trend towards ever larger “big data” applications,
many of the gains achievable by using specialized compute
accelerators become diminished due to the growing I/O over-
heads. Often, the required storage capacities can only be
realized by distributed storage clusters, disaggregated from the
compute clusters. Such systems include traditional SANs [1]
for block storage, but also highly scalable parallel file systems
such as GPFS [2] and PanFS [3]. Some storage systems, such
as the Ceph [4]–[6] solution examined later in this work,
combine different storage approaches, such as file storage,
block storage, and object storage in a single system.

But as the protocols for interacting with these systems
become ever more complex as well, e.g., to address fault
tolerance and highly parallel operations, there appears to be
potential to employ hardware acceleration in the storage I/O
stack, in a similar fashion as has been done successfully for a
number of years in the high-speed networking I/O space.

However, only limited prior work has been performed in
this area (see Section VI for a discussion). And new efforts
are hampered both by the complexity of the existing solutions,
e.g., the Linux block storage stack with its more than 64K lines
of code, as well as the challenging development environment:

Many storage stacks are implemented in the operating system
kernel, which imposes a number of limitations on the usual
development, profiling and debugging techniques that can be
employed when adding hardware accelerators to an applica-
tion.

The DeLiBA framework introduced here is a proposal to
alleviate these difficulties for easier research. It lifts key
functionality of the modern, multi-queue based part of the
Linux block I/O stack up into user-space, enabling the use
of a wide spectrum of programming tools and techniques. On
the FPGA side, it seamlessly interfaces with a powerful design
and integration framework that encapsulates and automatically
generates many of the low-level aspects of FPGA accelerators
(e.g., PCIe interfacing, DMA, interrupt-based completion sig-
nalling, parameter passing etc.), and makes them accessible
from abstract APIs. By tackling the I/O acceleration problem
from both ends, significant gains in development productivity
can be achieved.

The remainder of this paper is organized as follows. In
Section II, we give an introduction to the existing Linux block
layer and point out some of the performance bottlenecks.
Section III describes the software architecture of our DeLiBA
framework, while Section IV introduces the hardware inter-
face. As a first use-case for DeLiBA, we have implemented
a proof-of-concept of an I/O accelerator for the client side of
the Ceph storage protocol. Thus, Section IV discusses some
key Ceph operations and their hardware design. Section V
presents the results of an initial performance evaluation of
the accelerator. We close with a discussion of related work in
Section VI and conclude in Section VII, also looking forward
to future work.

II. REVISITING LINUX BLOCK I/O LAYER

The Linux block layer is a kernel subsystem that is re-
sponsible for handling block devices, e.g., hard disk drives
(HDDs), solid state disks (SSDs), and remote storage (SAN)
[7]. Applications submit I/O operations (hereafter: I/Os) via
kernel system calls (sysread()/syswrite()), and are rep-
resented by a data structure called a block I/O (bio). Each bio
contains information such as address, size, modality (read()
or write()), or type (synchronous/asynchronous). Over the

Virtual File System

Buffer Cache

Linux Block Layer

Submit/Complete

Staging

Tagging

Scheduling

Block Device Driver

Disk

Application Process Application Process

Userspace

kernel

Storage

Per core
Software
Queues

Hardware
Dispatch
Queues

CPU O CPU N

network

non-network

Fig. 1: Existing Linux Block Layer

years, the block layer has undergone a major change to move
from a single request queue to a multi-queue model [8], as
shown in Figure 1. Explicit multi-queuing support was added
with Linux 3.13 and since Linux 5.0, the old single-queue
implementation has been removed. In order to add support
for the block multi-queue to a storage protocol like SCSI, the
scsi multi-queue (scsi-mq) work was also merged in the 3.17
kernel [9]. As Figure 1 shows, in its present form, the Linux
block layer provides per-core request queues called software
queues. These software queues are configured based on the
number of CPU cores in the system, with the aim to reduce
the lock contention with a single request queue. Whereas the
hardware queues provide a second level of buffering. Using
these hardware queues, bio requests scheduled for dispatch
are not sent directly to the device driver, they are instead
sent to the hardware dispatch queue. The number of hardware
queues will typically match the number of hardware contexts
supported by the device driver. Device drivers may choose to
support anywhere from one to 2,048 queues, as supported by
the message-signaled interrupts (MSI-X) standard. In contrast
to the legacy I/O stack, the new block layer has higher
flexibility to optimize access to the PCI Express (PCIe)
interface used to communicate with actual hardware (storage
or network devices). However, consensus is growing in the
storage community that even with these improvements, the
block layer has not kept up with novel storage hardware [10],
[11]. We will analyze some of the deficiencies and make a
case for FPGA acceleration of selected parts of the stack.

A. Limitations of the Current Storage Stack

To start with the latency bottleneck, as Figure 1 shows, there
is a deeply layered kernel hierarchy to translate I/O requests
to the actual storage operations. This layered architecture
adds a significant overhead along the entire request path.
Measurements have shown that it takes between 18,000 and
20,000 instructions to send and receive a single fundamental
4 kB I/O request [12]. In x86 systems, around 50% of the
total execution time of a single 4 kB I/O request is spent in
submitting and completing I/O requests at the kernel stage
[13]. Whereas for 32-bit ARM Cortex A9 processors, the
overhead of a 4 kB I/O reaches 90% of the total execution
time, with storage device latency only adding 10% [14].

