
SPNC: An Open-Source MLIR-Based Compiler for
Fast Sum-Product Network Inference on CPUs and

GPUs
Lukas Sommer∗, Cristian Axenie†, Andreas Koch∗

∗Embedded Systems and Applications Group, TU Darmstadt, Germany
†Intelligent Cloud Technologies Laboratory, Huawei Munich Research Center, Munich, Germany

∗{sommer, koch}@esa.tu-darmstadt.de, †cristian.axenie@huawei.com

Abstract—Sum-Product Networks (SPNs) are an alternative
to the widely used Neural Networks (NNs) for machine learning.
SPNs can not only reason about (un)certainty by qualifying their
output with a probability, they also allow fast (tractable) inference
by having run-times that are just linear w.r.t. the network size.

We present SPNC, the first tool flow for generating fast native
code for SPN inference on both CPUs and GPUs, including
the use of vectorized/SIMD execution. To this end, we add two
SPN-specific dialects to the MLIR framework and discuss their
lowering towards the execution targets.

We evaluate our approach on two applications, for which we
consider performance, scaling to very large SPNs, and compile
vs execution-time trade-offs. In this manner, we achieve multiple
orders of magnitude in speed-ups over existing SPN support
libraries.

Index Terms—Sum-Product Networks, Machine Learning,
MLIR, LLVM, CPU, GPU

I. INTRODUCTION

Sum-Product-Networks (SPN) [1], a recent class of prob-
abilistic graphical models, are a machine-learning approach
with a number of advantages over the widely used neural
networks (NN). These include the capability to reason about
the (un)certainty of their output by providing a probability
value, as well as being able to perform inference in linear time
w.r.t. the size of the SPN.

However, tool support for using SPNs is more limited than
for NNs. As an example, for the latter, a number of tools is
available to compile the NNs down to native code for inference,
such as Tensorflow’s XLA [2] or Facebook’s Glow [3], for
quickly performing the inference operation. While software
support for SPNs is improving, it is generally not aimed at
high performance yet, e.g., the commonly used SPN framework
SPFlow [4] performs inference in Python code.

We present SPNC, the first multi-target tool chain capable of
mapping the SPN inference operation into high-performance
native code for both CPUs and GPUs, including support
for advanced processor features such as vectorized/SIMD
operations. SPNC, which is available as open-source1, is based
on the modern MLIR framework.

Two custom MLIR dialects have been created to represent the
high-level semantics of Sum-Product Network inference. The
design of these dialects is described in Section III. Starting from

1https://github.com/esa-tu-darmstadt/spn-compiler

these two dialects, we develop a number of target-independent
transformation steps that include techniques to handle even
very large Sum-Product Network models during compilation
(Section IV-A). The result of these transformation steps then
serves as the input to the two lowering pipelines, targeting
CPUs (Section IV-B) and GPUs (Section IV-C), respectively.

We introduce SPNs and the MLIR framework in Section II,
and survey related work in Section VI. Our approach is
evaluated in Section V on two different applications. One
targeting the use of generic (full featured) SPNs, the second
one focusing on processing very large SPNs. The latter kind
of SPN occurs in practice, when more restricted SPN models
are used. Our evaluation includes a design-space exploration
of different optimization options and compares to performing
SPN inference in existing frameworks.

II. BACKGROUND

A. Sum-Product Networks

Handling uncertainties and imperfections, such as missing
feature values in real-world data, is an important requirement
for machine learning models. Probabilistic models and, more
specifically, Sum-Product Networks [1], which are a relatively
recent representative of this class of models, are well suited to
handle these uncertainties. One mechanism that allows Sum-
Product Networks to cope with uncertainties is the ability to
actually quantify uncertainty over their own output in the form
of probabilities, an ability not found in most traditional neural
network architectures.

At the heart of a Sum-Product Network model lies a directed
acyclic graph (DAG), capturing the joint probability distribution
over a set of random variables. The DAG is composed from
three different types of nodes: Leaf nodes represent univariate
distributions over a single random variable and can model
continuous (e.g., Gaussian) as well as discrete (e.g., categorical)
distributions. Apart from the leaf nodes, the DAG contains
weighted sum nodes and product nodes, which represent a
mixture of distributions and the factorization of independent
variables, respectively. The structure of the DAG can either be
learned directly from data, or can be constructed beforehand,
followed by weight learning. An extensive overview of learning
algorithms for Sum-Product Networks is given in [5], an
example of an SPN DAG is shown in Fig. 1.

+

× × × × × ×

+ +
× ×

+

w1 w2 w3 w4 w5 w6

w7 w8

(a)

Fig. 1. Example of a Sum-Product Network graph.

After learning the DAG, it can be used to perform inference
to solve machine learning tasks such as classification. For most
probabilistic queries, the inference requires a single bottom-up
evaluation of the SPN DAG, starting at the leaf nodes. This
also holds true for the two kinds of inference we focus on in
this work, namely joint probability and marginal inference. In
both cases, the inference starts by querying the univariate leaf
distributions using the full (joint) or partial (marginal) evidence,
i.e., input values. The probabilities obtained from the leaf nodes
are then propagated upwards through the DAG, performing
multiplication and weighted addition at the corresponding nodes.
Eventually, the final result probability is obtained at the root
node of the DAG.

As only a single traversal of the DAG is needed for inference,
the complexity of inference is linear in the DAG size [6],
making SPN tractable. This tractable inference, a property not
found on many other probabilistic (graphical) models such as
Bayesian Networks, combined with their expressiveness and
ability to handle uncertainties, make Sum-Product Networks
an interesting candidate for many applications. An overview
of applications, ranging from medical imaging [7] to robotics
[8], can also be found in the survey [5].

The compiler developed in this work aims to further speed-
up inference in Sum-Product Networks through compilation
for different target platforms. Training of the SPN is assumed
to have taken place beforehand, using a standard Sum-Product
Network framework such as SPFlow [4].

B. MLIR

For the implementation of the compiler, we use the open-
source MLIR framework [9]. MLIR is motivated by the
observation that the early lowering to a low-level intermediate
representation (IR) in a conventional compiler looses much
of the high-level semantics and structure of an application,
because it cannot be represented in the low-level IR.

