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Abstract—Molecular docking is a key method in computer-
aided drug design, where the rapid identification of drug
candidates is crucial for combating diseases. AutoDock is a
widely-used molecular docking program, having an irregular
structure characterized by a divergent control flow and compute-
intensive calculations. This work investigates porting AutoDock
to the SX-Aurora TSUBASA vector engine and evaluates the
achievable performance on a number of real-world input com-
pounds. In particular, we discuss the platform-specific coding
styles required to handle the high degree of irregularity in
both local-search methods employed by AutoDock. These Solis-
Wets and ADADELTA methods take up a large part of the
total computation time. Based on our experiments, we achieved
runtimes on the SX-Aurora TSUBASA VE 20B that are on
average 3× faster than on modern dual-socket 64-core CPU
nodes. Our solution is competitive with V100 GPUs, even though
these already use newer chip fabrication technology (12 nm vs.
16 nm on the VE 20B).

Index Terms—variable execution performance, divergent con-
trol structures, molecular docking, AutoDock, vector computing,
SX-Aurora TSUBASA

I. INTRODUCTION

Molecular docking is a key method in computer-aided drug
design. It aims to predict the close-distance interactions of
two molecules, i.e., receptor and ligand, both of known three-
dimensional structure. The receptor models a biological target
(e.g., a protein or nucleid acid), while the ligand acts as
a drug candidate. Typically, libraries containing thousand of
ligands are screened in order to find those with anti-viral
properties [7]. Molecular docking is used as the computational
engine of the so-called virtual screening procedure, which
selects only promising (and fewer!) ligands for subsequent wet
lab experiments.

One of the most-widely used programs in molecular docking
is AutoDock [5]. It performs a systematic exploration of the
ligand-receptor space to predict the poses (i.e., their spatial
geometrical arrangement) that are energetically strong. In algo-
rithmic terms, AutoDock is described using nested loops with
variable upper bounds and divergent control performing the
molecular search, as well as time-intensive score evaluations
typically invoked 106 times within these search iterations.
In recent years, the official release of AutoDock for GPUs

has been under active development. This version, renamed
as AUTODOCK-GPU [2], has been initially implemented in
OpenCL, and thereafter ported to CUDA to run on the Summit
supercomputer [20]. As an example of its increasing relevance,
AUTODOCK-GPU is nowadays being used as the docking en-
gine in OpenPandemics: COVID-19, a grid-computing project
aiming to study proteins from the SARS-CoV-2 virus [22].

On the other hand, while the High Performance Computing
(HPC) scenario is currently dominated by multi-core CPUs
and many-core GPUs, other hardware accelerator technologies
exist and are worth exploring. One of these is the recently-
introduced SX-Aurora TSUBASA, whose core technologies
are vector-based processing and high memory bandwidth
(1.53 TB/s). In addition, it offers a programming framework
based on standard C/C++, which eases the porting of existing
programs. Recent efforts leveraging the SX-Aurora TSUBASA
in different fields [1], [9], [19] suggest that this accelerator
platform is becoming a competitive alternative for HPC appli-
cations.

The most time-consuming part of AutoDock is its local-
search phase. The original AutoDock implements the method
proposed by Solis-Wets [4] as local-search algorithm, while
AUTODOCK-GPU additionally incorporates the more complex
ADADELTA [13] as an alternative algorithm able to predict
poses of higher quality. In this paper, we present our expe-
riences porting the irregular computations in AutoDock to
the SX-Aurora TSUBASA vector engine. The code developed
in this work, named AUTODOCK-AURORA, has been highly
optimized for the SX-Aurora TSUBASA platform with vector-
specific coding techniques, i.e., loop pushing, predication, and
loop compression. This work discusses the porting of both
Solis-Wets and ADADELTA methods, and thus extends our
prior work in [12] that only supported Solis-Wets on the
vector engine. Furthermore, we compare the performance of
AUTODOCK-AURORA against that of AUTODOCK-GPU running
on dual-socket 64-core CPU nodes, as well as on V100 and
A100 GPUs.
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II. BACKGROUND

A. SX-Aurora TSUBASA Vector Computer

A system based on the SX-Aurora TSUBASA consists of
a Vector Host (VH) and Vector Engine (VE). The VH is an
x86 processor responsible for OS-related tasks, e.g., system
calls, process scheduling, VE resource management, etc. On
the other hand, the VE is a high-performance accelerator in the
shape of a full-profile dual-slot PCIe card, and is responsible
for the major computations of applications. The VE has eight
cores, and each of these cores has a scalar processing unit
(SPU) attached to a vector processing unit (VPU). The SPU
employs a RISC instruction set, out-of-order execution, and
L1 & L2 caches. Each VPU has 64 long vector registers,
each capable of storing a vector of 16,384 bits, as well as
several vector execution units. Unlike normal SIMD and SIMT
architectures, the vector execution units are implemented as
32 × 64-bit wide SIMD units with 8-cycle deep pipelines.
Full-length 16,384 bit vector operations are thus executed
as a sequence of steps on the execution units, with each
step processing up to 2,048 bits at once. A vector length
register controls the number of elements processed in vector
operations, while 16 vector mask registers enable predication.

The first- and second-generation VE processors have each
six 8 GB HBM2 modules (i.e., 48 GB RAM in total), and
deliver up to 1.53 TB/s of memory bandwidth. The eight
cores in the VE are connected to a 16 MB Last Level Cache
(LLC) through a fast 2D network-on-chip. Regarding memory
accesses, the VE supports normal and partitioned modes. The
normal mode has uniform memory accesses (UMA), i.e., all
cores are able to access any part of the LLC and HBM2.
The partitioned mode allows non-uniform memory accesses
(NUMA), where cores are split into two equally-sized groups,
and by default, cores access only their segment of LLC and
HBM2. The use of the NUMA mode reduces memory-port and
memory-network conflicts, and can bring performance benefits
for certain programs.