As a further complication, the block I/O scheduler(s) [15]–
[17] are also sometimes at odds with the CPU scheduler [18].
This leads to I/O bound processes not receiving sufficient
CPU time to actually execute at their desired priority [19],
sometimes leading to workarounds where the non-I/O limited
parts of a workload are artificially slowed down by sleep()
system calls to “bump up” the throughput of I/O intensive
processes. However, this gain is only achieved at the cost of
increased latency.

Balancing I/O latency and throughput is a long-standing
problem. A recent study shows that conventional approaches
do not achieve both goals simultaneously [20], and suggest to
re-architect the existing storage stack again. As an alternative
to these software-centric efforts, we propose to examine the
use of hardware acceleration in higher levels of the stack.
However, research in this area is hindered by the lack of
high-level frameworks and the somewhat “hostile” nature of
the kernel-space programming environment, in which many
programming, debugging, and profiling techniques work only
with restrictions, or not at all.

III. DELIBA FRAMEWORK ARCHITECTURE

To enable easier experimentation with hardware-accelerated
block I/O stacks, our framework moves the software-side
processing up from the kernel-space back into user-space.
To this end, we rely on the Network Block Device nbd to
bidirectionally transfer requests between user and kernel space.
nbd is a Linux based block device protocol that allows to
export a block device to a client application. It has been a part
of the standard Linux kernel since version 2.1.67 [21]–[23].
Note that the use of nbd does carry a performance penalty, as
the additional user-kernel space switches take time. However,
as our focus for DeLiBA is to enable research into this area,
we are willing to accept the overhead. Also, we will show
later, that even with these overheads, performance gains can
actually be achieved using hardware acceleration (Fig. 4 and
5). Figure 2 sketches the main architecture of our NBD-based
framework. Note that the figure also shows our first use-case
for DeLiBA, namely the acceleration of the distributed Ceph
storage protocol, and thus includes network communication
from the Ceph client (left side) to the Ceph server (right side).
For purely local use of DeLiBA, this extra complexity would
not be required.

Network Block Device (NBD)

Client Application
read () write ()

Cache &
Schedule

Client
Kernel Memory Map

FPGA Driver

8x PCIe Gen3
interface

Read Pointer

HW-SW

Write Pointer
BRAM

HLS accelerated launcher

PE PE PE

PE PE PE

interrupt controller

FIFO request queue
with 512 bit for each

element

Data Center FPGA
(Alveo U280)

Linux kernel
Network stack

10G
Network Interface

Card (NIC)

/dev/nbdx

I/O PoolUser-level NBD
Server

socket nbd requestsocket nbd reply

Block devices in storage cluster
3x replication

task based
interface

Client
Hardware

Client
Userspace

Block Layer Libraries Leveraging librbd
and librados

Network library
(Cluster Messenger)

Key operations
on FPGA:

determining the physical
storage (OSDs, drives)

1

2

3

4

5

6

Fig. 2: Design and implementation of our framework

The focus of Figure 2 is an initial overview of DeLiBA
and its system integration, later sections will provide more
details. In the example shown, a client application generates a
read operation 1 , which would often pass through filesystem
layers (not shown here), and end up at the driver responsible
for the device the data is stored on. For our purposes, that
physical storage is represented by the nbd driver, which
redirects the I/O requests back up into user-space 2 using
a netlink interface. Ceph then provides a number of software
support functions (librados,librbd) to perform the initial
steps of I/O processing 3 , similar to the approach that would
be used in kernel-level. After passing through these Block
Layer Libraries, requests would continue to be processed in
software. However, with DeLiBA, we open up an alternative,
namely the choice to route the requests toward an FPGA
accelerator 4 for further processing. In both cases, as Ceph
is a distributed filesystem, we have to communicate over the
network 5 after completing client-side processing. Currently,
for both software and hardware-based I/O processing, we rely
on the Linux kernel network stack for this operation, which
in turn interacts with the actual Network Interface Card (NIC)
to communicate with the remote Ceph storage 6 .

A. Cache and Scheduler
In our scenarios, the nbd driver just redirects the I/O

requests back into user-space. It does not participate in any
of the kernel’s support mechanism to manage and optimize
I/O operations. But we can achieve a similar functionality by
providing similar mechanisms in user-space. To realize the
DeLiBA Block Layer Libraries, we do not have to start from
scratch, but can leverage parts of the functionality provided
by Ceph’s librbd and librados libraries to realize these
interfaces. We employ these to realize two key functions.

First, as our user-space approach cannot benefit from the
kernel’s page cache, we employ the librbd library to realize

our own caching facility. We employ the Least Recently Used
(LRU) replacement strategy and use a default cache size of
32MiB. In addition to caching, we also employ the facility
as a first step towards coalescing multiple I/O requests for
improved throughput.

The next step of request coalescing takes place in a custom
I/O scheduler we created. We use a self-tuning algorithm
to delay I/O requests by up to half the currently observed
average I/O latency. Requests arriving in that time window
will be coalesced together for further processing. In a later
step, special care will be taken to transfer all the coalesced
requests in a single PCIe access to the FPGA for handling.

B. Advanced Request Handling

After scheduling, the operations are ready to be issued
in the form of the three I/O primitives read, write, and
flush. Both read and write are asynchronous operations,
while flush operates synchronously on our request cache. To
support the asynchronous operations, DeLiBA extends each
of the actual I/O primitives with a completion, indicating a
callback function to be executed when the I/O operation has
actually completed and carry status information. E.g., for a
read, the return value of the completion is the number of
bytes read on success, for a write, the return value of the
completion will be 0 on success. Negative error codes can be
used to express the reasons for a failed request.