In order to allow the compiler to reason about the high-level
semantics and to achieve better compilation results, it would
be desirable to represent the application by a hierarchy of
intermediate representations, and only gradually lower these
to a low-level representation, similar to how this is already
implemented in Tensorflow’s XLA, or the Swift and Rust
compilers.

To facilitate the implementation of such IRs at various
abstraction levels and avoid the repeated implementation
of infrastructure components, the MLIR framework aims to

provide a framework for the re-usable implementation of such
IRs, as well as compilers based on them.

The basic organization unit for IRs are the Dialects, which
can define a set of Operations and Types. While the MLIR
framework also uses the static single assignment (SSA) form,
its representations are more flexible than the traditional control-
flow graph (CFG) representations found in many compilers,
such as in LLVM IR. In contrast to these CFG structures,
MLIR allows for nesting inside the IR. This means, that
each Operation does not only produce typed (SSA) values,
but can also have one or multiple Regions attached to it.
Each Region then contains one or multiple Blocks, which,
in turn, contain Operations. This flexibility allows representing
different structures, e.g., “traditional” CFGs, as well as more
application/domain-specific structures. In addition, Attributes
can be attached to operations to represent additional compile-
time information.

A typical compile flow will use multiple Dialects, and
mixtures of dialects, to represent the application at different
abstraction levels. As the flow progresses, and moves to lower-
level dialects, so-called Lowerings are used to translate between
different dialects. MLIR also provides, in addition to other
common infrastructure such as pass managers, a number of
generic transformations, such as constant folding, enabled
through Traits and Interfaces that can be attached to operations.

In the compiler developed in this work, MLIR is used to
represent the high-level semantics of Sum-Product Network
inference by two SPN-specific dialects (cf. Section III), and to
target CPUs and GPUs via a mixture of dialects provided by
the MLIR framework (cf. Sections IV-B and IV-C).

III. MLIR DIALECT DESIGN

The goal of this work is to develop a domain-specific tool
for the compilation of probabilistic queries on Sum-Product
Networks. The compilation should make best use of the various
hardware features available on the different target platforms,
e.g., SIMD vector extensions on CPUs.

The implementation of SPNC is based on the open-source
MLIR-framework [9]. The first step is the design of two SPN-
specific dialects that allow the compiler to reason about SPN
semantics. Both of these will be described throughout this
section.

A. HiSPN Dialect

The first SPN-specific dialect is called HiSPN. It was
designed to closely match the SPN representation used by
the open-source framework SPFlow [4], a popular library for
SPN modelling and training. As such, it captures SPN query
and model information on a high level of abstraction.

Fig. 2 shows an excerpt of the HiSPN dialect for the example
SPN in Fig. 1 and a query operating on that SPN. The HiSPN
dialect fulfills two main tasks. The first task, represented by
the hi_spn.graph operation, and the operations nested
inside its region, is to capture the SPN’s directed acyclic graph
structure. To this end, the HiSPN dialect contains operations
directly corresponding to sum, product and leaf nodes in an

TABLE I
OPERATIONS OF THE HISPN DIALECT. ProbType IS USED TO REFER TO THE ABSTRACT PROBABILITY TYPE DEFINED IN THE HISPN DIALECT. InputType

CAN BE ANY FLOAT OR INTEGER TYPE.

Name Short Description Operands Attributes Results Nested
Regions

joint_query Joint probability query - numFeatures, inputType,
batchSize, supportMarginal

- yes

graph SPN DAG container - numFeatures - yes
root SPN DAG root marker rootValue (ProbType) - - no
product Product node operands (ProbType, variadic) - ProbType no
sum Weighted sum node operands (ProbType, variadic) weights ProbType no
histogram Histogram leaf index (InputType) buckets, bucketCount ProbType no
categorical Categorical leaf index (InputType) probabilities ProbType no
gaussian Gaussian leaf evidence (InputType) mean, stddev ProbType no

1 module {
2 "hi_spn.joint_query"() ({
3 "hi_spn.graph"() ({
4 ˆbb0(%arg0: f32, %arg1: f32):
5 %0 = "hi_spn.gaussian"(%arg0) {mean = 5.0e-01 : f64, stddev = 1.0e+00 : f64} : (f32) -> ...
6 %1 = "hi_spn.gaussian"(%arg1) {mean = 2.5e-01 : f64, stddev = 5.0e-01 : f64} : (f32) -> ...
7 %2 = "hi_spn.product"(%0, %1) : (!hi_spn.probability, !hi_spn.probability) -> !hi_spn.probability
8 ...
9 %6 = "hi_spn.sum"(%2, %5) {weights = [2.5e-01, 7.5e-01]} : (!hi_spn.probability, ...) -> ...

10 "hi_spn.root"(%6) : (!hi_spn.probability) -> ()
11 }) {numFeatures = 2 : ui32} : () -> ()
12 }) {batchSize = 96 : ui32, inputType = f32, numFeatures = 2 : ui32, supportMarginal = true} : () -> ()
13 }

Fig. 2. Excerpt of the HiSPN representation of the SPN DAG and a joint probability query for the example SPN in Fig. 1. For example, %0 directly corresponds
to the node labeled with (a) in Fig. 1.

SPN. The graph structure is modeled by the dataflow between
those nodes.

The second task is to capture information about the type
of query that should be performed. This is represented
by an operation surrounding the graph, in this case the
hi_spn.joint_query, to which additional information
such as the batch size is attached in the form of attributes.
Keeping the representation of the DAG independent from the
query in HiSPN allows to reuse the same graph representation
for different queries.

The HiSPN dialect also uses the abstract
hi_spn.probability type instead of a concrete
type for computation. This allows the compiler to defer the
decision which datatype will be used for computation until the
lowering. The decision can then be based on characteristics,
e.g., the depth of the graph, of the SPN.

An overview of all HiSPN dialect operations is given in
Table I.

