A Framework for the Automatic Generation of FPGA-based Near-Data Processing Accelerators in Smart Storage Systems

TECHNISCHE

UNIVERSITÄT DARMSTADT

Authors

Lukas Weber ESA, TU Darmstadt

Lukas Sommer ESA, TU Darmstadt

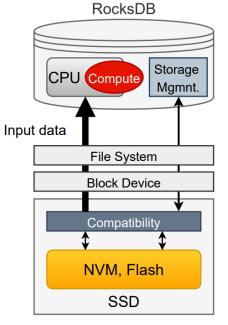
Leonardo Solis-Vasquez ESA, TU Darmstadt

Andreas Koch ESA, TU Darmstadt

Tobias Vincon DBLab, Reutlingen University

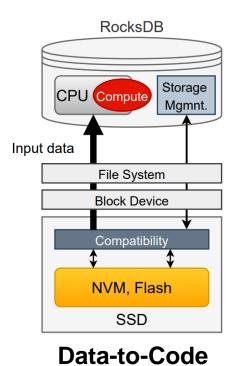
Christian Knödler DBLab, Reutlingen University

Arthur Bernhardt DBLab, Reutlingen University



Ilia Petrov DBLab, Reutlingen University

Near-Data Processing



Data-to-Code

Near-Data Processing

Code-to-Data

Near-Data Processing (NDP)

- Computation **can** happen close to the data
- Intermediate compatibility layers **can** be removed
- Fine-granular control over storage & compute resources

Types of NDP

Software-based

- Removes compatibility layers
- Exploits on-device compute resources

Types of NDP

Software-based

- Removes compatibility layers
- Exploits on-device compute resources

Hardware

- Fully moves computational load to logic resources
- Less softwareinteraction
- Potentially even faster

Types of NDP

Software-based

- Removes
 compatability layers
- Exploits on-device compute resources

Hardware

- Fully moves
 computational load to
 logic resources
- Less softwareinteraction
- Potentially even faster

Hybrid

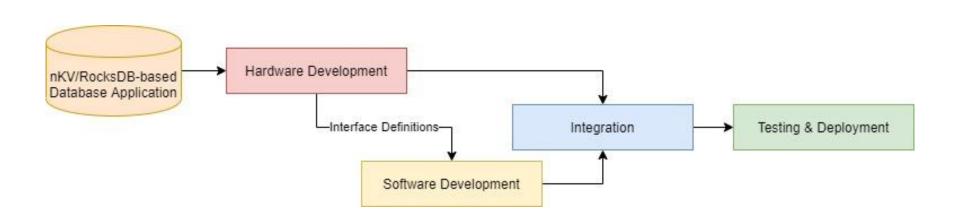
•

- Exploits on-device compute resources
- Exploits available logic resources
- Software-controlled
 - Hardware-accelerated

Downsides of Hybrid/Hardware NDP

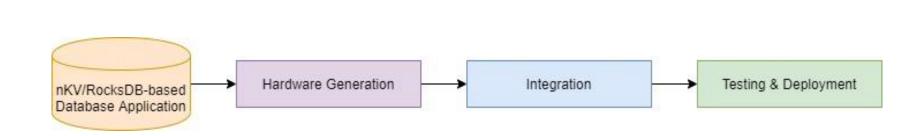
- Requires device-specific knowledge
- Requires background in hardware design
- Typically tedious and time-consuming
 - Long development- & debug-cycles

Application

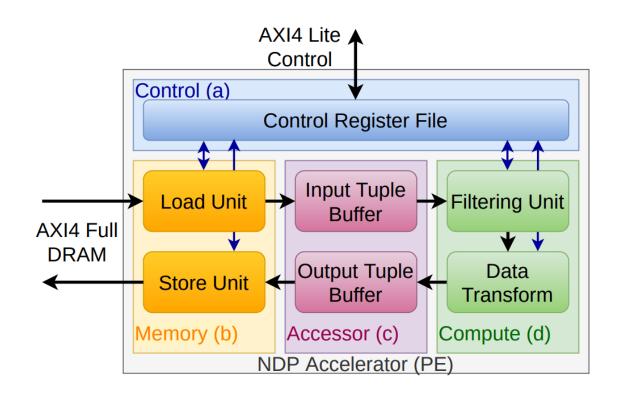


- General-Purpose Key-Value Store Operations:
 - GET: Retrieve the value of a single key
 - SCAN: Retrieve all KV-pairs matching some predicate
- Requests issued by a host-CPU
- Cosmos+ OpenSSD as Smart Storage Device
- Computation happens on-device

