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Abstract. With the ever-expanding attack surface of low-cost proces-
sors in IoT applications, the interest in lightweight hardware support for
improving their security is growing. While industry has already adopted
mostly static low-overhead mitigation approaches against code-injection
attacks, the race against code-reuse attacks is not yet over. One com-
monly proposed measure against code-reuse attacks aims to enforce run-
time-dynamic integrity. In contrast to runtime-dynamic remote attesta-
tion, which is limited by its periodic attestation interval (possibly hours
or weeks), runtime-dynamic integrity enforcement performs runtime-in-
tegrity checking in parallel to the actual execution. This allows very short
attack response times, ideally stopping all evil instructions in flight from
actually taking effect. To guarantee a prevention-in-time, one require-
ment is a low latency trace of uncommitted instructions. This typically
would require a deep and core-specific integration. As an abstraction
layer, we present our highly portable Real-Time Lightweight Integrity en-
Forcement intErface (RT-LIFE), which is optimized to provide the core’s
state (uncommitted instructions) to an arbitrary runtime-dynamic low-
latency Security Enforcement Unit (SecEU) as early as possible, while
minimizing the interface’s area and clock frequency penalties. We demon-
strate RT-LIFE for six very different RISC-V cores together with our ini-
tial control-flow-integrity-enforcing SecEU DExIE, discuss the hardware
architecture and its timing in detail, and finally provide an open-source
release of RT-LIFE.

Keywords: Hardware Security · Security Monitoring · Portable Uncom-
mitted Instruction Tracing · Runtime-Dynamic Integrity · Real-Time ·
IoT · RISC-V · Attack Prevention · Code-Reuse Attacks · Open-Source

1 Introduction

General-purpose processors are vulnerable to different types of runtime attacks.
One sub-class of these are sophisticated and at the same time practical code-reuse
attacks, which cannot be mitigated by traditional techniques such as read-only
memory, Write ⊕ Execute, or Address Space Layout Randomization [28]. Code-
reuse attacks do not inject malicious code, but execute existing code gadgets in a
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sequence not intended by the developer. This includes Return-into-libc, Return-
and Jump-Oriented Programming (RoP, JoP) Control Flow attacks [1, 10,30].

Without injecting new code instructions, Return-into-libc attacks exploit
memory errors such as buffer overflows to replace the return address on a call
stack to target on another subroutine [10]. RoP attacks extend this concept, and
collect a potentially large number of code snippets, which are then concatenated
and executed in an unintended order via manipulated return addresses [30].
Besides memory-safe programming languages, which trade performance for se-
curity [26], Return-into-libc and RoP attacks can be mitigated by storing a
duplicate of the original return address on a shadow call stack, to be validated
at return time [5, 8, 24,31].

JoP attacks further extend the concept of RoP, but place their dispatcher
gadget in heap memory [1]. By manipulating forward edges, JoP attacks bypass
RoP countermeasures such as a shadow call stack. Beyond software solutions [34],
one common mitigation approach is using a hardware monitor to safeguard inter-
and intra-function Control Flow Integrity at runtime [8,22,25,29,33]. Depending
on the attacker, this includes direct and indirect Control Flow (CF) [18,21,27].

Such a hardware monitor’s [3] main functionality can be either deeply inte-
grated into a core’s pipeline [6, 7, 25], or in an on-chip module [8, 24, 33], or in a
separate off-chip device, e.g. connected via a debug interface [4, 19].

In-pipeline monitors offer low-latency, but impose invasive changes to the
pipeline, caches, memory, and executable binary [6, 7, 25]. On-chip and off-chip
solutions are typically trace-based, and require only minimally-invasive changes
(signal taps, stall, reset, interrupt). Off-chip monitors leave the entire SoC un-
changed, but suffer from limited transmission data rates, data drops, and longer
latency [4, 19]. Despite their tighter integration, many on-chip monitors can-
not fully achieve short detection latencies. E.g. PHMon [8] evaluates only fully-
committed instructions, which potentially cannot be reverted or aborted after
detection. Additionally, PHMon relies on queues (2048 entries) and has multi-
ple stages itself, thus no short detection is possible. This is potentially insecure,
as an attack’s impact may occur earlier than the monitor’s delayed reaction,
thereby circumventing the attack prevention capability. PHMon’s design choice
is a trade-off between low-invasiveness (tapping only the final stage) and per-
formance (high Fmax, no stalls) at the cost of latency-related security. However,
PHMon gives an example (Heartbleed) where its detection latency is sufficient
and network information leakage still can be prevented.