B. LoSPN Dialect

The second SPN-specific dialect, called LoSPN. It is designed
as the lowering target for HiSPN and represents the actual
computations necessary to process a query. A probabilistic
query on a batch of inputs is represented by a Kernel, which
comprises one or multiple Tasks.

The semantics of a Task are the application of the operations
contained in its single region to every input sample in a
batch. To this end, the entry block of a task has an additional

block argument for the batch index, similar to the induction
variable in a loop (%arg2 in line 5 of Fig. 3). Inside the Task
region, LoSPN operations for access to inputs and results
of the task are present, i.e., the lo_spn.batch_read
and lo_spn.batch_write. Representing the access to
individual features of each input sample as dedicated operations
allows the compiler to reason about and optimize the memory
access pattern, as we will discuss in Sections IV-B and IV-C.

The actual arithmetic operations are nested inside the single
region of a Body operation. Their representation is still very
close to the original SPN DAG representation with sum,
product and leaf nodes. The two major differences are that the
operations only take two operands (in contrast to the variadic
HiSPN operations) and weighted sums are decomposed into
sum and product operations.

To represent batches of inputs and outputs, the LoSPN dialect
supports the MLIR tensor type as well as the memref type,
and both are used for different purposes at the different stages
of the compilation process (cf. Section IV-A5).

As computation in log-space is very common for Sum-
Product Networks to avoid arithmetic underflow for small prob-
abilities, the LoSPN dialect also introduces the lo_spn.log
type to represent computation in log-space. While the actual
computation in the generated code will still happen using
traditional floating-point arithmetic (32-bit float in the example
in Fig. 3), the log-space type instructs the lowering to generate
arithmetic instructions for log-space operation. For example,
for the multiplication in line 14 of Fig. 3, a simple floating-

TABLE II
CORE OPERATIONS OF THE LOSPN DIALECT. CT CAN BE ANY FLOAT OR INTEGER TYPE, OR THE LOG-TYPE DEFINED IN THE LOSPN DIALECT. IT CAN BE

ANY FLOAT OR INTEGER TYPE. T IS SHORT FOR THE MLIR TENSOR TYPE, M IS SHORT FOR THE MLIR MEMREF TYPE.

Name Short Description Operands Attributes Results Nested
Regions

kernel Entry point for query Function-like yes
task Computational task inputs (T/M of IT/CT, variadic) batchSize T of CT (optional) yes
body Container for arithmetic operations inputs (IT/CT, variadic) - CT (variadic) yes
batch_extract/
batch_read

Input access from Tensor/MemRef input (T/M), dynamicIndex (Index) staticIndex,
transposed

IT/CT no

batch_collect Result storage to Tensor batchIndex (Index), resultValues
(CT, variadic)

transposed T of CT no

batch_write Result storage to Memref batchMem (M), batchIndex (Index),
resultValues (CT, variadic)

transposed - no

mul Multiplication left (CT), right (CT) - CT no
sum Addition left (CT), right (CT) - CT no
histogram Histogram leaf index (InputType) buckets, bucketCount CT no
categorical Categorical leaf index (InputType) probabilities CT no
gaussian Gaussian leaf evidence (InputType) mean, stddev CT no

1 module {
2 "lo_spn.kernel"() ({
3 ˆbb0(%arg0: memref<?x2xf32>, %arg1: memref<1x?xf32>):
4 "lo_spn.task"(%arg0, %arg1) ({
5 ˆbb0(%arg2: index, %arg3: memref<?x2xf32>, %arg4: memref<1x?xf32>):
6 %0 = "lo_spn.batch_read"(%arg3, %arg2){staticIndex = 0 : ui32,...} : (memref<?x2xf32>, index)->f32
7 ...
8 %2 = "lo_spn.body"(%0, %1) ({
9 ˆbb0(%arg5: f32, %arg6: f32):

10 %3 = "lo_spn.gaussian"(%arg5) {...} : (f32) -> !lo_spn.log<f32>
11 ...
12 %11 = "lo_spn.constant"(){type = !lo_spn.log<f32>, value = -0.28 : f64} : () -> !lo_spn.log<f32>
13 %12 = "lo_spn.mul"(%8, %11) : (!lo_spn.log<f32>, !lo_spn.log<f32>) -> !lo_spn.log<f32>
14 %13 = "lo_spn.add"(%10, %12) : (!lo_spn.log<f32>, !lo_spn.log<f32>) -> !lo_spn.log<f32>
15 "lo_spn.yield"(%13) : (!lo_spn.log<f32>) -> ()
16 }) : (f32, f32) -> f32
17 "lo_spn.batch_write"(%arg4, %arg2, %2) {transposed = true} : (memref<1x?xf32>, index, f32) -> ()
18 }) {batchSize = 96 : ui32} : (memref<?x2xf32>, memref<1x?xf32>) -> ()
19 })
20 }

Fig. 3. Excerpt of the result for the lowering from the HiSPN dialect code in Fig. 2 to the LoSPN dialect. %3 corresponds to %0 in Fig. 2.

point addition will be generated, as multiplication in log-space
is equivalent to addition of the inputs.

An overview of the most important operations of the LoSPN
dialect is given in Table II.

IV. COMPILATION FLOW

Based on the two new SPN-specific dialects described in
the previous section, and the various existing dialects provided
by the MLIR framework, we construct a complete end-to-
end compilation flow for probabilistic queries operating on
Sum-Product Networks.

At first, a number of target-independent compilation steps
is applied to the input Sum-Product Network. These steps are
identical for all targets and are presented in the first part of
this section. Afterwards, the lowering used to generate code
for the two main targets of the compiler, namely CPUs and
GPUs, is described in more detail.

A. Target-Independent Compilation Steps
The aim of the target-independent compilation steps is to

perform transformation and early optimization steps to generate

a LoSPN module, that can then serve as the input to the target-
specific lowerings described in the next subsections.

1) Input Interface: In order to provide an easy-to-use
interface for machine learning experts, the compiler tightly
integrates with the popular SPFlow library. Unfortunately,
SPFlow does not yet support binary serialization of SPNs,
therefore a custom binary serialization based on Cap’n Proto2

is used to serialize the SPNs for communication with the
compiler. The Python interface of the compiler also allows
to start the compilation and execution of the compiled query
directly from Python with as little as a single API call.