At this stage, all of the basic housekeeping has been
performed and the requests have been setup properly (after
caching and coalescing) for more advanced processing. E.g.,
for Ceph, a key operation is determining the physical storage
(OSDs, drives) in the distributed storage cluster where the
data indicated in the I/O requests is actually located. This
is computationally expensive, and thus (among other Ceph
operations) an interesting candidate for hardware acceleration
(see Section IV).

outla
Highlight

seq-read seq-write rand-read rand-write
0

100

200

300

400

65
95

130
98120

230
190

232

L
at

en
cy

(µ
s)

4K 128K

(a) Latency

seq-read seq-write rand-read rand-write
0

200

400

600

40 22 35 20

550

280

480

200

T
hr

ou
gh

pu
t

(M
B

/s
ec

)

4K 128K

(b) Throughput

Fig. 3: Latency and throughput of the software baseline of 4 kB and 128 kB

To allow the hardware-accelerated execution of storage
operations, an I/O Pool is employed that is responsible for
both launching the actual hardware tasks corresponding to the
I/O operations, as well as tracking their completion status and
performing the completion routines when done. Communica-
tion with the target FPGA, a Xilinx Alveo U280 card, occurs
by memory-mapped I/O (control/status data) and DMA (bulk
data) via a PCIe Gen3x8 interface.

As DeLiBA is intended as a research platform for block I/O
acceleration, it currently relies on a software-based layer for
networking. The I/O requests, coming either from software or
from FPGA-accelerated processing, are then formatted into a
Ceph-specific protocol called Messenger, which uses TCP to
communicate with the remote Ceph storage cluster. Internally,
the networking functionality supports multi-threaded execution
by relying on a thread-pool of worker threads. The lower-
level networking operations are then submitted to the kernel
networking stack and NIC as usual.

C. Performance of DeLiBA in Software-Only Mode

Our testbed consists of a single client with 6 cores, and
a cluster with 8 drives. All nodes on the cluster run Linux
kernel version 5.2 on CentOS. The client node runs on Ubuntu
18.04. The underlying hardware uses an AMD EPYC Rome
7302P 16-core CPU with 128GB of memory. In order to
verify the network speed among the nodes we have used a
network testing tool namely, iperf. For our 10GbE network,
the bandwidth performance range we achieved is 9.2Gb/s. We
use the notation seq and rand here to identify the sequential
and random-access workloads, respectively. The workloads
were generated by the Flexible I/O (fio) tool [24]. Furthermore,
we have quantified the bottlenecks into two forms, i.e. latency
inflation and throughput degradation. Considering the most
popular request sizes of many applications are 4 kB and
128 kB, we have chosen these two sizes for our experiments.
Furthermore, since Ceph is a complex system, we have addi-
tionally verified our testbed and profiling results by using the
exact testbed configurations as created by Ceph’s widely used
deployment tool [25]. The tool generates a synthetic workload
to benchmark a real data center cluster, and is part of the
original source code [26].

a) Latency: Figure 3a shows the latency for block sizes
4 kB and 128 kB. With respect to Figure 2, the latency derives
mainly from three stages: 1 the block I/O request transmission
from the client application to 2 the nbd kernel client, then
3 the userspace library and at the last stage the block I/O

request is placed on the target block device in storage cluster.
For comparison, when using Ceph without nbd, the latency
measures is between 90 µs and 95 µs.

b) Throughput: Figure 3b shows the throughput for
block sizes 4 kB and 128 kB. The maximum throughput
achieved is for 128 kB sequential reads with 550MB/s, and
the maximum IOPS (I/O operations per second) are achieved
for 4 kB sequential reads at 9, 000 IOPS. For comparison,
using Ceph without the nbd detour back to userspace achieves
roughly 800MB/s in this setup.

IV. ADDING HARDWARE ACCELERATION TO DELIBA

The nature of block I/O operations fits well to the task-based
computational model, where each I/O request can be mapped
to a task to be executed on the FPGA accelerator. Thus, it
makes sense to apply an existing framework for task-based
FPGA computing to the I/O scenario. Specifically, DeLiBA
relies on the Task-Parallel System Composer (TaPaSCo) [27]
as a middleware to dispatch the I/O requests to the actual
FPGA accelerator for processing and to perform the required
high-performance DMA transfers. For maximum throughput,
DeLiBA employs a version of TaPaSCo extended with the
hardware-assisted task launch mechanism described in [28],
which aggregates multiple launch requests into a single PCIe
transfer. In this manner, more than 6 million tasks can be
launched per second, which is far higher than the I/O operation
rates we currently require in current DeLiBA framework. As
described in Section III-A, we provide the required caching
and scheduling facilities in DeLiBA to prepare this aggrega-
tion of requests before performing the actual hardware task
launches.

To evaluate the practicability and performance of DeLiBA,
we have used it to construct a block I/O accelerator for the
Ceph distributed filesystem. The next sections will discuss the
key Ceph kernels and their hardware acceleration.