Main programs can run natively on the VE, with system
calls being offloaded to the VH. These programs behave as
if running under Linux on the host, although the VE itself
runs as “bare metal”, without any kind of on-board operating
system. As an alternative, Vector Engine Offloading (VEO) [3]
is a programming model that executes the main program on
the VH and offloads kernels onto the VE. VEO is based on
C++ and provides host APIs resembling those of OpenCL, and
thus, can be used to express kernel offloading and host-VE data
movement. When using VEO, VE code still has to be written
in C/C++. VEO is the lowest-level API for accelerator-style
programming, and it is the technique used in this work.

B. Molecular Docking

We provide a concise description of AUTODOCK-GPU’s
functionality, more details are available in [2], [11].

Molecular docking explores the poses adopted by the ligand,
in order to find those poses binding strongly to a certain
region on the receptor’s surface. For a systematic exploration,

AUTODOCK-GPU maps the docking search into an evolutionary
process, where each of the ligand poses is treated as an
individual of a population. Each individual is represented by its
genotype, which in turn, is composed of genes. AUTODOCK-
GPU encodes a pose using a set of variables that describe
the translation (displacement: x, y, z), orientation (rigid-body
rotation angles: φ, θ, α), and torsion (a set of rotatable-bond
angles: ψ1, ψ2, . . . , ψNrot

) experienced by the ligand during
docking. Each of these variables is considered a gene, being
in total Ngenes (= Nrot + 6) per genotype.

AUTODOCK-GPU executes a Lamarckian Genetic Algorithm
(LGA), performing a hybrid search that combines a genetic
algorithm (GA) and a local search (LS). The genetic algorithm
generates new individuals (encoded as genotypes) through
genetic operations such as crossover, mutation, and selection.
The local search performs a score minimization procedure
aiming to refine the poses produced by the genetic algorithm.
The genotypes whose scores were minimized (i.e., improved)
via local search, are reintroduced into the overall LGA. As
indicated in Algorithm 1, AUTODOCK-GPU performs several
independent LGA runs (default: NTOTAL

LGA−runs = 100). Moreover,
each of these LGA runs terminates whenever any of their
predefined upper bounds for the number of score evaluations
(default: NMAX

score−evals = 2,500,000) or generations (default:
NMAX

gens = 27,000) is reached.

Algorithm 1: Lamarckian Genetic Algorithm (LGA)
1 Function AutoDock-GPU
2 for each LGA-run in NTOTAL

LGA−runs do
3 while (Nscore-evals < NMAX

score-evals) and (Ngens < NMAX
gens ) do

4 GA (population)
5 LS (population)

Both the genetic algorithm and the local search together
perform millions of score evaluations in a typical LGA run.
Algorithm 2 shows the code structure of the scoring function
(SF) employed in AUTODOCK-GPU. Of the three components,
the one executed first is PoseCalculation, which transforms
the genotypes into atomic coordinates. Such coordinates are
employed in the following two components: InterScore and
IntraScore, which compute the ligand-receptor (intermolec-
ular) and ligand-ligand (intramolecular) scores, respectively.
The loops’ upper-bounds depend on the molecular structure
of the input, i.e., the number of elements in the rotation
list (Nrot−list), the number of ligand atoms (Natom), and the
number of intramolecular contributor-pairs (Nintra−contrib).

Similarly to the original AutoDock program, AUTODOCK-
GPU implements the method of Solis-Wets [4] as local search.
Solis-Wets creates new genotypes by adding constrained ran-
dom values (delta) to each of the initial genes composing the
genotype (Algorithm 3: line 5). The scores of both new
and initial genotypes are compared (Algorithm 3: line 6). In
case of score improvement, then new-genotype-1 becomes the
current one. Otherwise, new-genotype-2 is generated by sub-
tracting delta (Algorithm 3: line 11) instead of adding it, and



Algorithm 2: Scoring Function (SF)
1 Function SF (genotype)
2 for each rot-item in Nrot−list do
3 PoseCalculation

4 for each lig-atom in Natom do
5 InterScore

6 for each intra-pair in Nintra−contrib do
7 IntraScore

a new score comparison is performed (Algorithm 3: line 12).
The number of successful and failed attempts is updated
depending on the comparison outcome. In addition to its
divergent execution, Solis-Wets also has a runtime-defined
termination criterion that depends on the maximum number of
iterations (default: NMAX

LS−iters = 300), as well as the minimum
step change (default: stepMIN = 0.01).

Algorithm 3: Solis-Wets (SW) local search
1 Function SW (genotype)
2 while (NLS−iters < NMAX

LS−iters) and (step > stepMIN) do
3 delta = create-delta (step)

// new-genotype1
4 for each gene in Ngenes do
5 new-gene1 = gene + delta

6 if SF (new-genotype1) < SF (genotype) then
7 genotype = new-genotype1
8 success++; fail = 0

9 else
// new-genotype2

10 for each gene in Ngenes do
11 new-gene2 = gene - delta

12 if SF (new-genotype2) < SF (genotype) then
13 genotype = new-genotype2
14 success++; fail = 0

15 else
16 success = 0; fail++

17 step = update-step (success, fail)

Stepping forward with respect to the original AutoDock,
AUTODOCK-GPU has incorporated improved local-search
methods beyond Solis-Wets. Algorithm 4 describes one of
these, ADADELTA [13], which generates a new-genotype by
using the gradients of the current genotype’s score (Algo-
rithm 4: line 4). Then, if the score of the new-genotype
is improved, the latter becomes the current genotype (Algo-
rithm 4: line 6). ADADELTA terminates if the number of
iterations reaches a maximum (default: NMAX