2) HiSPN Translation: During de-serialization of the binary
format, the query and the corresponding SPN DAG are trans-
lated to the HiSPN dialect. As the HiSPN dialect is designed
to closely resemble SPFlow’s internal representation of SPNs
(cf. Section III-A), this translation is fairly straightforward.
The translation to HiSPN is also the entry point to the MLIR
framework, and subsequently, the MLIR framework can be

2https://capnproto.org/

used for some early optimizations, e.g., the transformation of
DAG nodes with only a single input.

3) Lowering to LoSPN: After these initial transformations,
the module is lowered to the LoSPN dialect. The HiSPN
representation of the SPN DAG and the requested probabilistic
query is used to generate a LoSPN Kernel with a Task
containing the necessary computations.

At this point, the LoSPN module uses the MLIR tensor
type to represent batches of input/output, as this representation
facilitates tracking of values flowing across tasks.

4) Graph Partitioning: While Sum-Product Networks can
provide a compact representation for many tasks, they can also
grow to several hundred thousand nodes for other applications,
e.g., for imaging applications.

In such cases, compilation of the whole graph in one piece
can quickly become infeasible, as we will demonstrate in
Section V-B. Therefore, graph partitioning is used to partition
large LoSPN Tasks into multiple smaller Tasks. The algorithm
for partitioning is based on the idea for heuristic acyclic graph
partitioning from [10]. This algorithm was chosen for two
main reasons: (1) the acyclicity constraint is crucial, as Tasks
dependencies must not form a cycle and (2) the heuristic nature
of the algorithm keeps the runtime of the graph partitioning
itself within a feasible limit.

Similar to [10], the algorithm first constructs an initial
partitioning. In contrast to [10], we do not use a random
topological ordering. Instead, to account for the tree-like DAG
structure of SPNs, that tapers towards the root node, we use
an ordering similar to a depth-first traversal of the DAG. A
node is added to an ordering as soon as all its child-nodes
have been processed, making it more likely that they end up
in the same initial partition. Our ordering still preserves the
condition that no node in partition Vj has an outgoing edge to
a node in Vi with i < j, which is important for acyclicity.

Furthermore, our partitioning is also less strict about the
balancing of partition sizes and allows up to 1% of slack.
This enables more moves during the refinement, as slightly
unbalanced tasks only have a negligible impact on application
execution.

The cost model for the partitioning was also adapted to reflect
that communication across partitions occurs via load/stores
to and from intermediate buffers. In [10], each edge crossing
partitions has identical cost. In our case, all edges from partition
Vj to Vi have a combined cost of 1, as the value needs to be
stored only once in the Task corresponding to Vj , and loaded
only once in the Task for Vi.

After the initial partitioning, the Simple Moves heuristic
from [10] is used to further refine the partitioning. While this
heuristic only uses moves between neighbouring partitions for
the refinement, it is also lightweight and does not have a huge
impact on compilation time.

5) Bufferization: So far, the LoSPN module used MLIR’s
tensor type to represent batches of input and output, because
tensor values are easier to reason about than the side-effects
of operations operating on MLIR memrefs.

As preparation for the lowering to the different targets, the
bufferization now transforms the LoSPN Kernel and Tasks to
use actual buffers in the form of memrefs instead of abstract
tensors. To this end, the signature of the Kernel and Tasks
is transformed to use memrefs, tensor-typed results are
replaced by stores to buffers provided as output arguments.
An additional pass also optimizes the bufferized LoSPN to
avoid unnecessary copies, e.g., by writing directly to the final
output buffer of the Kernel instead of copying an intermediate
result buffer. For the eventual de-allocation of all intermediate
buffers, the MLIR-provided BufferDeallocation pass is used.

Next to bufferization, the LoSPN module is also optimized
by leveraging a combination of LoSPN-specific optimizations
(e.g., constant folding) through the MLIR canonicalization
framework, and dialect-agnostic optimizations such as comm-
mon subexpression eliminiation (CSE).

The result of all the compilation steps described in this
section is the transformation from a HiSPN input as given in
Fig. 2 to the LoSPN example in Fig. 3, which would then
serve as input for the further target-specific lowerings.

B. CPU Target Lowering

For further lowering towards the CPU target, the LoSPN
Kernels and Tasks are each lowered to a function, and the
Kernel function will call the Task functions in an appropriate
order. Inside the Task functions, a loop is generated to process
all inputs in a batch. The actual SPN operations are lowered to
the corresponding arithmetic operations, depending on the type
used for computation, e.g., if computation on log-space was
requested. For discrete distributions as leaf nodes, a table look-
up is generated, and for continuous distributions, the probability
density function is calculated. Fig. 4 shows an excerpt for the
CPU target lowering for the LoSPN code in Fig. 3.

While this lowering to native code is already able to provide
significant speedups over the Python/numpy-based inference
of the SPFlow library (cf. Section V), it still leaves much
performance potential unused. Many modern CPUs come with
a SIMD unit for short vector computations. To leverage the
performance potential of these units, the compiler can optionally
generate vectorized code through explicit vectorization in
MLIR, using the MLIR vector type and dialect. During
vectorization, the loop inside each task function is vectorized
using the data-parallel approach, and computes the results
for multiple input samples in parallel, using the maximum
number of elements possible for the data type on the CPU’s
hardware. The vectorized loop is complemented by a scalar
epilogue loop that handles the left-over elements in case the
number of elements in the vector does not evenly divide the
number of inputs. For vectorization, the information about the
access pattern present in the LoSPN dialect can also be used to
generate a more efficient combination of regular vector loads
and shuffle instructions instead of gather loads.