TABLE I
SOFTWARE PROFILING RESULTS, VITIS HIGH-LEVEL SYNTHESIS (HLS) ESTIMATES, AND HW EXECUTION TIMES FOR CEPH KERNELS

Kernel SW Overall Vitis HLS Vitis HLS HW SLOCs SLOCs
Execution contribution Cycles Latency Execution SW HLS

Time to runtime (min-max) (min-max)

Straw Bucket (pure HLS code) 85 µs 70% - 75% 133 - 135 0.665 µs - 0.675 µs 70 µs 256 148
Straw Bucket (using Vitis lnx function IP) 85 µs 70% - 75% 177 - 177 0.885 µs - 0.885 µs 70 µs 256 130

List bucket 65 µs 70% 56 - 56 0.280 µs - 0.280 µs 72 µs 197 134
Uniform Bucket 20 µs 50% 46 - 448 0.230 µs - 2.240 µs 25 µs 237 161

Tree Bucket 45 µs 75% 161 - 162 0.805 µs - 0.810 µs 45 µs 241 152

A. Hardware I/O Accelerator for Ceph Clients

The Ceph client was carefully profiled on a bare metal
server using tools such as Intel VTune Profiler [29] and Val-
grind [30] to determine compute-intensive processing opera-
tions, and collect the run-time call graphs. An important metric
in profiling was to measure the contribution of the software
kernels to the overall load. Since Ceph is a distributed storage
system, much effort is spent on guarding against data loss, for
which two methods are employed: One is replication, where
the same data is replicated in a distributed manner across
multiple storage nodes, and the second is erasure coding,
where mathematical techniques are employed to compensate
for the partial loss of data. Replication carries a higher storage
overhead, while erasure coding has a higher compute and
memory cost.

Based on the profiling results in first two columns of
Table I, we have focused on the acceleration of the compute-
intensive replication algorithms in our proof-of-concept. For
replication, Ceph relies on a pseudo-random data distribution
algorithm [31]–[33] named CRUSH (Controlled Replication
Under Scalable Hashing) that distributes replicas across block
devices. CRUSH defines four different kinds of computations
to represent internal nodes in the storage cluster hierarchy:
uniform, list, tree and straw2. In addition to the param-
eters of the current storage operation, they receive a “map“
of the entire storage cluster describing the different physical
storage resources.

Prior profiling reports of the Ceph system [31] state that
approximately 45% of execution time is expended on the
CRUSH mapping function, which mainly performs hashing
operations using a non-cryptographic Jenkins hash function
[34]. This heavy use of hashing has become even more intense
in more recent Ceph versions: Our own profiling of the recent
Ceph version Octopus 15.2.16 indicates that the client now
spends more than 70% of its execution time in the CRUSH
mapping functions. We thus heavily focused on the optimized
implementation of the hashing operation in the five kernels
Ceph uses for data replication. E.g., the 32 bit mixer step has
been inlined for all kernels.

One of the main goals of profiling was also to profile
the overall performance choosing different cluster sizes. Each
of the four CRUSH kernels is based on a different internal
data structure, and computes a different function for selecting

nested storage nodes during the replica placement on the block
devices. Their CRUSH kernel execution times actually vary
with the configuration of the storage cluster as shown in Table I
under SW Execution Time.

E.g., when the storage cluster has disks with identical
sizes, for instance 20GiB for each disk, the uniform kernel
execution time was 20µs . When the cluster size grows, the
list kernel had the execution time of 65µs, as it had to
consider the optimal data movement to the new storage nodes
as they were added. For a static cluster, the straw2 algorithm
had the execution time of 85µs. In a cluster with more deeply
nested cluster hierarchies the tree algorithm had an execution
time of 45µs.

Furthermore, Table I shows another profile measurement
termed as Overall contribution to runtime, which lists the
percentage of each kernel’s contribution to the total Ceph
application run time. Only kernels that have a relative runtime
are promising for acceleration. Our goal was to select kernels
contributing more than 50% to the overall Ceph runtime.

Both the measurements i.e SW Execution Time and Overall
contribution to runtime are profiled based on a particular
cluster size. The kernels realize multiple algorithms to perform
different data replication strategies in a Ceph cluster. Which
specific algorithm is used for a given cluster is statically
configured in the Cluster map. Only the kernel providing that
single algorithm will then actually execute.

Table I also shows the number of source-lines of code
(SLOC) of the original software and the HLS implementation.

B. Implementing the Ceph Hardware Kernels

As shown in Table I, for our Ceph proof-of-concept I/O
accelerator, five CRUSH key operations were moved from
software to the hardware. The hardware kernels were imple-
mented using the Xilinx Vitis 2021.2 High-Level Synthesis
(HLS) tool [35], which at the time of writing is the latest
version of the tool chain. The target FPGA board is a Xilinx
Alveo U280, which carries an UltraScale+ FPGA. In HLS,
we set a target clock frequency of 300MHz, and all kernel
individually achieve that. For the complete SoC on the FPGA
(see Section IV-C), we achieve an fmax of 200MHz after
place-and-route. Table I shows the latency measurements in
cycles and seconds for all five individual kernels at fmax.

As usual for HLS, the original software code had to be
heavily altered for hardware synthesis. Key areas that had to be

modified were the heavy use of dynamically allocated memory
and variable loop bounds. The original code employed these to
support the many degrees of freedom available for configuring
a Ceph cluster. However, on an FPGA, its more beneficial in
terms of performance and area usage to statically tune individ-
ual kernels for concrete configuration parameter values, and
instead employ separate, differently parameterised hardware
kernels for different cluster configurations. All kernels have
been pipelined and achieve II=1.