As an alternative, our prior work Dynamic Execution and Integrity Engine
(DExIE) is an on-chip real-time SecEU for global and local control flow integrity
enforcement [32] that is capable of stopping ongoing attacks early within short
and guaranteed latency. To fulfill this guarantee, it must be supplied with a
low-latency trace of early uncommitted instructions.

This trace is realized by RT-LIFE (in this work and in [32]). As a security
monitoring interface built for attack prevention, RT-LIFE is the first portable in-
terface providing an attached Security Enforcement Unit (SecEU) such as DExIE
sufficient time to reliably make its decision (Decision Latency, DL) to actu-
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ally prevent illegal instructions from having any externally visible effects (Fig.
1). To this end, RT-LIFE retrieves the relevant signals of uncommitted instruc-
tions from the pipeline as early as possible and forwards them with low Capture
Latency (CL) to the SecEU. The feedback loop (CL+DL) including the SecEU
should be faster than the processor. No or only very few extra stall cycles are
introduced into the regular pipeline, when the SecEU is operating (Sec. 8). If a
SecEU introduces stall cycles, they can be fully-predictable at compile time, as
this allows the tight Worst Case Execution Time (WCET) computations that
are crucial for real-time applications.

After focusing on existing related interfaces (Sec. 2), Section 3 introduces
RT-LIFE’s security model and timings. In order to discuss requirements, Section
4 presents a case-study using our SecEU (DExIE). Section 5 explains RT-LIFE’s
behavior. The next section sets the design considerations (Sec. 6) which are
followed by the concrete RT-LIFE implementations (Sec. 7). The final sections
contain the evaluation (Sec. 8) and conclusion (Sec. 9).

Key contributions:

– Whereas existing portable tracing interfaces forward only fully-committed
instructions, RT-LIFE reduces the latency by tracing uncommitted instruc-
tions in early pipeline states. Ideally, and also depending on the attached
SecEU, this would allow to catch any malicious instruction in flight (and
prevent it from being committed) without any extra stall cycles.

– We re-use our prior work DExIE to provide a practical use-case for RT-LIFE.
As a trade-off between latency-related security, performance and portabil-
ity, DExIE guarantees to stop any illegal CF in time and before any (di-
rectly) subsequent malicious and potentially irreversible Memory-Mapped
I/O (MMIO) write access will be committed (take effect).

– We explain our hardware architecture and the given RISC-V cores in detail
to facilitate reproducibility. We also publish our work in an open source
repository [9]. This is an initial step to flexibly combine a variety of future
attack-prevention SecEUs with different cores.

Sample RISC-V Core

Fe De Ex Mem WB

RT-LIFE
Security Enforcement Unit
Decision Latency (DL)

Stage 1 ... Stage NCapturing Status Signals from uncommitted
Instructions via RT-LIFE (Capture Latency, CL)

Stall or Reset
via RT-LIFE

Fig. 1: Feedback loop for a generic RT-LIFE-enhanced RISC-V core and a
generic SecEU. If the loop’s accumulated latency (CL+DL) is longer than the
core’s latency to fully execute the first harmful instruction, stalls can be issued
to halt the core, increasing the time interval available for detection and thus
preventing an attack in time.
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2 Related Work

We differentiate between open-loop monitoring for debugging and tracing pur-
poses, and closed-loop security enforcement for attack prevention. Whereas the
latter requires tight timing, monitoring does not. All interfaces discussed below
are designed for monitoring only. As both use-cases require similar signals, we
discuss which available standard RISC-V interfaces could be suitable for enforce-
ment as well.

The RISC-V Formal Interface (RVFI) [14] contains a number of signals
intended for formal verification. We used RVFI for an early draft monitoring unit.
However, the RVFI focuses on retired instructions and only provides one global
valid (rvfi valid) signal for all captured data. Instead of directly forwarding cap-
tured data, earlier stages’s signal values need to be delayed until the instruction
reaches the pipeline’s final stage. An earlier capture would require individual
valid signals, which are not covered by the standard. Thus enforcement and at-
tack prevention of an instruction is impossible. Stalling any pipeline stage would
not solve the issue, as it equally delays an instruction and its CL, thus cannot
increase the available DL. With RFVI, an attack would only be detected after
ocurring, but could not be prevented in time. Additionally, RVFI does not inte-
grate stall control signals, which are, under some conditions, necessary to fulfill
our security guarantees.