The second major source of parallelism on modern CPUs,
namely multi-threading, is not directly used in the generated
code. Instead, the runtime component, which will load and
execute the generated code, will split the input data into

1 module {
2 func @task_0(%arg0: memref<?x2xf32>,
3 %arg1: memref<1x?xf32>) {
4 %0 = memref.dim %arg0, %c0 : memref<?x2xf32>
5 %c1 = constant 1 : index
6 scf.for %arg2 = %c0 to %0 step %c1 {
7 %1 = memref.load %arg0[%arg2, %c0] ...
8 ...
9 %37 = addf %32, %36 : f32

10 memref.store %37, %arg1[%c0, %arg2] ...
11 }
12 return
13 }
14 func @spn_cpu(%arg0: memref<?x2xf32>,
15 %arg1: memref<1x?xf32>) {
16 call @task_0(%arg0, %arg1) ...
17 return
18 }
19 }

Fig. 4. Excerpt of the result for the lowering of the LoSPN code in Fig. 3 for
the CPU target, without vectorization. For example, lines 8 and 11 directly
correspond to lines 6 and 18 in Fig. 3, respectively.

multiple chunks and use multiple threads to process these
chunks in parallel. In this case, the user-provided batch size
is used as size for the chunks. Note that the batch size is a
mere optimization hint, the generated kernel can still process
an arbitrary number of inputs.

The generated code after the lowering is represented by
a combination of multiple dialects provided by the MLIR
framework, namely the Standard, Math, SCF, Vector, and
MemRef dialects. This combination of dialects is lowered to
the LLVM dialect through a series of MLIR-provided lowering
passes, and then translated to LLVM IR. This LLVM IR
is then optimized further by the LLVM framework, before
eventually being translated to object code, which the runtime
component can load for execution. In case of vectorization,
the object code is also linked with vector libraries such as
Intel SVML or GLIBC Libmvec, which provide optimized
vector implementations for elementary functions, e.g., log. As
the LLVM framework is used for compilation, the compiler
can support any CPU featured by the LLVM framework.
Vectorization, though, is currently only supported on x86 and
ARM Neon.

C. GPU Target Lowering

When lowering the LoSPN dialect for the GPU target, a GPU
kernel function is generated for each Task. The LoSPN Kernel,
on the other hand, is lowered to a regular function, which will
remain on the host and will coordinate data transfers between
host and GPU as well as execution of the GPU kernels.

Inside each GPU kernel, code for the computation of a single
input of the corresponding Task is generated. This way, the
computation for a batch of inputs is explicitly parallelized
across the large number of threads available on a GPU. The
lowering for the SPN DAG nodes is similar to the CPU case,
with the exception of discrete univariate distributions, which
are lowered into a cascade of select operations, instead of a
table-based lookup. Fig. 5 lists an excerpt for the lowering of

1 module attributes {gpu.container_module} {
2 func @spn_gpu(%arg0: memref<?x2xf32>,
3 %arg1: memref<1x?xf32>) {
4 %memref = gpu.alloc (%0) : memref<?x2xf32>
5 %memref_0 = gpu.alloc (%1) : memref<1x?xf32>
6 gpu.memcpy %memref, %arg0 : memref<?x2xf32>,
7 memref<?x2xf32>
8 gpu.launch_func @spn_gpu::@spn_gpu_kernel
9 blocks in (%3, %c1, %c1)

10 threads in (%c64, %c1, %c1)
11 args(%2 : index,
12 %memref : memref<?x2xf32>,
13 %memref_0 : memref<1x?xf32>)
14 gpu.dealloc %memref : memref<?x2xf32>
15 gpu.memcpy %arg1, %memref_0 : ...
16 gpu.dealloc %memref_0 : memref<1x?xf32>
17 return
18 }
19 gpu.module @spn_gpu {
20 gpu.func @spn_gpu_kernel(
21 %arg0: index,
22 %arg1: memref<?x2xf32>,
23 %arg2: memref<1x?xf32>) kernel {
24 %0 = "gpu.block_id"() {dim = "x"} ...
25 %3 = "gpu.thread_id"() {dim = "x"} ...
26 br ˆbb1
27 ˆbb1: // pred: ˆbb0
28 scf.if %14 {
29 %15 = memref.load %arg1[%13, %c0]
30 ...
31 %52 = addf %46, %51 : f32
32 memref.store %52, %arg2[%c0, %13]
33 }
34 gpu.return
35 }
36 }
37 }

Fig. 5. Excerpt of the result for the lowering of the LoSPN code in Fig. 3
for the GPU target, showing the Kernel function remaining on the host and
one GPU kernel corresponding to a LoSPN Task. For example, lines 32 and
35 directly correspond to lines 6 and 18 in Fig. 3, respectively.

the LoSPN code in Fig. 3 and shows the host function for the
LoSPN Kernel and a GPU kernel for a Task.

Also during the GPU target lowering, the memory access
semantics of the LoSPN dialect can be used for optimiza-
tion. The compiler tries to eliminate unnecessary copies of
intermediate results buffers between GPU and host. Instead of
copying an intermediate result to the host after computing it
and back to the GPU before using it again, a compiler pass
will eliminate these copy operations and instead re-use the
result buffer already present on the GPU for tasks consuming
this result. This approach can remove a significant number of
expensive copy operations, resulting in improved performance.

The compiler currently only supports CUDA GPUs for the
execution, although the result of the lowering from LoSPN
uses generic GPU abstractions and could also be used to target
GPUs from other vendors.

Similar to the CPU target lowering, a combination of MLIR
dialects is used to represent the result of the lowering, in this
case the Standard, Math, SCF, GPU, and MemRef dialect.

Later on, the GPU and host portion of the generated code
are separated from each other. The GPU portion is lowered to
NVVM IR through a series of MLIR-provided lowerings and

translations. This NVVM IR is linked with libdevice, which
contains optimized implementations for elementary functions
(e.g., log), similar to the vector libraries used for the CPU
compilation.

Later, the NVVM IR is compiled into PTX assembly using
the LLVM framework, and eventually down to the CUBIN
binary format. The content of the CUBIN module is then
attached to the host module in binary format. The remaining
host module undergoes a similar series of transformations as
described for the CPU target above, resulting in a object file
that can be loaded and executed by the runtime component.

V. EVALUATION

In our experimental evaluation, we are going to investigate
two different applications of Sum-Product Networks.