In terms of functionality, straw2 allows other buckets to
fairly ”compete” against each other when determining replica
placement through a process analogous to a “drawing of
straws”. The original kernel has to compute a 64-bit natural
logarithm using a lookup table. For pure HLS code version,
we have implemented this approach as a single-port BRAM
using a Vitis RESOURCE directive. However, for certain values
of bucket parameters, such as id and weight, the table-based
computation leads to stalls in the pipeline. To guarantee con-
stant latency, we implemented an second version of straw2
using the lnx IP block from the Vitis floating-point library as
an alternative. In addition to the logarithm computation, the
second key operation in the inner loop of the straw2 kernel is
the computation of pseudo-random numbers using the Jenkins
hash function. Both versions of the kernel achieve II=1 when
pipelined.

For the case when the configuration of a Ceph cluster is
frequently changed, e.g., by adding more disks, the List bucket
algorithm is used, which is based on a linked lists of arbitrary
weights. The software version of the kernel begins by com-
puting the parametric hash of the given data. After the hash
computation, the kernel performs a scan of the list, beginning
with the first element holding the most recently added item,
and compares its weight to the sum of all remaining items
weights in the map before returning the block disk id. The
lists are usually short, e.g., having a maximum of 64 entries
here, which is the same as the bucket size in the map. For
our hardware implementation, this allows us to avoid using
the indirect (linked) data structure used in software. Instead,
we employ a combination of arrays and FIFOs that allows
pipelining with II=1 for the algorithm’s main loop.

Tree Buckets is also used for frequently expanding clusters
with 64 entries. However, in contrast to List bucket, the clusters
processed here have more deeply nested storage hierarchies.
Each node in the tree is aware of the total weight of its left and
right subtrees, as well as a unique identification that is passed
to the hash function as a parameter through the map. Similar to
uniform kernel, the tree kernel also does not involve pointers
for traversing the tree nodes. Instead we have implemented its
parameters node weights and items as a combination of array
and FIFOs. The software version requires five function calls
in each of its loop iterations, two for hashing and three for
tree management. For the HLS version, all function calls were
inlined for better resource sharing and cross-call optimizations.

As explained in Section IV-A, the uniform kernel performs
replicas among (potentially large) groups of identical storage
devices. The underlying computations are a Fisher–Yates

shuffle [36], [37], computing a uniform random permutation
of weights, which is then applied to the bucket members.
The hardware kernel again uses inlining to combine these
operations into a single function, having three nested loops
that could all be pipelined to achieve II=1.

In software profiling, we measured kernel runtimes between
20 µs and 85 µs on the host. Thus, the Vitis HLS estimates in
Table I already indicate the potential benefits of accelerating
core algorithms of modern storage stacks using reconfigurable
computing at the post-P&R fmax of 200MHz, often being
more than two orders of magnitude faster than executing the
same algorithms on the host. However, as discussed in Sec-
tion IV-C, the simplified programming environment provided
by DeLiBA currently comes with a performance penalty of a
similar order of magnitude, limiting the achievable wall-clock
speedups.

C. Hardware Accelerator Integration

A key aspect for the use of accelerators is the com-
munication overhead required for interacting with the host.
Fortunately, for the Ceph accelerator, the size of the parameters
is relatively small. The largest one is the “map” of the
storage cluster, which even for larger configurations rarely
exceeds 512 kB and thus is very amenable for a fast DMA
transfer to the FPGA. Since the map is static as described
in Section IV-A, it is transferred once and reused for the
remaining I/O requests. The nature of the computations is
also amenable to acceleration: All of the different kernels
discussed above execute independently. Also, individual I/O
requests can also be processed independently. This is very
suitable for execution in a task-based model of computation
as provided by the TaPaSCo FPGA framework [27].

For each of the different kernels, we configured ten hard-
ware instances, called Processing Elements (PEs) in TaPaSCo.
Our choice of ten PEs per kernel yields the optimal throughput:
Fewer PEs would limit the degree of parallel requests, while
more PEs lead to a further slow-down of the clock frequency
of the resulting system-on-chip. With 10 PEs per kernel, we
achieved a maximal clock frequency of 200MHz for the entire
FPGA.

We use the TaPaSCo scheduler to distribute the I/O requests
from the DeLiBA I/O Pool to the actual hardware PEs, and
transfer the results of finished hardware computation tasks
back to their originating I/O requests in the I/O Pool in
software.

These switches between software-hardware-software exe-
cution from the DeLiBA I/O pool, to the Ceph kernels on
the FPGA, and back to the Ceph Cluster Messenger, carry
significant overhead. Using the software-side C++ timing
library #include <chrono>, we measured a full roundtrip,
e.g., for the straw2 kernel, to take around 60µs and 70µs
(see Table I, last column). Thus, the execution switches almost
cancel out the per-kernel speedups. However, since we can use
pipelined execution with the hardware kernels, even with these
high overheads, we do achieve the performance gains shown
in Section V over pure software execution.

TABLE II
I/O REQUEST LATENCY ON SOFTWARE AND HARDWARE

SW vs HW Latency [µs]
(4 kB) seq-read seq-write rand-read rand-write

SW 65 95 130 98
HW 60 82 93 96

V. EXPERIMENTAL EVALUATION USING HARDWARE
ACCELERATOR

As described above, DeLiBA is used to integrate a Xilinx
Alveo U280 FPGA card providing accelerators for performing
key computations of the Ceph protocol stack into the block I/O
stack. The client side host uses an AMD EPYC Rome 7302P
16-core CPU with 128GB of memory, attached by 10Gb/s
Ethernet to the Ceph server as described in Section III-C. The
FPGA card is attached to the client host by PCIe Gen3 x8 and
uses a system clock of 200MHz.