LS−iters = 300).
Algorithm 5 describes the gradient calculation (GC)

employed by ADADELTA. The code structure resem-
bles that of the scoring function in Algorithm 2. First,
the PoseCalculation computes the atomic coordinates,
which in turn, are used for computing the numerical
(InterGradient) and analytical (IntraGradient) deriva-
tives of the corresponding score components. At this point,
such derivatives are expressed as a list of atomic contributions.
However, as the overall LGA search works on genotypes, it is

Algorithm 4: ADADELTA (AD) local search
1 Function AD (genotype)
2 gradient = GC (genotype)
3 while (NLS−iters < NMAX

LS−iters) do
4 new-genotype = update-rule (genotype, gradient)
5 if SF (new-genotype) < SF (genotype) then
6 genotype = new-genotype

7 gradient = GC (genotype)

required to convert those atom-based into gene-based contribu-
tions. This conversion is achieved with Gtrans, Grigidrot,
and Grotbond (Algorithm 4: lines 8-10), which are loops
performing data-dependent operations for computing the trans-
lational, orientational, and rotational components of the gra-
dient.

Algorithm 5: Gradient Calculation (GC)
1 Function GC (genotype)

/* Gradients in atomic space */
2 for each rot-item in Nrot−list do
3 PoseCalculation

4 for each lig-atom in Natom do
5 InterGradient

6 for each intra-pair in Nintra−contrib do
7 IntraGradient

/* Convert from atomic into genetic space */
8 Gtrans // Translational gradients
9 Grigidrot // Rigid-body rotation gradients

10 Grotbond // Rotatable-bond gradients

AutoDock is a compute-bound program, in which the
local-search component (Solis-Wets or ADADELTA) requires
∼90 % of the total computation time. Hence, as discussed in
Sections IV-B, the main benefits in performance result from
optimizing both methods, which in turn, frequently call the
compute-intensive scoring function and gradient calculation.

III. RELATED WORK

In recent studies, different applications have been ported
onto the SX-Aurora TSUBASA to benchmark its performance.
Authors in [9] used standard benchmarks and a tsunami nu-
merical simulation code. Moreover, they introduced a perfor-
mance model based on Byte-per-FLOP (B/F) rates to analyze
the bottleneck in the selected applications. In [1], the Himeno
benchmark – which solves the Poisson equation via the Jacobi
iteration method – is optimized and evaluated on systems with
up to eight VEs. The work in [19] refined the aforementioned
model introduced in [9] to evaluate the performance of second-
generation VEs running various scientific applications.

In addition to the VEO [3] model used here, other pro-
gramming frameworks for the SX-Aurora TSUBASA have
been developed in recent years. The work in [6] proposed
an OpenCL-like programming model that allows the usage of
OpenCL C/C++ for the host code, and standard C++ for device
code. Other related approaches include VEDA (a CUDA-
like API on top of VEO) [18], neoSYCL [23], OpenMP



target offloading (integrated with the LLVM compiler) [21],
HAM [14], and NEC Hybrid MPI [17].

With regard to parallel implementations of AutoDock,
AUTODOCK-GPU has originally been implemented in
OpenCL [2], and ported afterwards to CUDA for COVID-19
research on the Summit supercomputer [20] (where OpenCL
was not supported). Additionally, AutoDock has been ported
to FPGAs as well. For the implementation of the docking
engine, the work in [8] used Verilog, while the project
called OCLADOCK-FPGA [10] employed OpenCL. As discussed
in [11], AUTODOCK-GPU parallelizes the work over multiple
data items (i.e., genotypes), while OCLADOCK-FPGA executes
multiple tasks concurrently. In programming terms, each of
the kernels in OCLADOCK-FPGA is single threaded. This coding
style is intuitively closer to the programming model of the
VE, and thus, should allow for easier porting. Regarding
performance, OCLADOCK-FPGA on an Arria-10 FPGA runs
∼2× faster than the original AutoDock on a CPU, but it
is significantly slower than AUTODOCK-GPU. Therefore,
OCLADOCK-FPGA is not being deployed to solve real docking
problems.

IV. PARALLELIZATION FOR SX-AURORA TSUBASA

Here, we build upon our prior effort [12], where OCLADOCK-
FPGA (incorporating only Solis-Wets) was ported to the SX-
Aurora TSUBASA. Since the underlying score and gradient
calculations (Section II-B) have a similar code structure, the
optimization techniques already applied to Solis-Wets can
be extended to vectorize the more complex ADADELTA
algorithm as well.

A. Porting

As discussed in [12], we used OCLADOCK-FPGA as our
starting point for development. AUTODOCK-AURORA employs
the same host and device code partitioning already defined in
OCLADOCK-FPGA. In other words, the overall program manage-
ment is assigned to the host, while the LGA optimization is of-
floaded onto the VE. In particular, AUTODOCK-AURORA adopts
the VEO programming model, so that most of the original host
code was kept intact, except for the OpenCL API calls that
were replaced with their VEO counterparts. On the other hand,
adapting the device code to the VE was a more-involved step.
The main reason for that was the fact that the original device
code, composed of several single-threaded kernels, heavily
used OpenCL-specific inter-kernel communication elements
known as pipes. When used for FPGAs, OpenCL pipes are
mapped onto on-chip FIFO-like hardware logic that allows
streaming data in/out kernels without resorting to any off-
chip memory. For the VE port, we removed the pipes and
replaced the calls to their corresponding built-in OpenCL
functions, such as read pipe() and write pipe(), with function
calls passing data via pointer arguments.