The RISC-V Debug Specification [13] describes debugging interfaces for
RISC-V processors. The execution of a Hardware Thread (HART) can be paused
via explicit breakpoint instructions or debugger triggers. The debugger then has
access to the state of the HART, including the Program Counter (PC) and reg-
isters. The interface would support our intended security guarantees for enforce-
ment. However, continuous single-stepping would be necessary for capturing the
instruction before execution, resulting in a massive performance drop. Therefore,
we do not see this as a reasonable choice for SecEUs, except for very lightweight
applications without real-time requirements.

In contrast to the RISC-V Debug Specification, the RISC-V Trace Spec-
ification [15] is designed for execution tracing without the externally induced
stalls of single-stepping. However, compared to RT-LIFE, it focuses exclusively
on CF. The specification differentiates between the HART to Encoder Interface
and the Encoder’s output, namely the Branch Trace Interface. For compatibility
with off-chip debug units, the bandwidth must be reduced. Thus, the Branch
Trace Interface [15] focuses on retired instruction blocks and uses compactly
encoded packets. Both decisions lead to longer CL, making it incompatible for
our attack prevention. The lower-level HART To Encoder Interface [15] also
focuses on retired instruction blocks. Again, this interface can be used for CF
monitoring without tight timing requirements, but is unsuitable for enforcement.

Although one could use other interfaces for monitoring, there is no other
option, which forwards uncommitted instructions. Hence, none of the existing
interfaces is suitable for analyzing and eventually stopping the currently ongoing
(possibly malicious) instruction before it will be committed.
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3 Fundamentals

3.1 RT-LIFE’s Security Model

Attacker model: Whereas the specific Threat Model defended against depends
on the attached SecEU unit, RT-LIFE is designed to thwart an attacker who has
access to the core’s state and can arbitrarily alter CF, register write instructions,
and memory store instructions [1, 10,21,30].
Guarantees: With constant and short CL, RT-LIFE provides the core’s cur-
rent state early and thus allows a long DL to the SecEU attached to the core.
RT-LIFE’s signals provide support for trace-based SecEUs [3] that require the
core’s current status. This includes SecEUs that support a broad range of security
policies, including Control Flow (CF), Data Flow (DF), Memory Security, and
Value Invariant Enforcement [3,8]. With the information captured by RT-LIFE,
attached SecEUs can guarantee to prevent illegal instructions from execution,
often without incurring additional pipeline stalls.
Assumptions: RT-LIFE is intended to support mitigating code-reuse attacks, it
thus monitors the dynamic execution of instructions in the core. As we assume
read-only memory (enforced via a Memory Protection Unit - MPU, or static
partitioning), RT-LIFE does not perform static (memory) integrity attestation
(against code injection attacks).

3.2 Decision Latency for CF, DF and Memory Attack Prevention

To our current knowledge, all existing interfaces (Sec. 2) have CLs that are too
long, leading to the remaining DL between capture and an attack with real-world
impact to be too short to make a decision (Fig. 1). Stalling each instruction to
meet DL requirements is possible, but this would slow down code execution.
Instead, we optimize the interface as well as the SecEU for a reduced latency,
where additional stalls are avoided, and will only be introduced for handling
edge cases.

We define a successful attack by its immediate real-world impact, which
can be caused by (A) MMIO write instructions, or (B) tampering with Control
and Status Registers (CSR). These attacks should be stopped before they take
effect. Other scenarios without immediate real-world impact, e.g., combinatorial
General Purpose Register (GPR) writes, are categorized as less harmful, and
can be safely stopped just after the manipulation occurred. In closer detail, four
latency guarantees, grouped by MMIO (A) and CSR (B) tampering, have
been implemented:

(A1) If a manipulated CF Instruction (CFI) is followed by a memory instruc-
tion potentially writing to an attached MMIO device, RT-LIFE guarantees to
provide a DL of at least one clock cycle to the SecEU to make its decision. (B1)
If a manipulated CFI is followed by a malicious CSR register write, RT-LIFE
guarantees to provide a DL of one cycle to the SecEU. (A2) For a malicious
memory write access, RT-LIFE can guarantee to capture its value and address,
such that a SecEU can combinatorially (DL=0) decide and prevent the write
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from taking effect. (B2) In the RISC-V ISA, a CSR cannot be directly written.
Instead, its new value is moved from a GPR. Therefore, we are focusing on GPR
integrity. At the latest safe moment, RT-LIFE allows stopping code execution
directly after a GPR is maliciously written, with a guaranteed combinatorial
DL. But this is still sufficiently early to prevent a subsequent CSR write from
actually taking effect.