We use two different systems for the evaluation: Most of the
experiments are conducted on a machine with an AMD Ryzen
9 3900XT CPU equipped with 32 GB RAM and an Nvidia
RTX 2070 Super GPU with 8 GB RAM, running Ubuntu
20.04 with kernel version 5.8, CUDA 11.2 and the CUDA
driver version 460. As this system does not have AVX-512
ISA extensions, we use a second system to evaluate CPU
vectorization on AVX-512, which is a dual-socket system with
two Intel Xeon Platinum 9242 CPUs, 384 GB RAM, running
CentOS 8 with kernel 4.18. For the Ryzen machine, we are
going to use GLIBC Libmvec version 2.31 as vector library,
for the Xeon system, we use Intel SVML version 2021.1.

In all experiments using our compiler, we measure the
execution time from Python, i.e., the execution time always
also includes the invocation overhead of the Python interface
in addition to the actual execution time.

A. Application 1: Robust Automatic Speaker Identification

Our aim is to evaluate the compiler with a real-world
application of Sum-Product Networks, therefore we are using
the SPNs from [11] for our evaluation. In this work, Sum-
Product Networks are used to perform automatic speaker
identification, outperforming two CNN-based approaches for
speaker identification with regard to robustness. For each
potential speaker, a separate SPN is trained using speech
samples. To determine the speaker of a particular speech sample,
one can evaluate the SPN for each speaker with the speech
sample, and then compare the output likelihood to determine
the speaker for the sample. For our evaluation, we are going
to use two different scenarios from the paper by Nicolson et
al. [11], namely the identification on clean speech samples
(245567 samples) and identification on noisy speech samples
with marginalization (1227835 samples). Using the open-source
release of the speaker identification by Nicolson et al. [12],
the SPNs were reproduced. We validate the results produced
by the compiled kernel through direct comparison with the
original output data for each sample and each speaker. A sample
comprises 26 features, each encoded as single-precision floating
point value. We use computation in log-space to avoid deviation
from the original result, using single-precision floats as the
underlying data type. The average size of the SPN is 2569

Fig. 6. Comparison of different vectorization configurations for clean
speech samples, normalized against the maximum execution time across all
configurations.

operations and around 49% of the operations are Gaussian leaf
nodes.

1) Compiler Configuration: In a first step, the best config-
uration for the compiler is determined. When compiling for
CPUs, the mapping strategy and execution can be configured
by a number of parameters, and we evaluate multiple variants
to determine the best configuration.

• No Vec.: No vectorization is performed.
• AVX2: Vectorization for AVX2 ISA extension.
• +Veclib: Use a vector library (Intel SVML, GLIBC

Libmvec) for optimized implementations of primitive math
functions (e.g., log) in vector code.

• +Shuffle: Use a combination of vector loads and shuffles
instead of separate gather loads (cf. Section IV-B) for
vectorization.

As shown in Fig. 6, vectorization without use of a vectorized
function library actually leads to an increase in execution time,
as all individual values need to be extracted from the vector,
the function (e.g., log) is invoked with scalar values, and the
results are then inserted back into the vector again. Using the
optimized functions from the vector library leads to a significant
improvement. The use of loads and shuffles, instead of gather
loads, yields another, though small, reduction in execution
time.

When compiling for GPU, the most important parameter is
the user-provided batch size, which will be used as the constant
block size for the GPU kernel launches. After evaluating a
range of different batch sizes, it becomes clear that a small
block size of 64 is preferable.

2) Performance Comparison: Now that the best configu-
rations have been determined for the compile flow, we will
compare the execution time of the compiled kernel against
SPFlow’s performance when executing in Python with numpy.
In addition, we use SPFlow’s feature to also translate to
a Tensorflow graph to compare with the execution of the
translated Tensorflow graph (on both CPU and GPU).

For the compiler, the comparison includes the configuration
with no vectorization on CPU, and compiling for CPU using

Fig. 7. Performance comparison for clean speech samples, given as speedup
over execution in SPFlow.

vectorization, a vector library, and loads-and-shuffles instead of
gathers, on both AVX2 and AVX-512. All CPU configurations
are using a batch size of 4096. For the GPU, a batch size of
64 is used.

We track compilation time and execution time separately
(also for Tensorflow). The average compilation time for CPU is
3.3s (max. 18s) and for GPU 1.7s (max. 4.1s). The translation
of the SPFlow graph to a Tensorflow graph takes 8.6s on
average (max. 14.5s).

Fig. 7 shows the performance comparison for the clean
speech samples, the plot gives the speedup over the Python
execution in SPFlow. The speedup achieved by translating the
SPFlow graph to a Tensorflow graph is relatively low on both
CPU (geo.-mean 1.5x) and GPU (geo.-mean 1.38x), as the
graph is still broken down into individual operations that are
launched through the Tensorflow runtime.

In contrast, our compiler achieves an average speedup of
564x, even without vectorization. While the speedup does
not increase linearily with the vector size, because the initial
loading of values into vector registers requires significant
effort, vectorization still increases the speedup to 801x (AVX2)
and 976x (AVX-512), respectively. Compilation for the GPU
achieves an average speedup of 352x.

Fig. 8 shows the same comparison for the noisy speech
samples. Unfortunately, the translation to Tensorflow graphs,
which is currently part of SPFlow, does not support the
marginalization necessary for the noisy speech samples, so
no bars for Tensorflow can be included in this plot. When
compiling for CPU, our compiler again achieves large speedups,
with an average of 482x without vectorization and 814x
(AVX2) and 935x (AVX-512), respectively, with vectorization.
In this comparison, the GPU executable outperforms the CPU
executable without vectorization with a mean speedup of 524x,
as more samples are available for simultaneous processing.

The reason why the executable for the GPU drops behind
the executable with vectorization in both comparisons, can be
found in Fig. 9: Data movements between host and device
in both cases make up for more than 60% of the execution

Fig. 8. Performance comparison for noisy speech samples, given as speedup
over execution in SPFlow.

Fig. 9. Portion of time spent on data movement and execution for GPU
execution.

time, so even though the execution on the GPU itself is very
fast, the data movement overhead, which is not present when
compiling for CPU, leads to a higher overall execution time.