As ADADELTA was not implemented in OCLADOCK-FPGA,
we use its respective implementation from AUTODOCK-GPU
as a baseline for vectorization in AUTODOCK-AURORA. As a
first step, we adapt the existing SIMT coding style to the

VE. For that purpose, we replace the calls to built-in OpenCL
functions accessing thread indexes, such as get global id() and
get local id(), with standard C/C++ for loops.

At first glance, the porting effort for both Solis-Wets and
ADADELTA to the VE might appear to be trivial. However,
the non-determinism (due to randomness) in the LGA heuris-
tics were a major cause of errors. Hence, we spent significant
development time verifying the functional correctness of both
local-search methods, so that the resulting poses reach the
expected level of convergence [2] even after vectorization.

B. Optimization

The first optimization technique we employ is paralleliza-
tion. This is realized by adding #pragma omp parallel for to
the outermost loop of the LGA (Algorithm 1). By using this
directive (Algorithm 6: line 2), we are able to distribute
the independent LGA runs among the eight VE cores. Based
on our tests using different input cases, faster executions are
achieved with a static scheduling and chunk size of one.

Algorithm 6: Parallelized LGA for VE
1 Function AutoDock-VE
2 #pragma omp parallel for schedule (static, 1)
3 for each LGA-run in NTOTAL

LGA−runs do
4 while (Nscore-evals < NMAX

score-evals) and (Ngens < NMAX
gens ) do

5 ...

Based on Section II-B, the Solis-Wets method requires
a random number generator for creating new genotypes.
OCLADOCK-FPGA employs a linear congruential generator, in
which any generated random value depends on the previous
one: Xn+1 = f(Xn). As this dependency hinders paralleliza-
tion/vectorization, we use instead the 64-bit Mersenne Twister
pseudorandom generator implemented in the NEC Numeric
Library Collection (NLC) [15]. This code change is not
required in ADADELTA, as that algorithm creates genotypes
utilizing score gradients, rather than from random values.

At this point, the time-consuming InterScore and
IntraScore functions (Algorithm 2) were fully vectorized
by the compiler. However, AUTODOCK-AURORA running Solis-
Wets was 2.2× slower compared to the host CPU. The reason
for this low performance was due to the vector pipes being
leveraged only for the innermost loops, which could be quite
short. To visualize this, let us consider the score and gradient
calculations (Algorithms 2 and 5), both consisting of inner
loops with Nrot−list, Natom, and Nintra−contrib as upper
bounds. Table I lists the loop lengths for some inputs used in
our evaluation (Section V-A). While for complex molecules
(in terms of Nrot and Natom), loop lengths can be relatively
large (e.g., 3er5: > 5,000), for small ones (e.g., 1u4d, 1yv3)
these lengths are in the order of tens of iterations. Hence,
for small molecules, AUTODOCK-AURORA initially leveraged
vector lengths of just 1

10 th (or even less!) of the maximum
vector length of the VE (= 256 elements, each 64-bit wide).



TABLE I
UPPER BOUNDS OF SCORE AND GRADIENT LOOPS FOR SELECTED INPUTS

ID Nrot−list Natom Nintra−contrib

(PoseCalculation) (InterScore) (IntraScore)
1u4d 23 23 0
1yv3 31 23 88
3er5 711 108 5,111

From a programming perspective, the under-utilization
of vector pipes described above was caused by the ini-
tial OpenCL-to-VE porting step. Our initial implementation
mapped each OpenCL thread to a VE core. However, in order
to increase the vector lengths, each OpenCL thread should
be mapped instead to a vector lane. For that purpose, we
apply the technique called loop pushing to the main parts of
the LGA: the genetic algorithm (GA) and local search (LS).
For instance, the outer loop in GA (Algorithm 7: line 3)
can be pushed into the scoring function in such a way that
it becomes innermost, data parallel, and easily vectorizable
(Algorithm 8: lines 5,8,11). This technique is paired with
changes in the data layout, so that the vectorized code accesses
data with unit-strides as much as possible.

Algorithm 7: Before Loop Pushing: GA and SF

1 Function GA (population)
2 . . .
3 for each genotype in Npop−size do
4 Function SF (genotype)

// Inner loops are detailed in Algorithm 2
5 . . .

When applied to the GA, loop pushing requires no further
adaptations in the GA’s code structure, as the scoring function
is invoked regularly for all Npop−size genotypes.

Algorithm 8: After Loop Pushing: GA and SF

1 Function GA-VE (population)
2 . . .
3 Function SF (all genotypes)
4 for each rot-item in Nrot−list do
5 for each genotype in Npop−size do
6 PoseCalculation

7 for each lig-atom in Natom do
8 for each genotype in Npop−size do
9 InterScore

10 for each intra-pair in Nintra−contrib do
11 for each genotype in Npop−size do
12 IntraScore

On the other hand, enabling loop pushing in any of the local-
search methods requires significant adaptations. The Solis-
Wets and ADADELTA algorithms are divergent. This means,
that the genetic individuals in the population evolve differently,
with some reaching convergence earlier than others. Already-
converged individuals become non-active ones, and thus,
are removed from the computation. To successfully support

loop pushing in both methods, we resort to predication as
well as to loop compression for the non-convergent part of
the population. This aims to keep the underlying compute-
intensive score and gradient calculations working with unit-
stride accesses and without additional predication. Algorithm 9
shows the implementation of these two techniques for Solis-
Wets. Predication allows, e.g., keeping track of the number
of active individuals (Algorithm 9: line 20). On the other
hand, loop compression is performed e.g., by replacing the
original success scalar variable (Algorithm 3: lines 8, 14,

16) with the successcompressed[ ] array counterpart (Algo-
rithm 9: lines 8, 13, 23).