4 DExIE - A sample Security Enforcement Unit

Before further elaborating on RT-LIFE’s details, this section introduces our sam-
ple implementation of a SecEU, which itself is called DExIE - Dynamic Execution
Integrity Engine [32]. It requires RT-LIFE’s low latency, and already uses the CF-
focused subset of RT-LIFE’s functionality for a low-overhead fine-grained Con-
trol Flow Enforcement. A forward edge in a Control Flow Graph’s (CFG) corre-
sponds either to a jump, branch or call instruction. Backward edges always cor-
respond to return instructions. DExIE enforces forward edges via auto-generated
CFG- or profiling-based (for increased granularity) Enforcement FSMs (EFSM).
In contrast, backward edges are safeguarded by an EFSM-state-agnostic Shadow
Stack. Each subroutine corresponds to one EFSM at a time. Branches and jumps
correspond to the current function’s EFSM-internal transitions. For calls and re-
turns, that function’s EFSM becomes active. Per call, the Shadow Stack holds
return address, return EFSM, and return EFSM state.

After discussing DExIE’s security model, which employs a subset of RT-LIFE’s
features, the DExIE tool-chain and architecture are explained, and the realiza-
tion of security guarantees as well as DExIE’s behavior is presented.

4.1 DExIE’s Security Model

Threat Model: DExIE is fitted for (industrial) real-time IoT devices with
MMIO peripherals. The device’s firmware includes memory unsafe languages
such as C with possible vulnerabilities that are (remotely) exploitable.

Attacker model: The attacker (in)directly and arbitrarily tampers with control
flow instructions [1, 10,30].

Guarantees: For any illegal CFI, DExIE immediately resets the core, thus pre-
vents it from executing any subsequent memory write instruction, which might
have a potentially irreversible real-world impact. As EFSMs are stored and pro-
tected in on-chip SRAM and no caching is used, DExIE guarantees to react in
constant time. DExIE and RT-LIFE operate faster than the attached core can
fully execute a memory write instruction following an illegal CF.

Assumptions: By exploiting a software weakness (e.g., a huge overflow), an at-
tacker could potentially overwrite a function’s code with new instructions which
do not include any CF, or have identical CF, and thus would not violate any
EFSM imposed by DExIE. Therefore, we assume read-only program memory
(e.g., enforced via a MPU).
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4.2 DExIE’s Fundamentals

Figure 2, shows DExIE’s key idea. First, the sample application C-Code (a) is
compiled into RISC-V assembly code (b). The DExIE [32] compiler reconstructs
the program structure, to build and interconnect the CFG-based function-individual
EFSMs (c), that are actually being used for enforcement [2].

a) C
Code

b) RISC-V
Assembly Code

c) Enforcement FSMs
(EFSM)

int callee(){
int i=42;
return i;
}

void caller(){
int y=0;
if(y){
callee();
}
return 0;
}

144: <callee>
144-15c: non CFI
160: ret

164: <caller>
164-178: non CFI
17c: beqz 184
180: jal <callee>
184-194: non CFI
198: ret

144-160
State 0

164-17c
State 0

180-180
State 1

184-198
State 2

taken
branch

u. br.

call

return

EFSM #1

EFSM #0

Fig. 2: A standard compiler compiles C-code (a) into Assembly code (b), which
gets automatically converted into interconnected enforcement FSMs (c)