Despite that, the use of our compiler for CPU and GPU
achieves speedups of multiple orders of magnitude in com-
parison to SPFlow’s Python-only evaluation, benefiting ML
experts when running inference on Sum-Product Networks.

B. Application 2: Random Sum-Product Networks

As a second application for Sum-Product Networks, we will
investigate Random Sum-Product Networks, as presented by
Peharz et al. in [13]. The special structural requirements of
general Sum-Product Networks can make (structure) learning
complicated and costly. To overcome this limitation, Peharz et
al. construct a random SPN structure with additional structure
constraints, and employ techniques from “classical” machine
learning, such as automatic differentation for faster weight
learning. Peharz et al. apply this approach to multiple machine
learning tasks and achieve prediction results comparable to
deep neural networks.

This benchmark was mainly chosen as a stress test for the
compiler, since the resulting large SPNs allow us to evaluate

Fig. 10. Impact of the maximum partition size during graph partitioning on
compilation time and execution time for CPUs.

Fig. 11. Impact of the compiler optimization level on compilation time and
execution time for CPUs.

the scaling of the tool to very large networks.
Based on the original implementation by Peharz et al. [14],

we train RAT-SPNs (Random Tensorized SPNs) for the popular
MNIST and fashion-MNIST dataset, which were also used in
[13]. The trained models achieve an accuracy of 94.3% and
86.3%, respectively.

1) Compilation Time: While the size of the SPN DAGs
for the speaker identification above averaged around 2500
operations, and compilation typically required a few seconds,
the RAT-SPNs are much larger. After conversion to SPFlow, the
RAT-SPN contains a separate SPN for each of the ten possible
output classes for the benchmarks. Each of these SPNs, which
we will compile separately, contains about 165,000 leaf nodes,
around 170,000 product nodes and more than 3,000 sum nodes.

To keep compilation times within a reasonable limit, graph
partitioning (cf. Section IV-A4) needs to be used to split the
large input DAG into multiple LoSPN Tasks. This graph
partitioning can be configured with the maximum size of
allowed for each partition, i.e., the number of SPN DAG
operations inside this partition.

Figs. 10 and 12 show the impact of the maximum partition
size on compilation time and execution time. For the CPU,
increasing the maximum partition size first decreases the
compilation time up until 10,000 operations, after which it
increases again. The execution time improves with increasing
partition size, as fewer partitions means that fewer intermediate

Fig. 12. Impact of the maximum partition size during graph partitioning on
compilation time and execution time for GPUs. Note the significantly different
different scale cf. Fig. 10.

Fig. 13. Impact of the compiler optimization level on compilation time and
execution time for GPUs.

results have to be communicated via memory buffers between
Tasks. For the further investigation of the CPU compilation,
we select a max. partition size of 25k operations as the best
trade-off.

For the GPU, a smaller number of partition sizes are investi-
gated, as small GPU kernels incur too much overhead for launch
and communication between host and GPU. With increasing
partition size, the compilation time increases drastically, while
the execution time improves at a much slower rate. We therefore
choose a maximum partition size of 10,000 operations as the
best trade-off for GPUs.

Another parameter that has a significant impact on the
compilation time is the compiler optimization level, which
is mainly used for the LLVM IR optimization and translation
to object code. Figs. 11 and 13 show the impact of different
optimization levels on compilation time and execution time. In
both cases, -O0 yields the shortest compilation time, but also
the longest execution time. Optimization levels -O1 to -O3
significantly increase the compilation time, but also improve
execution time at a similar rate. The differences between these
three optimization levels is relatively small, therefore we pick
-O1 as the optimization levels for further experiments.

With the chosen configurations, the compilation time for both
platforms amounts to about 500 seconds (roughly 8 minutes).
For the CPU compilation, most of this time (around 75%) is

spent on the translation to object code. Here, the LLVM DAG
Instruction Selection (27%) and the Greedy Register Allocator
(25%) require most of the time.

For the GPU compilation, the vast majority of the compila-
tion time (around 95%) is spent on the translation of the PTX
assembly to the CUBIN format via the CUDA API.

As both parameters, the maximum partition size and the
compiler optimization level, can easily be controlled by users
through the Python interface, this gives the user the opportunity
to trade compilation time for performance of the generated
executable, depending on their current stage of development.

2) Performance Comparison: In contrast to the generic SPN
models in Section V-A, RAT-SPNs are natively implemented in
Tensorflow. Therefore, the Tensorflow-based execution yields
much better performance for these models than for generic
SPNs. The Tensorflow execution on the GPU performs the
classification of 10,000 images in 0.427 and 0.426 seconds,
for MNIST and fashion-MNIST, respectively. As the random
structure for both tasks is identical and only the weights differ,
the performance is also virtually identical.

Our compilation for CPUs performs on-par with Tensorflow
on the GPU, with 0.444 and 0.437 seconds. Our compilation for
GPUs is slower, completing the tasks in 1.299 and 1.31 seconds.
When comparing our compiler to the Tensorflow execution,
one has to consider, though, that Tensorflow executes the entire
RAT-SPN in one run, whereas our compiler needs to run ten
distinct SPNs (one per class) after the conversion to SPFLow.
For the compilation for the GPU, in particular, this means
that the input data has to transferred ten times and ten distinct
launches have to take place. This is one of the reasons our
GPU compilation is not quite able to perform on-par with
Tensorflow for the more restricted RAT-SPNs.

Nevertheless, the compilation for both platforms still outper-
forms the Tensorflow execution on the CPU, which requires
1.72 and 1.742 seconds to complete the task.

When comparing the performance of the native Tensorflow
implementation and our compiler, one has to consider that the
high performance of Tensorflow for RAT-SPNs is achieved only
since the structure of RAT-SPNs is more constrained than that of
general SPNs. If an application, such as the automatic speaker
identification [11] in Section V-A, needs more general SPNs
that cannot be constrained appropriately, our SPN compiler
will allow much faster inference.