Algorithm 9: Predication and Compression in SW
1 Function SW (all genotypes)
2 while Nactive

LS−iters > 0 do
// Building compressed list of active indexes

3 popactivesize = 0
4 for each j in Npop−size do
5 if LSactive[j] then
6 idxactive[popactivesize ] = j

7 Ncompressed
LS−iters [popactivesize ] = NLS−iters[j]

8 successcompressed[popactivesize ] = success[j]
9 popactivesize ++

10 . . .

// Updating array-based counts
// Scoring function leverages loop pushing

11 for each jj in popactivesize do
12 if SF (new-genotype1) < SF (genotype) then
13 successcompressed[jj]++
14 . . .

// Predicating on termination condition

15 Nactive
LS−iters = popactivesize

16 for each jj in popactivesize do
17 if (Ncompressed

LS−iters [jj] > NMAX
LS−iters) or

(stepcompressed[jj] <= stepMIN) then
18 LSactive[idxactive[jj]] = 0
19 Nactive

LS−iters- -

20 j = idxactive[jj]

21 NLS−iters[j] = Ncompressed
LS−iters [jj]

22 step[j] = stepcompressed[jj]
23 success[j] = successcompressed[jj]

For ADADELTA, as discussed in [11], the scoring function
(SF) and gradient calculation (GC) can be grouped together in
order to leverage the data locality of the algorithm. Doing so
is feasible, as both SF and GC calculate poses identically, and
both share the same loop structure for their inter- and intra-
molecular components. Thus, we merge both SF and GC into
a single function, where PoseCalculation is called only
once, and the initially-separated loops are replaced with equiv-
alent fused loops (e.g., {InterScore, InterGradient} and
{IntraScore, IntraGradient}). On top of this code struc-
ture, the above optimizations in Solis-Wets (loop pushing,
predication, loop compression) are applied analogously in
ADADELTA.

Similarly to its predecessors AUTODOCK-GPU and
OCLADOCK-FPGA, the floating-point operations in AUTODOCK-



TABLE II
INPUT DATASET USED IN OUR EVALUATION

ID 1u4d 1xoz 1yv3 1owe 1oyt 1ywr 1t46 2bm2 1mzc 1r55
Nrot 0 1 2 3 4 5 6 7 8 9
Natom 23 30 23 27 34 38 40 33 38 27

ID 5wlo 1kzk 3s8o 5kao 1hfs 1jyq 2d1o 3drf 4er4 3er5
Nrot 10 11 12 15 18 20 23 26 30 31
Natom 46 45 44 44 54 60 44 63 93 108

AURORA are performed in single precision. Such operations
can leverage packed vector instructions, where each 64-bit
vector element (of a vector register) contains two 32-bit float
entities. Therefore, on top of loop pushing, we enable packed
vectorization, and by doing so, the vectors in AUTODOCK-
AURORA can have lengths of up to 512 elements, allowing
performance to be doubled.

For its memory accesses, AUTODOCK-AURORA runs by de-
fault in UMA mode. As an alternative, we tested the NUMA
mode to evaluate whether there are performance benefits
from the reduced memory network contention and CPU port
conflicts. Running in NUMA mode forces the usage of two
processes (on a VE) with four cores each. Unfortunately,
the benefits of such NUMA-based multi-processing were
cancelled-out by the extra overhead. In other words, executions
of 2×4 cores with NUMA and 1×8 cores with UMA (default)
have practically the same timings. Hence, we opt to run our
experiments on the VE using the simpler UMA mode.

V. EVALUATION

A. Experimental Setup

1) Program configuration: for all experiments, we set
NTOTAL

LGA−runs = 100, and NMAX
score−evals = 2,048,000. The max-

imum number of generations per LGA (= GA + LS) run
(NMAX

gens ) is set to 99,999, which is larger than the default
value of 27,000. The purpose of this choice is to ensure the
program terminates only when the number of score evaluations
actually reaches the upper bound. Section V-C discusses the
performance impact of the chosen population size (Npop−size).
Moreover, in all cases, the entire population is subjected to
both genetic algorithm and local search.

2) Dataset: for validating the docking functionality, we use
the set of 20 ligand-receptor inputs from our prior work [11].
Table II indicates the number of rotatable bonds and atoms
for each input. This dataset covers up to 31 rotatable bonds,
which is a large range considering that AutoDock supports
NMAX

rot = 32.
3) Hardware: AUTODOCK-AURORA is executed on a

second-generation SX-Aurora TSUBASA VE 20B, while
AUTODOCK-GPU on V100 and A100 GPUs, as well as on dual-
socket 64-core CPU nodes (i.e., a total of 128 CPU cores).
Note that the VE still uses 16 nm semiconductor technology
and is thus one or more technology generations behind the
chips compared against. More details are provided in Table III.

B. Performance Profiling

For profiling executions on the VE, we use the PROGINFO
and FTRACE utilities [16], which provide a set of performance

TABLE III
TECHNICAL CHARACTERISTICS OF THE EMPLOYED ACCELERATOR

PLATFORMS: PROCESS SIZE, BASE CLOCK FREQUENCY (FREQ), NUMBER
OF CORES (NCORES), FP32 PERFORMANCE (PERF), MEMORY

BANDWIDTH (MEMBW). THE CPU PLATFORM HAS TWO SOCKETS

Characteristics SX-Aurora GPU CPU
VE 20B V100 A100 EPYC 7713

Vendor NEC NVIDIA NVIDIA AMD
Process Size [nm] 16 12 7 7
Freq [GHz] 1.60 1.23 0.76 2.00
Ncores 8 5,120 6,912 64 × 2
Perf [TFLOPS] 4.9 14.1 19.5 4.1
MemBW [GB/s] 1,530 897 1,555 204.8 × 2

L1 Cache 32 kB (SPU I$) 128 kB 192 kB 96 kB
32 kB (SPU O$) (per SM) (per SM) (per core)

L2 Cache 256 kB (SPU) 6 MB 40 MB 512 kB
128 kB (VPU) (shared) (shared) (per core)

L3 Cache 16 MB - - 256 MB
LCC (shared) (shared)

metrics. The first utility provides program-level information,
while the second focuses on functions and user regions.