The setup passes all compatibility and functional tests
for interactions between the Ceph client and server nodes.
The user-space based programming environment provided
by DeLiBA considerably simplified the development of the
proof-of-concept, as a Ceph-based distributed storage system
employs far more complex data structures, administrative
computations, and protocols than one, for example, using the
far simpler iSCSI (Internet Small Computer Systems Interface)
protocol [38].

Even with the additional overheads due to using nbd as a
user-kernel space relay, and the additional PCIe round-trips
involved to the FPGA, the latency of using the hardware
accelerator is similar or even better than using the pure
software stack, as shown in Table II. In this manner, the proof-
of-concept Ceph accelerator we use to demonstrate DeLiBA in
all but one case manages to exceed the baseline performance
of the pure software implementation.

As shown in Figure 4, similar gains also apply to the
throughput measurements for 4 kB and 128 kB block sizes,
and sequential and random access patterns. The hardware-
accelerated solution manages to speed-up throughput by up
to 1.9x for sequential writes of 4 kB blocks, and by 1.2x for
random writes of 128 kB blocks. The gains are even more
pronounced for the rate of I/Os per second, shown in Figure 5.
Here, the largest gain of 2.36x for 4 kB blocks is achieved for
random reads. For the larger 128 kB blocks, the I/O rate will
naturally be slower. But still, the hardware accelerated stack
manages a gain of 1.13x for the random-read case.

TABLE III
TOTAL RESOURCE UTILIZATION

Resource Used Utilization (%)

Slices 37,576 35 %
LUTs ≈ 20,000 < 2%
DSPs 18 < 1.5%
BRAMs 48 < 2%

SW HW SW HW SW HW SW HW
0

200

400

600

T
hr

ou
gh

pu
t

(M
B

/s
ec

)

Seq-read Seq-write Rand-read Rand-write

0

200

400

600

4K 128K

Fig. 4: Block I/O Throughput Hardware-Accelerated vs Software Baseline

SW HW SW HW SW HW SW HW
0

5

10

15

K
IO

PS

Seq-read Seq-write Rand-read Rand-write

0

5

10

15

4K 128K

Fig. 5: IOPS on Hardware-Accelerated Stack vs Software Baseline

Table III shows the place-and-routed resource utilization.
For a comparison the Alveo U280 card contains an FPGA
chip with 1.08 million LUTs. Furthermore, it holds 4.5 MB
of on-chip BRAM, 30 MB of on-chip URAM, and 9024 DSP
slices. The DSPs are mainly used for division operations, as
that is a frequent operation in the straw2 kernel.

VI. RELATED WORK

Comparing our results with related work is somewhat
difficult for two reasons: First, most of the related work
is solely based on local SSDs, while we aim to speed-
up a distributed system. Second, our proof-of-concept Ceph
accelerator requires a specialized set of computations, e.g.,
replication coding for fault tolerance, that is not examined for
acceleration in prior work.

However, we can discuss related work that at least partially
overlaps our own efforts. To start with, the work in [39]
has performed an in-depth evaluation of all existing NBD
frameworks and offers a good baseline for software-only

benchmark. However, their scenario is far simpler than ours:
They just use NBD to communicate with local drives via SCSI.
Neither hardware acceleration, nor network communication,
nor distributed storage protocols play a role in their work.

The authors in [40] do include an FPGA-based framework
to achieve 5x higher IOPS and up to 71% lower latency. They
follow an approach similar to SPDK [41] in that they combine
a user-space NVMe stack with an NVMe target implemented
in the FPGA. That NVMe target then forwards the requests
to an NVMe SSD directly attached to the FPGA. The FPGA
can then be used to perform optimized scheduling/re-queuing
of the operations received from the user-space stack before
handing them off to the actual storage device.

The approach in [42] goes even further than [40] in remov-
ing layers from the I/O stack. Here, for the purpose of high-
speed data recording, the host and any software is avoided
completely. Instead, an FPGA is used to receive multiple data
streams arriving via high-speed optical ports, and then to
realize an NVMe initiator in soft-logic that can write out that
data with minimum latency to NVMe drives directly attached
to the FPGA.

The idea of using the abstraction of using multiple queues,
which also lies at the heart of the Linux block-mq I/O
subsystem, to communicate with FPGAs has been examined
by other authors as well. Both [43] and [44] employ it to
interact with general-purpose FPGA accelerators, but not for
realizing the complete storage solution we aim for.

As Ceph is a widely used storage system for HPC sce-
narios, there has also been commercial interest in providing
accelerated solutions. A recent one is an offering by Xilinx
[45], but the publicly available information does not show any
benchmarks.

Also, all of these prior research efforts focused right away
on end-to-end performance, often with excellent results. But
the main design goal of DeLiBA was different: Our system
was designed from the start as an enabler for basic research
into the acceleration of more complex storage protocols,
such as Ceph, than the computationally simpler SCSI and
NVMe-based systems examined in prior work. That DeLiBA
is already able to achieve performance gains, though, is a
pleasant side-effect of the originally intended purpose.

VII. CONCLUSION AND FUTURE WORK

We have presented DeLiBA, an open-source framework for
the development of hardware-accelerated block I/O stacks.
DeLiBA provides a productive programming environment for
the prototyping and functional testing of even complex storage
protocols and can use powerful existing FPGA frameworks
such as TaPaSCo to ease the integration of the actual hardware
accelerators.