VI. RELATED WORK

The most popular open-source library for use of and
experimentation with Sum-Product Networks is SPFlow [4].
It supports to learn Sum-Product Networks, including their
structure, directly from data, as well as the manual construction
of Sum-Product Networks using a DSL-like syntax embedded
in Python. SPFlow also supports inference through a Python
implementation which employs numpy and, for cases where
no marginalization is required, through a translation to a
Tensorflow graph. As our evaluation in Section V-A has shown,
the compiler can provide multiple orders of magnitude faster
inference than these mechanisms.

Still, given the popularity of SPFlow, our compiler tightly
integrates with SPFlow and its internal representation is used
for the Python interface of the compiler. This way, machine
learning experts can easily leverage the compilation presented
in this work after learning an SPN using SPFlow.

Another approach for efficient training and inference for Sum-
Product Networks, that was used by the second application
[13] in our evaluation (cf. Section V-B) and also by [15], [16],
is the direct implementation of Sum-Product Networks in a
framework such as Tensorflow or Pytorch. As demonstrated
in Section V-B, our compiler still outperforms the direct
implementation in Tensorflow for inference on the CPU,
with the compiled CPU executables being competitive with
Tensorflow’s GPU execution.

A custom, FPGA-based hardware accelerator for Sum-
Product Network inference was developed by Sommer et al.
[17] and was able to demonstrate significant improvements in
inference throughput. However, their accelerator only supports
discrete, histogram-based leaf node distributions, which map
to FPGA look-up tables naturally, and, as such, is not suitable
for the two applications investigated in the evaluation, as those
use continuous, Gaussian leaf node distributions.

VII. CONCLUSION

In this work, we have presented an MLIR-based compiler
for fast Sum-Product Network inference on CPUs and GPUs.
Two SPN-specific dialects were developed to capture the high-
level semantics of Sum-Product Network inference in the
MLIR framework, and serve as the starting point for a number
of target-independent transformations. These transformations,
which include a graph partitioning, enable the compiler to
handle even very large SPN graphs, by preparing the input
for the automated lowering to CPUs and GPUs. The lowering
enables the compiler to make best use of the available platform
features, e.g., SIMD vector units on the CPU.

In the first part of our evaluation, using an SPN-based
automatic speaker identification as example application, we
have demonstrated that the compiler can achieve speedups of
up to 976x (CPU) and 524x (GPU) over the existing inference
implementations in the popular open-source library for SPN
implementation SPFlow.

In the second part, using image classification as an example
task, we have investigated the impact of the compiler parameters
on compilation and execution time and also demonstrated that
the compiler is able to provide performance on-par with a direct
implementation of Sum-Product Networks in Tensorflow.

The compiler tightly integrates with the popular SPFlow
library and allows machine learning experts to automatically
compile Sum-Product Networks for fast inference on CPUs
and GPUs after training or constructing them using SPFlow.

ACKNOWLEDGEMENTS

Calculations for this research were conducted on the Licht-
enberg high performance computer of TU Darmstadt. This
research was funded by the German Federal Ministry for
Education and Research (BMBF) with the funding ID ZN
01|S17050.

REFERENCES

[1] H. Poon and P. Domingos, “Sum-product networks: A new deep
architecture,” in 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), 2011.

[2] “XLA - TensorFlow, compiled.” [Online]. Available:
https://developers.googleblog.com/2017/03/xla-tensorflow-
compiled.html

[3] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, J. Montgomery, B. Maher,
S. Nadathur, J. Olesen, J. Park, A. Rakhov, M. Smelyanskiy, and M. Wang,
“Glow: Graph lowering compiler techniques for neural networks,” 2019.

[4] A. Molina, A. Vergari, K. Stelzner, R. Peharz, P. Subramani, N. D. Mauro,
P. Poupart, and K. Kersting, “Spflow: An easy and extensible library for
deep probabilistic learning using sum-product networks,” 2019.

[5] I. Paris, R. Sanchez-Cauce, and F. J. Diez, “Sum-product networks: A
survey,” 2020.

[6] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos, “On
Theoretical Properties of Sum-Product Networks,” in Proceedings of
the Eighteenth International Conference on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, G. Lebanon
and S. V. N. Vishwanathan, Eds., vol. 38. San Diego, California,
USA: PMLR, 09–12 May 2015, pp. 744–752. [Online]. Available:
https://proceedings.mlr.press/v38/peharz15.html

[7] F. Rathke, M. Desana, and C. Schnörr, “Locally adaptive probabilistic
models for global segmentation of pathological oct scans,” in Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2017, pp. 177–184.

[8] K. Zheng, A. Pronobis, and R. P. N. Rao, “Learning semantic maps
with topological spatial relations using graph-structured sum-product
networks,” CoRR, vol. abs/1709.08274, 2017. [Online]. Available:
http://arxiv.org/abs/1709.08274

[9] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. A. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in CGO 2021,
2021.

[10] O. Moreira, M. Popp, and C. Schulz, “Evolutionary multi-level acyclic
graph partitioning,” Journal of Heuristics, vol. 26, no. 5, pp. 771–799,
2020.

[11] A. Nicolson and K. K. Paliwal, “Sum-product networks for robust
automatic speaker identification,” 2020.

[12] ——, “Spn-asi,” https://github.com/anicolson/SPN-ASI, 2020.
[13] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp,

K. Kersting, and Z. Ghahramani, “Random sum-product networks:
A simple but effective approach to probabilistic deep learning,” in
Proceedings of UAI, 2019.

[14] ——, “Rat-spn,” https://github.com/cambridge-mlg/RAT-SPN, 2019.
[15] J. van de Wolfshaar and A. Pronobis, “Deep Generalized Convolu-

tional Sum-Product Networks for Probabilistic Image Representations,”
arXiv:1902.06155 [cs, stat], Sep. 2019.

[16] A. Pronobis, A. Ranganath, and R. P. Rao, “Libspn: A library for learning
and inference with sum-product networks and tensorflow,” in Principled
Approaches to Deep Learning Workshop, 2017.

[17] L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and
A. Koch, “Automatic mapping of the sum-product network inference
problem to fpga-based accelerators,” in IEEE International Conference
on Computer Design (ICCD). IEEE, 2018.