Table IV compares the execution metrics (input: 1hfs)
of AUTODOCK-AURORA running Solis-Wets, using the code
versions before and after applying the loop pushing technique.
First, the real time represents the wall-clock elapsed time,
while the user time accounts for the time spent by all cores
on the VE. As described in Section IV-B, the independent
LGA runs are distributed among the eight VE cores via the
#pragma omp parallel for, which explains why the user time is
∼8× longer than the real time. It can be noted that, due to
loop pushing, both real and user times are improved ∼34×,
as well as the execution time for vector instructions (i.e.,
Vector Time) by a factor of ∼eight. In particular, the reduction
in the instruction counts (Inst. Count and Vec. Inst. Count)
by ∼54× and ∼2.4× can be explained as follows: In both
versions (before and after loop pushing), AUTODOCK-AURORA

solves the same problem, and thus, their FLOP counts are
very similar. However, for the optimized version, many of the
formerly scalar loops are now vectorized with large vector
lengths (> 200 elements), while the formerly shorter vector
loops (average length: ∼195 elements) are now executed in
longer loops (average length: ∼214 iterations).

TABLE IV
EXECUTION METRICS OF AUTODOCK-AURORA RUNNING SOLIS-WETS

(INPUT: 1HFS): BEFORE VS. AFTER APPLYING LOOP PUSHING

Metric Optimization: loop pushing Ratio
Before After Bef. / Aft.

Real Time [sec] 1,382.2 40.0 34.4
User Time [sec] 11,057.3 319.3 34.6
Vector Time [sec] 2,217.6 280.2 7.9
Inst. Count 23,042,367,970,590 427,822,025,876 53.8
Vec. Inst. Count 300,955,750,861 124,250,428,847 2.4
FLOP Count 39,438,249,953,607 40,872,399,685,468 0.965
MOPS 8,348.6 185,805.3 0.045
MFLOPS 3,566.7 128,005.2 0.028
Avg. Vec. Length 195.4 214.0 0.913
V. Op. Ratio [%] 75.3 99.4 0.758
L1 Cache Miss [sec] 164.6 10.4 15.7

Regarding the throughput metrics, the number of overall
operations per second (MOPS) and the number of floating-



point operations per second (MFLOPS) are increased by
∼22.3× ( = 185,805.3

8,348.6 ) and ∼35.9× ( = 128,005.2
3,566.7 ), respectively.

We attribute such improvements to the now streamlined vec-
torized execution, which is visible in the notable improvement
of the vector operation ratio (from ∼75 % to ∼94 %) as well
as the average vector length (from ∼195 to ∼214 elements).
Furthermore, as L1 cache misses occur only in scalar code, the
significant decrease of their corresponding times (from ∼164 s
down to ∼10 s) indicates that the number of scalar instructions
is also reduced in the optimized version.

Table V reports the execution metrics (input: 1hfs) of
our optimized version for comparing Solis-Wets against
ADADELTA. Regarding the first time metrics (real, user,
vector), it can be noted that choosing ADADELTA results in
∼2× longer executions compared to Solis-Wets. The larger in-
struction and FLOP counts in ADADELTA are due to its more
complex genotype generation: ADADELTA employs gradient-
based calculations rather than the simple additions/subtractions
in Solis-Wets (Section II). On the other hand, the MOPS
and MFLOPS metrics indicate that Solis-Wets achieves higher
throughput. However, ADADELTA achieves a ∼3.8× (= 10.4

2.7 )
shorter L1 cache miss time, an even higher vector operation
ratio (= 99.6 %), and an average vector length that is much
closer to optimal (= 255.9 elements). In practice, achieving
the optimal average vector length of 256 elements is not
possible, due to the execution divergence in both local-search
methods. Compared to Solis-Wets, ADADELTA is less irreg-
ular and more compute-intense. Consequently, AUTODOCK-
AURORA is capable of leveraging larger vectors when running
ADADELTA instead of Solis-Wets.

TABLE V
EXECUTION METRICS OF AUTODOCK-AURORA FEATURING LOOP

PUSHING (INPUT: 1HFS): SOLIS-WETS VS. ADADELTA

Metric Solis-Wets ADADELTA Ratio
AD / SW

Real Time [sec] 40.0 78.9 1.9
User Time [sec] 319.3 630.3 1.9
Vector Time [sec] 280.2 598.4 2.1
Inst. Count 427,822,025,876 529,638,863,570 1.2
Vec. Inst. Count 124,250,428,847 184,324,447,676 1.4
FLOP Count 40,872,399,685,468 74,093,567,293,801 1.813
MOPS 185,805.3 164,615.5 0.886
MFLOPS 128,005.2 117,545.9 0.918
Avg. Vec. Length 214.0 255.9 1.196
V. Op. Ratio [%] 99.4 99.6 1.002
L1 Cache Miss [sec] 10.4 2.7 0.3

C. Comparison against GPUs and CPUs

We compare the performance of AUTODOCK-AURORA

against that of AUTODOCK-GPU, the state-of-the-art OpenCL-
based implementation of AutoDock for GPUs/CPUs. For a
fair comparison, we use the version v1.1 of AUTODOCK-GPU,
in order to ensure that equivalent functionalities are run on
the VE 20B and the chosen GPUs/CPU. Furthermore, we
disregard the different host platforms in the systems employed
for evaluation. Specifically, in our time measurements, we
account only for the time spent on the LGA computation
(i.e., docking runtime). This means that, for the VE 20B
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Fig. 1. Geometric mean of docking runtimes over 20 inputs, comparing the
impact of different population sizes (Npop−size).

and GPUs, our measurements include the device-side kernel
configuration and execution, plus all required host-device data
movements. Host-side-only operations, such as file I/O and
results processing, are not included.