While DeLiBA can already enable some performance gains
over the standard Linux block I/O stack, further improvements
are already being worked on. Specifically, instead of using the
nbd based relay, the hardware accelerators will be directly
integrated with the kernel-level rbd module and communicate

with the server via a hardware network stack directly inte-
grated in the FPGA. In this manner, both user-kernel space
transitions, as well as PCIe transfers between the host, the
FPGA board, and the network interface card can be avoided.
Also, hardware accelerators that perform Erasure Coding (EC),
as an alternative to the current replication accelerators, will
also be integrated.

DeLiBA will be open-sourced at https://github.com/
esa-tu-darmstadt/deliba

ACKNOWLEDGMENT

This work has been co-funded by the German Federal
Ministry for Education and Research (BMBF) with the funding
ID 01 IS 19018 B.

REFERENCES

[1] Y. Wu, F. Wang, Y. Hua, D. Feng, Y. Hu, W. Tong, J. Liu, and D. He,
“I/o stack optimization for efficient and scalable access in fcoe-based
san storage,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 9, pp. 2514–2526, 2017.

[2] IBM, “General parallel file system 4.1.0.4,” https://www.ibm.com/docs/
en/gpfs/4.1.0.4, (Last accessed: 2022-01-16).

[3] Panasas, “Panfs parallel file system,” https://panasas.com/
panfs-architecture/panfs/, (Last accessed: 2022-01-16).

[4] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “The case for custom storage backends in distributed
storage systems,” ACM Trans. Storage, may 2020.

[5] C. storage, “Ceph),” https://github.com/ceph/ceph, (Last accessed: 2021-
12-16).

[6] Ceph, “block device rbd kernel driver,” https://github.com/torvalds/linux/
blob/master/drivers/block/rbd.c, (Last accessed: 2021-12-16).

[7] J. Suse, “Linux block io—present and future,” Proceedings of the Ottawa
Linux Symposium 2004, 01 2004.

[8] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block io: In-
troducing multi-queue ssd access on multi-core systems,” in Proceedings
of the 6th International Systems and Storage Conference, ser. SYSTOR
’13. New York, NY, USA: Association for Computing Machinery,
2013.

[9] B. Caldwell, “Improving block-level efficiency with scsi-mq,” CoRR,
2015.

[10] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of
the tail: Hardware, os, and application-level sources of tail latency,” in
Proceedings of the ACM Symposium on Cloud Computing, ser. SOCC
’14. Association for Computing Machinery, 2014, p. 1–14.

[11] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of
the killer microseconds,” Commun. ACM, vol. 60, no. 4, p. 48–54, mar
2017. [Online]. Available: https://doi.org/10.1145/3015146

[12] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A high-performance storage array architecture
for next-generation, non-volatile memories,” in 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, 2010.

[13] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “NVMeDirect: A user-space I/O
framework for application-specific optimization on NVMe SSDs,” in
8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16). Denver, CO: USENIX Association, Jun. 2016.
[Online]. Available: https://www.usenix.org/conference/hotstorage16/
workshop-program/presentation/kim

[14] A. Stratikopoulos, C. Kotselidis, J. Goodacre, and M. Luján, “Fastpath:
Towards wire-speed nvme ssds,” in 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), 2018, pp. 170–
1707.

[15] LWN, “Linux blk-mq scheduling framework,” https://lwn.net/Articles/
708465/, (Last accessed: 2021-12-16).

[16] Linux article, “Kyber multiqueue i/o scheduler,” https://lwn.net/Articles/
720071/, (Last accessed: 2021-12-16).

[17] The Linux kernel documentation, “Bfq (budget fair queueing),” https:
//www.kernel.org/doc/html/, (Last accessed: 2021-12-16).

 https://github.com/esa-tu-darmstadt/deliba
 https://github.com/esa-tu-darmstadt/deliba
https://www.ibm.com/docs/en/gpfs/4.1.0.4
https://www.ibm.com/docs/en/gpfs/4.1.0.4
https://panasas.com/panfs-architecture/panfs/
https://panasas.com/panfs-architecture/panfs/
https://github.com/ceph/ceph
https://github.com/torvalds/linux/blob/master/drivers/block/rbd.c
https://github.com/torvalds/linux/blob/master/drivers/block/rbd.c
https://doi.org/10.1145/3015146
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://lwn.net/Articles/708465/
https://lwn.net/Articles/708465/
https://lwn.net/Articles/720071/
https://lwn.net/Articles/720071/
https://www.kernel.org/doc/html/
https://www.kernel.org/doc/html/

[18] The kernel development community, “Linux scheduler - CFS scheduler,”
https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c, (Last
accessed: 2021-12-16).

[19] K. Kim, S. Hong, and T. Kim, “Supporting the priorities in the multi-
queue block i/o layer for nvme ssds,” JOURNAL OF SEMICONDUC-
TOR TECHNOLOGY AND SCIENCE, 02 2020.

[20] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting
linux storage stack for µs latency and high throughput,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, july 2021.

[21] P. Breuer, A. Lopez, and A. G. Ares, “The network block device,” 1999.
[22] N. Github, “Network block device),” https://github.com/

NetworkBlockDevice, (Last accessed: 2021-12-16).
[23] L. Wang and Y. Wen, “Design and implementation of ceph block device

in userspace for container scenarios,” in 2016 International Symposium
on Computer, Consumer and Control (IS3C), 2016.