4.3 DExIE’s Behavior and Interface Requirements

CF monitoring is limited by the frequency of CFI in the executable. We call the
number of CFI per clock cycle the CFRate. DExIE’s microarchitecture can cope
with a CFRate of one CFI per cycle for calls and returns, and still achieves a
single clock cycle of DL (Fig. 3a). For branches and jumps, the required DL is
two cycles, thus dropping the maximum CFRate that can be handled without
stalling to 1/2 (Fig. 3b). Stalls are only needed for chained branches and jumps
in combination with a successful branch prediction. For DExIE, the ideal in-
terface to the core would collect all required CF-related data (PC, Instruction,
Next PC), write it into a register, and ideally leave two (or more) cycles of DL
headroom. For memory writes, combinational comparators will validate values
and addresses against DExIE’s statefully loaded constraints (Fig. 3c). For GPR
writes, DExIE will stop execution directly after the write occured (Fig.3d).
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PC
Instruction
Next PC
} Input

Register
Output
Register

DL=1 Sync Reset

Async Reset

(a) DExIE’s timing behaviour for calls and returns: After RT-LIFE’s signal capture,
which happens before the input register, DExIE needs one clock cycle of DL for its
decision to reach the output register.

PC
Instruction
Next PC
} Inp.

Reg.
Reg.

Out.
Reg.

DL=2 clock cycles

Sync Reset

Async Reset

(b) DExIE’s timing behaviour for jumps and branches: Two cycles of Decision Latency
(DL) are required.

PC,
Address,
Size, Data
} &

DL=combinational

Wr. Enable

Wr. Enable

(c) DExIE’s timing behaviour for memory writes: Combinational comparators for mem-
ory writes react within the same clock cycle.

PC, Instr.
Target Reg.,
Data

} Register
DL=combinational Sync Reset

Async Reset

(d) DExIE’s timing behaviour for general purpose register (GPR) writes: Combina-
tional logic stops a core directly after an illegal GPR write.

Fig. 3: DExIE’s timing behaviour under different conditions

5 RT-LIFE: Signals and Behavior

After the discussion of DExIE as a sample SecEU to motivate the design of
RT-LIFE, this section focuses on RT-LIFE’s actual implementation.

Table 1 gives an overview of the signals used in RT-LIFE, grouped by their
corresponding type of enforcement function. Columns (a) to (c) contain CF and
DF signals, which are captured from the processor. Column (d) provides the
control signals from SecEU to the core, closing the feedback loop.

In case the core processes a CF instruction (a), RT-LIFE provides the PC,
instruction and the Next PC together with a valid signal. For memory store
instructions (b), the instruction’s PC, the target address, the access size, the data
to be written, and a valid signal are captured. For a register write instruction
(c), the interface provides the PC, the target register ID, and the corresponding
data.
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Table 1: RT-LIFE’s signals
(a) CF (b) Mem. Store (c) Reg. Write (d) SecEU control

To SecEU From SecEU

Valid, Valid, CF-Stall (CFS),
PC, PC, PC Stall-on-Store (SoS),
Instruction, Address, Target Register Continue-Store (CS)
Next PC Size, Data (0: invalid), Data Reset

If a SecEU’s decision latency is too long to prevent real-world impact of an
instruction, it can request additional time by asserting the stall signals (d) CF-
Stall (CFS), Stall-on-Store (SoS), and Continue-Store (CS). The CFS signal is
used if a CF instruction decision takes too long, and the following instruction
with potential real-world impact could not be stopped otherwise. In case the
signal is set, the following instruction is to be stalled before it reaches the WB
and MEM stages, gaining additional DL clock cycles for the SecEU. For memory
writes, the SoS signal allows a SecEU to combinatorially validate the data to be
written, and combinatorially stall a memory write operation before the validation
is complete. To prevent combinatorial loops, which can be caused by RT-LIFE’s
constantly captured signals, the SecEU then asserts a separate combinatorial CS
signal, if the write operation is deemed valid.

6 RT-LIFE Design and Behavior Considerations

For reduced logic overhead, RT-LIFE by default does not compute the next PC
itself, but utilizes the core’s computation. We decided against branch prediction
awareness, as it would increase RT-LIFE’s complexity and potentially degrade
portability. Per group of signals (each column in Table 1), DExIE captures all
signals in the same cycle, and thus would not benefit if only a subset of a group’s
signals were valid. Thus, we capture the signals as soon as all of them are valid.

7 RT-LIFE Implementation

To achieve portability for SecEUs and maintain compliance with the specified
behaviour (Sec. 5), the microarchitecture of RT-LIFE is adapted individually to
each core. We show six examples here for different cores.