As explained in Section IV-B, the already-converged indi-
viduals are removed from the local-search computation. Thus,
the length of the innermost loops is reduced, and in turn,
the performance on the VE 20B is diminished. A way to
cope with that is to employ larger population sizes, which
increase the vector length of pushed-in loops in AUTODOCK-
AURORA. As shown in Figure 1, larger populations generally
result in faster executions on the VE 20B. For instance,
by increasing Npop−size from 128 to 2048, the correspond-
ing runtimes reduce ∼4.1× (Solis-Wets: 90.5

22.2 ) and ∼2.6×
(ADADELTA: 92.1

34.8 ). Conversely, the population sizes have less
impact on any of the other devices. In fact, with respect to
the VE 20B, the runtimes achieved on the GPUs/CPU – for
each Npop−size configuration – have lower standard deviations:
{28.3, 0.3, 0.1, 1.1} (Solis-Wets) and {26.0, 2.1, 1.2, 8.8}
(ADADELTA) for {VE 20B, V100, A100, EPYC 7713},
respectively. In particular, the maximal runtime increase due
to larger populations configured for the GPUs/CPU is ∼18%
(= 140.6−119.0

119.0 ×100%), and occurs on the EPYC 7713 when
running ADADELTA.

The performance behavior on the GPUs/CPU can be ex-
plained as follows. In AUTODOCK-GPU, the population size
directly affects the workload distribution (based on the num-
ber of spawned OpenCL work-groups: NWG = Npop−size ×
NTOTAL

LGA−runs), but has no impact on the runtime of a score eval-
uation. Since the LGA executes until it has evaluated a given
number of scores (Section V-A: NMAX

score−evals = 2,048,000),
processing larger populations requires fewer iterations per
LGA-run, as more scores are evaluated simultaneously. In
other words, the seemingly bigger workload imposed by
the need to process more individuals, is compensated by
the reduced number of iterations per LGA-run. In addition,
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Fig. 2. Geometric mean of docking runtimes over 20 inputs, when
Npop−size = 1024, comparing overall performance per platform.

we attribute the relatively slight increase of the GPUs/CPU
runtimes when processing larger populations to the synchro-
nization overhead associated to the larger OpenCL work-group
sizes. In general, as already reported in our previous work
on GPUs/CPUs [2], ADADELTA executions take longer than
their Solis-Wets’ counterparts, regardless of the population
size.

Figure 2 shows the runtimes for Npop−size = 1024 only.
Since population sizes have no significant impact on the
GPUs/CPU runtimes, then we see no disadvantage in using
an efficient configuration for the VE 20B in the following
comparison between devices. First, the VE 20B clearly out-
performs the EPYC 7713, being the former ∼2.5× (Solis-
Wets: 63.3

25.2 ) and ∼4.1× (ADADELTA: 122.9
30.1 ) faster than the

dual-socket 64-core CPU. Despite being slower by ∼8.4×
(Solis-Wets: 25.2

3.0 ) and ∼1.5× (ADADELTA: 30.1
20.2 ) compared

to the A100, the VE 20B is only ∼4.2× (= 25.2
6.0 ) slower than

the V100 when running Solis-Wets, while still achieving a
slightly faster average execution (30.1 s vs. 30.3 s) than this
latter GPU, both running ADADELTA. The reason for this
performance behavior on the VE 20B is attributed to the more
compute-intensive calculations of ADADELTA, which with
larger populations, fill up the vector lanes more efficiently than
Solis-Wets. For putting these numbers into perspective, note
that the VE 20B in some cases outperforms devices that are
at least one (V100) or multiple (EPYC) silicon generations
ahead of it.

VI. CONCLUSIONS

In this work, we have ported the AutoDock molecular
docking program to the SX-Aurora TSUBASA VE 20B. The
most time-consuming component of AutoDock is the local
search, which presents a high degree of irregularity. Here,
both Solis-Wets and ADADELTA local-search methods have
been optimized for higher performance. The most significant
performance improvements on the VE 20B are achieved by ap-
plying a platform-specific coding style based on loop pushing.
This technique, paired with predication and loop compression,
results in time reductions of ∼34× (Solis-Wets) with respect
to an unoptimized version. Furthermore, it can be observed
that executions on the VE 20B are faster when employing
larger populations in the genetic search. In terms of runtime-
based performance, for a configuration of 1024 individuals per
population, our implementation running ADADELTA on the

VE 20B achieves a slightly faster average execution compared
to that on the V100 GPU, and ∼2.5× (Solis-Wets) and ∼4.1×
(ADADELTA) faster than the dual-socket 64-core EPYC 7713
CPU. Vectorized execution can thus be competitive with the
SIMT approach used on GPUs. It would be very interesting
to see the impact of our techniques when applied to a VE
implemented in more current 7 nm semiconductor technology.
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A. Artifact Appendix
A.1 Abstract
This artifact appendix provides instructions on how to re-
trieve, compile, and evaluate the developed AUTODOCK-
AURORA code. This includes instructions on how to obtain
the input data sets, as well as scripts to regenerate the dock-
ing runtimes achieved on the SX-Aurora TSUBASA Vector
Engine (VE), which are discussed in this paper. Furthermore,
these instructions allow benchmarking AUTODOCK-AURORA

against AUTODOCK-GPU, a state-of-the-art OpenCL imple-
mentation for GPUs and multi-core CPUs.