Prior Development Flow



Our Development Flow



Generated Accelerators

14.05.2021 | Embedded Systems and Applications Group | Lukas Weber | 13

Advantages

- No knowledge of hardware design necessary
- Processing Elements (PE) and Interfaces are automatically generated
- Integration becomes relatively easy task
 - Similar interfaces for different generated PEs

• Overall: Faster & easier

Further Additions

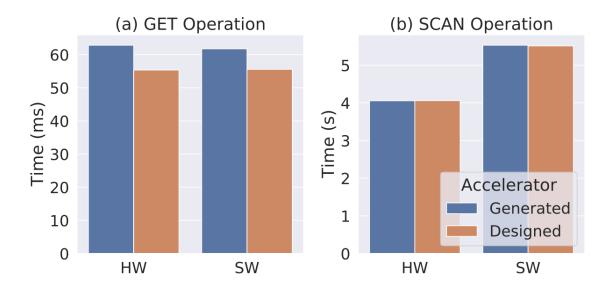
- Multi-Stage Filtering
 - More complex filtering predicates
 - Chaining multiple Filtering Units
- Disregard unimportant data to save logic resources
- Generate from simple annotated C-Code

/* @autogen define parser Point3DTo2D with
chunksize = 32, input = Point3D, output = Point2D,
mapping = {output.x = input.y, output.y = input.z }
*/
typedef struct { uint32_t x, y, z; } Point3D;
typedef struct { uint32_t x, y; } Point2D;

Disadvantages

- Performance?
- Hardware-Utilization?

Disadvantages

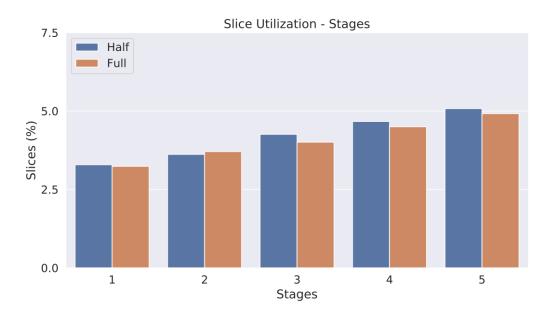

- Performance
- Hardware-Utilization

- Short Answer:
 - Slightly decreased performance
 - Slightly increased utilization

Evaluation – Performance

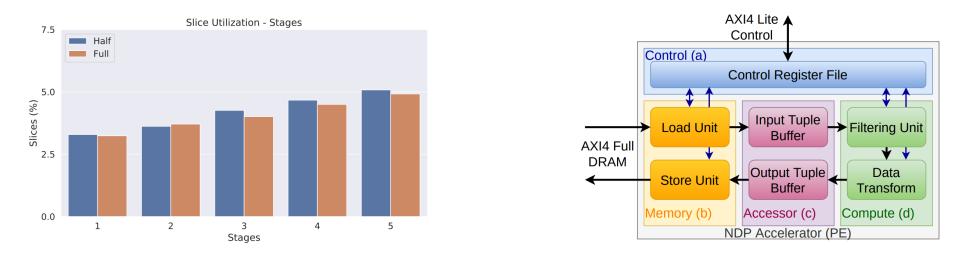
Execution times of GET & SCAN operations

Evaluation – Hardware Utilization


Slice Utilization - Sizes

Slice utilization of generated accelerators

Evaluation – Multi-Stage Filtering



Slice utilization using multiple Filtering Stages

Evaluation – Multi-Stage Filtering

Slice utilization using multiple Filtering Stages

Conclusion

- Similar performance & utilization in comparison to prior work
- Significantly decreased development overhead
- More functionality and flexibility