With the exception of their pipeline depth, which is 3 and 5 stages respec-
tively, Piccolo (Fig. 4) and Flute are closely related RISC-V cores [11]. Figure
4 shows Piccolo and draws vertical separation lines between its pipeline stages.
As Flute adds additional separators between FE, DE and EX, and RT-LIFE
only interacts with EX and later stages, the same RT-LIFE microarchitecture
can be used for both cores.

VectorBlox’ Orca (Fig. 5) is a 5-stage core. One interface difference to Pic-
colo and Flute is the possibility of an unknown Next PC in the EX stage, which
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DExIE

Fetch, Decode, Execute|Memory|Writeback
Piccolo |Cache|Writethrough(Bus)

CFS,
SoS

CF:
PC, Instr., Next PC

Reg. Write:
PC, Address, Size, Data

Mem. Store:
PC, Target Reg.,
Data

Fig. 4: RT-LIFE microarchitecture for the Piccolo RISC-V core. Vertical lines
separate the three pipeline stages and the dedicated memory write stages (Cache,
Writethrough(Bus)). Flute is similar, with FE, DE, EX being separated.

DExIE

Fetch|Decode(1)|Decode(2)|Execute|Writeback
Orca |Cache|Writethrough|Bus

CFS,
SoS

CF: PC, Instr.,
Next PC (valid or unknown)

Mem. Store:
Address,Size, Data

CF: Late Next PC

Reg. Write:
PC, Target Reg., Data

Fig. 5: RT-LIFE microarchitecture for Orca RISC-V core. Vertical lines separate
pipeline stages. Note the increased memory write latency.

becomes only known later in the WB stage. Another difference is the addi-
tional clock cycle for memory write accesses after the Execute stage (Cache,
Writethrough, Bus), increasing DL headrom for memory writes.

PicoRV32 (Fig. 6) [12] is a fast-clocked non-pipelined multicycle core, which
already implements the RVFI. PicoRV32 uses an FSM to control the current
instruction’s execution. Figure 6 shows the control FSM extended with RT-LIFE.
A CF-stall blocks all FSM transitions towards the fetch FSM state, which are
also marked as red crosses in Figure 6. The SoS signal only stalls the stmem FSM
state.

fetch ldrs

trap

ldmem

stmem

shift

exec

Reset

DExIE

Mem. Store:
PC, Address, Size, Data

CFS

SoS

CF: PC, Instruction 

Reg. Write:
PC, Target Reg.,Data

Fig. 6: RT-LIFE microarchitecture for PicoRV32 RISC-V core.
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Taiga

DExIE

Fetch
Pre-Decode
Decode, Issue

Branch Unit Load Store Unit ALU

Bus Cache

Writeback, Retire

CFS

SoS

CF: PC, Instr, Next PC

Mem. St.: Address, Size, Data

Reg. Write:
PC, Target Reg., Data

Fig. 7: RT-LIFE microarchitecture for Taiga RISC-V core. Dashed blue horizon-
tal lines separate pipeline stages.

Taiga’s (Fig. 7) [16] execution units work partly independently and in paral-
lel. The elastic pipeline also causes instructions to reach the WB stage possibly
out-of-order, and bypassing of values can happen even earlier. However, the final
WB always happens in-order at retirement time. Our interface’s SoS affects the
Load Store Unit (LSU), which is only stalled if a subsequent write instruction
enters the LSU. Compared to other cores with intermediary AXI busses, Taiga
employs directly attached BRAMs, resulting in a shorter latency for memory
accesses.

VexRiscv (Fig. 8) [17] is a modular core of adaptable pipeline depth with a
plugin-based implementation. It supports RVFI via its FormalPlugin. We imple-
mented a new plugin to externally stall the execute stage. The DBusSimplePlugin
is extended to autonomously stall one cycle, if a CF instruction is directly fol-
lowed by a memory write operation (DL = DL + 1).