A.2 Artifact check-list (meta-information)
• Algorithm: Molecular docking based on a Lamarckian Ge-

netic Algorithm, which combines a genetic algorithm and a
local-search method.

• Program: Parallelized versions of the AutoDock molecu-
lar docking software. AUTODOCK-AURORA is C/C++ vec-
torized version for the SX-Aurora TSUBASA Vector Engine.
AUTODOCK-GPU is an OpenCL implementation for GPUs
and multi-core CPUs. All sources can be downloaded from
GitHub. Sizes: ∼400 MB (AUTODOCK-AURORA), ∼120 MB
(AUTODOCK-GPU).

• Compilation: We used g++ 4.8.5 for AUTODOCK-AURORA,
and g++ 6 (and above) for AUTODOCK-GPU.

• Binary: Source code and scripts included to generate binaries.

• Data set: Molecular structures prepared for any tool of the
AutoDock suite. All files can be downloaded from GitLab, and
are ready to use. Size: ∼200 MB.

• Run-time environment: AUTODOCK-AURORA requires a
Linux distribution with NEC C++ compilers (We used Red
Hat 4.8.5-44 with the nc++ (NCC) v3.2.1). AUTODOCK-GPU
requires a Linux distribution supporting OpenCL drivers (We
used Ubuntu 20.04.3 LTS with NVIDIA CUDA-11 and Intel
2019 drivers). No need of root access.

• Hardware: We used NEC SX-Aurora TSUBASA VE 20B, as
well as NVIDIA PCIe GPUs (V100 and A100) and an AMD
CPU server (two sockets x 64-core EPYC 7713).

• Execution: Sole user. AUTODOCK-AURORA’s benchmark on
the NEC VE 20B takes ∼5 hours. AUTODOCK-GPU’s bench-
marks on both NVIDIA GPUs & AMD CPU take ∼14 hours.

• Metrics: Execution runtimes in seconds.

• Output: Console indicating execution runtime of a given ex-
periment. Additionally, docking log files (.dlg) reporting execu-
tion runtime and resulting molecular pose predictions.

• Experiments: Bash scripts (provided). Maximum allowable
variation of execution runtimes: 10%.

• How much disk space required (approximately)?: Maxi-
mum: 20 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Two hours.

• How much time is needed to complete experiments (approx-
imately)?: 20 hours.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Lesser GNU Lesser
General Public License.

• Data licenses (if publicly available)?: Creative Commons
Attribution 4.0 International.

• Archived (provide DOI)?: No.

A.3 Description
A.3.1 How to access
All material is publicly available. The following is the main reposi-
tory providing a single-entry point for reproducibility instructions:

• Reproducibility artifacts (instructions and scripts)
https://github.com/L30nardoSV/reproduce-ia3-20

21-moldocking-vector

The following repositories are listed here only for completeness.
Their contents are automatically downloaded following the instruc-
tions provided in the above main repository.

• AUTODOCK-AURORA (source code)
https://github.com/esa-tu-darmstadt/AutoDock-A

urora

• AUTODOCK-GPU (source code)
https://github.com/ccsb-scripps/AutoDock-GPU

• Data sets
https://gitlab.com/L30nardoSV/ad-gpu miniset 20

A.3.2 Hardware dependencies
For obtaining comparable results, we recommend using the follow-
ing devices as hardware accelerators:

• Vector Engine: NEC SX-Aurora TSUBASA VE 20B

• GPUs: NVIDIA PCIe-based V100 and A100

• CPU: AMD EPYC 7713 (two sockets with 64 cores each, i.e.,
128 cores in total)

A.3.3 Software dependencies
NEC and NVIDIA/Intel (OpenCL) compilers/drivers are required
for the above recommended hardware. Installation instructions are
provided by the respective vendor.

A.4 Installation
The installation required for all experiments is described in the
README.md of the aforementioned main repository, where
separate instruction guidelines for AUTODOCK-AURORA and
AUTODOCK-GPU are provided.

A.5 Experiment workflow
The first step of the instruction guidelines is to prepare input files
and program binaries. Once this is complete, the second step is
to run the benchmarks. The experiment workflow has been au-
tomated with bash scripts as much as possible. More details can
be found in the following scripts (in the main repository): evalu-
ate autodock aurora.sh and evaluate autodock gpu.sh.
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A.6 Evaluation and expected result
Resulting docking log files (.dlg) will be stored under the fol-
lowing folders: results aurora for AUTODOCK-AURORA and re-
sults <LABEL> for AUTODOCK-GPU. Each of these docking
log files will contain a set of predicted molecular poses as well
as execution runtime information. The execution runtime informa-
tion is listed as docking run time and program run time. Only the
docking run time is used for the discussion in the paper. In addi-
tion, for streamlining the extraction of docking run times, the main
repository provides a collect results dlg.py python script and cor-
responding usage guidelines.

A.7 Experiment customization
Customizing the docking configuration used in the experiments is
possible by modifying the parameters in the following script (in
the main repository): list inputs.sh. For more details, please refer
to the README.md in the corresponding source code repository
of AUTODOCK-AURORA and AUTODOCK-GPU.

A.8 Methodology
The artifact appendix for this paper was submitted according to the
guidelines at https://ctuning.org/ae/submission.html
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