[24] FIO, “Fio tool source code,” https://github.com/axboe/fio, (Last ac-
cessed: 2021-12-16).

[25] Ceph, “Ceph tool,” https://docs.ceph.com/en/latest/dev/dev cluster
deployement/, (Last accessed: 2021-12-16).

[26] Ceph development, “vstart tool,” https://github.com/ceph/ceph/blob/
master/src/vstart.sh, (Last accessed: 2021-12-16).

[27] C. Heinz, J. Hofmann, J. Korinth, L. Sommer, L. Weber, and
A. Koch, “The tapasco open-source toolflow,” Journal of Signal
Processing Systems, May 2021. [Online]. Available: https://doi.org/10.
1007/s11265-021-01640-8

[28] C. Heinz, J. A. Hofmann, L. Sommer, and A. Koch, “Improving job
launch rates in the tapasco fpga middleware by hardware/software-co-
design,” in 2020 IEEE/ACM International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS), 2020, pp. 22–30.

[29] Intel, “Intel vtune profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html#gs.mkxn87, (Last accessed:
2022-01-16).

[30] Valgrind, “Valgrind framework,” https://valgrind.org/, (Last accessed:
2022-01-16).

[31] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush: Con-
trolled, scalable, decentralized placement of replicated data,” in SC ’06:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
2006, pp. 31–31.

[32] R. Honicky and E. Miller, “A fast algorithm for online placement and
reorganization of replicated data,” in Proceedings International Parallel
and Distributed Processing Symposium, 2003, pp. 10 pp.–.

[33] ——, “Replication under scalable hashing: a family of algorithms for
scalable decentralized data distribution,” in 18th International Parallel
and Distributed Processing Symposium, 2004. Proceedings., 2004, pp.
96–.

[34] A. Broder and M. Mitzenmacher, “Survey: Network applications of
bloom filters: A survey.” Internet Mathematics, vol. 1, 11 2003.

[35] Xilinx, “Xilinx vitis hls,” https://www.xilinx.com/support/
documentation/sw manuals/xilinx2021 1/ug1399-vitis-hls.pdf, (Last
accessed: 2022-01-16).

[36] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. USA: Addison-Wesley Longman
Publishing Co., Inc., 1997.

[37] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun.
ACM, vol. 7, no. 7, p. 420, jul 1964. [Online]. Available:
https://doi.org/10.1145/364520.364540

[38] K. Meth and J. Satran, “Design of the iscsi protocol,” in 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technologies,
2003. (MSST 2003). Proceedings., 2003, pp. 116–122.

[39] A. Faria, R. Macedo, J. Pereira, and J. a. Paulo, “Bdus: Implementing
block devices in user space,” in Proceedings of the 14th ACM Interna-
tional Conference on Systems and Storage, ser. SYSTOR ’21. New
York, NY, USA: Association for Computing Machinery, 2021.

[40] A. Stratikopoulos, C. Kotselidis, J. Goodacre, and M. Luján, “Fast-
path mp: Low overhead & energy-efficient fpga-based storage multi-
paths,” ACM Trans. Archit. Code Optim., nov 2020.

[41] SPDK, “Spdk source code,” https://github.com/spdk/spdk, (Last ac-
cessed: 2021-12-16).

[42] J. Zhang, F. Meng, L. Qiao, and K. Zhu, “Design and implementation of
optical fiber ssd exploiting fpga accelerated nvme,” IEEE Access, vol. 7,
2019.

[43] S. Rezaei, K. Kim, and E. Bozorgzadeh, “Scalable multi-queue data
transfer scheme for fpga-based multi-accelerators,” in 2018 IEEE 36th
International Conference on Computer Design (ICCD), 2018, pp. 374–
380.

[44] S. Rezaei, E. Bozorgzadeh, and K. Kim, “Ultrashare: Fpga-based
dynamic accelerator sharing and allocation,” in 2019 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
2019, pp. 1–5.

[45] Xilinx, “Xilinx revolutionizes the modern data center with software
defined hardware accelerated alveo smartnics,” https://www.xilinx.com/
news/press/2021/, (Last accessed: 2021-12-16).

https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c
https://github.com/NetworkBlockDevice
https://github.com/NetworkBlockDevice
https://github.com/axboe/fio
https://docs.ceph.com/en/latest/dev/dev_cluster_deployement/
https://docs.ceph.com/en/latest/dev/dev_cluster_deployement/
https://github.com/ceph/ceph/blob/master/src/vstart.sh
https://github.com/ceph/ceph/blob/master/src/vstart.sh
https://doi.org/10.1007/s11265-021-01640-8
https://doi.org/10.1007/s11265-021-01640-8
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.mkxn87
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.mkxn87
https://valgrind.org/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf
https://doi.org/10.1145/364520.364540
https://github.com/spdk/spdk
https://www.xilinx.com/news/press/2021/
https://www.xilinx.com/news/press/2021/

	Introduction
	Revisiting Linux Block I/O Layer
	Limitations of the Current Storage Stack

	DeLiBA Framework Architecture
	Cache and Scheduler
	Advanced Request Handling
	Performance of DeLiBA in Software-Only Mode

	Adding hardware acceleration to DeLiBA
	Hardware I/O Accelerator for Ceph Clients
	Implementing the Ceph Hardware Kernels
	Hardware Accelerator Integration

	Experimental Evaluation using Hardware Accelerator
	Related Work
	Conclusion and Future Work
	References