DExIE

Fetch|Decode|Execute|Memory|Writeback
VexRiscv |Writethrough(Bus)

CFS,
SoS

CF:
PC, Instr., Next PC

Mem. Store:
Address,Size, Data

Reg. Write:
PC, Target Reg.,
Data

Fig. 8: RT-LIFE microarchitecture for VexRiscv RISC-V core. Vertical lines sep-
arate pipeline stages.
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8 Evaluation

We implemented all designs as Processing Elements (PE) in the FPGA SoC
framework Task Parallel System Composer (TaPaSCo) [20, 23] on the VC709
Xilinx Virtex 7 device prototyping board using Vivado 2018.3 (in this particular
use case 2018.3 reached higher clock frequencies than more recent versions).
This includes the original cores, the RT-LIFE-enabled cores, and the DExIE-
monitored cores. Table 2 shows each core’s RISC-V ISA type, the Hardware
Description Language (HDL) used, and its number of pipeline stages. Regarding
the interface, the table lists two decision latencies. First, it gives the number of
clock cycles between a captured CFI and a subsequent memory store instruction
taking effect. Second, it gives the latency between captured CFI signals and a
subsequent register write instruction taking effect. The number of clock cycles
can be seen directly in the core diagrams, except for PicoRV32 (Sec. 7). For
all cores behavior is constant and identical (therefore not shown in the table)
for plain memory stores (combinatorial DL, can be blocked in time) and GPR
writes (comb. DL, safe to stop directly after malicious GPR write).

The following diagrams (Fig. 9a to 9d) show the fmax, LUTs, register and
BRAM usage for all cores. By comparing each core’s implementation against the
corresponding RT-LIFE-augmented implementation, we show that RT-LIFE it-
self has no or only minimal overheads. In some cases, RT-LIFE seems to even
improve the performance. This is an artifact and unrelated to RT-LIFE. It is
caused by the Xilinx Vivado proprietary logic synthesis flow, which also includes
heuristic algorithms, which may produce slightly better or worse results in dif-
ferent runs, even on the same design. Compared to the other cores, RT-LIFE
shows somewhat higher overheads for PicoRV32 (due to our FSM modifications,
see Fig. 6). Only when combined with a full-blown SecEU like DExIE do the
overheads increase. This is expected, as enforcing fine-grained Control Flow In-
tegrity within only 1-2 clock cycles is quite challenging. The critical path lies
within DExIE for four out of the six cores. With DExIE being attached, the
number of additional stalls introduced ranges from 0 % for the higher clock-
ing, but longer latency PicoRV32, to 10.4 % for Taiga, which employs partially
parallelized execution units. The wall-clock performance penalty with DExIE

Table 2: Characteristics and timing headroom for different RISC-V cores and
CF scenarios

Core
ISA
RV32

HDL
Pipeline
Stages

Cycles betw.
CF & subseq.
memory store

Cycles betw.
CF & subseq.
reg. WB

Flute ACIMU BlueSpec 5 2 2
Orca IM VHDL 5 3 1
Piccolo ACIMU BlueSpec 3 2 2
PicoRV32 IM Verilog Multicycle Core 4 0
Taiga IMA SystemVerilog 3 (var.) 3 2
VexRiscv IM SpinalHDL 5 2 2
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ranges from 0 % for Piccolo, to 134 % for PicoRV32. The latter is the worst-case
scenario, as its fmax suffers most. For all of these tests, DExIE was configured
identical to monitor the execution of Embench-IoT 0.5 draft benchmarks, namely
Aha-Mont64, Edn, Matmult-Int, and Ud.

As we have described in our related work (Sec. 2), we are not aware of any
other portable interface for tracing uncommitted instructions. Thus, we can-
not directly compare RT-LIFE to any similar implementation. Also, attaching
DExIE [32] to one of the many interfaces tracing committed instructions would
be insecure, as the SecEU would no longer be able to stop evil instructions before
taking effect.
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(b) Look Up Tables (LUTs)
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(c) Register usage in Kilobit
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Fig. 9: Maximum frequency in MHz, number of Look Up Tables and Registers,
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9 Conclusion

To the best of our knowledge, RT-LIFE is the first approach for building a
portable security monitoring interface, aiming for reduced latency, guaranteed
timing, and low overhead that captures uncommitted instructions. We identi-
fied and demonstrated these attributes as key requirements for SecEUs with
guaranteed attack prevention, with no or only limited performance overhead.

With its inter-core portability, RT-LIFE can ease future research in the area
of real-time low-overhead SecEUs, with our SecEU DExIE serving as an ini-
tial use-case. Future work will further reduce DExIE’s overhead, and add Data
Flow and Invariant Enforcement to DExIE. The RT-LIFE specifications, the
RT-LIFE-extended RISC-V cores, and a simple demonstration SecEU have been
released as open-source [9].
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