
Benchmarking the Performance of Irregular Computations in AutoDock-GPU Molecular
Docking

Leonardo Solis-Vasqueza,d,1,∗, Andreas F. Tillackb,1, Diogo Santos-Martinsb, Andreas Kocha, Scott LeGrandc, Stefano Forlib

aEmbedded Systems and Applications Group. Technical University of Darmstadt, Darmstadt, Germany
bDepartment of Integrative Structural and Computational Biology. The Scripps Research Institute, La Jolla, CA, United States

cNVIDIA Corporation. Santa Clara, CA, United States
dHochschulstr. 10, D-64289, Darmstadt, Germany

Abstract

Irregular applications can be found in different scientific fields. In computer-aided drug design, molecular docking simulations
play an important role in finding promising drug candidates. AutoDock is a software application widely used for predicting
molecular interactions at close distances. It is characterized by irregular computations and long execution runtimes. In recent years,
a hardware-accelerated version of AutoDock, called AutoDock-GPU, has been under active development. This work benchmarks
the recent code and algorithmic enhancements incorporated into AutoDock-GPU. Particularly, we analyze the impact on execution
runtime of techniques based on early termination. These enable AutoDock-GPU to explore the molecular space as necessary, while
safely avoiding redundant computations. Our results indicate that it is possible to achieve average runtime reductions of 50% by
using these techniques. Furthermore, a comprehensive literature review is also provided, where our work is compared to relevant
approaches leveraging hardware acceleration for molecular docking.

Keywords: Variable execution performance, molecular docking, early termination, OpenCL, CUDA, AutoDock
2010 MSC: 00-01, 99-00

1. Introduction

Computational chemistry is a science domain that increas-
ingly leverages the resources of high-performance computing
(HPC) systems. Both academic computing centers [1, 2, 3, 4,
5, 6] and cloud providers [7, 8] deploy the required specialized
software at-scale. Computer-aided drug design, which in turn is
based on computational chemistry methods, has become an im-
portant field, as it contributes to fighting against diseases such
as AIDS [9], cancer [10], and COVID-19 [11].

Molecular docking simulations are among the key methods
used in computer-aided drug design for predicting molecular
interactions at close distances. Specifically, they aim to pre-
dict the binding poses between a small molecule and a macro-
molecular target, each referred to as ligand and receptor, re-
spectively [12]. These simulations can significantly shorten the
time-consuming task of identifying potential drug candidates.
Subsequent wet lab experiments can then be performed in an
informed fashion using an already-narrowed list of promising
ligands, hence reducing the overall need for costly and slow lab
experiments in drug discovery.

According to recent reports [13, 14], more than 60 software
tools for molecular docking have been developed in the last two
decades. The tool discussed in this work, AutoDock, is one of

∗Corresponding author
Email address: solis@esa.tu-darmstadt.de (Leonardo

Solis-Vasquez)
1These authors contributed equally to this work.

the most widely-used open-source applications for simulating
ligand-receptor docking (Fig. 1). As an example of its appli-
cability, AutoDock is being used as a docking engine in Fight-
AIDS@Home as well as in OpenPandemics: COVID-19, which
are world-wide community grid projects to combat AIDS [15]
and COVID-19 [16], respectively.

In contrast to many more traditional scientific computing
codes, AutoDock is challenging from an algorithmic perspec-
tive, as it exhibits irregular behaviors in the form of nested
loops with variable upper bounds and highly divergent control
flows. These are used to explore multiple ligand-receptor in-
teractions, which are quantified by score evaluations that are
typically invoked 106 times in a single simulation run. How-
ever, AutoDock has traditionally been implemented as a single-
threaded application. Thus, in its original form, it was unsuit-
able to exploit the embarrassing parallelism inherent in the ac-
tual docking problem using widespread computing platforms
such as multi-core CPUs or GPUs. This drawback is aggra-
vated when larger and more complex molecular structures need
to be analyzed.

We have been actively developing an enhanced version
of AutoDock, called AutoDock-GPU, which has been par-
allelized and can significantly shorten time-consuming dock-
ing simulations by employing hardware-based acceleration.
AutoDock-GPU has been successfully employed in challeng-
ing prediction competitions [19, 20], as well as deployed on
the Summit supercomputer with the aim to contribute against
the SARS-CoV-2 virus [21]. Currently, the AutoDock-GPU

Preprint submitted to Journal of Parallel Computing October 8, 2021

Binding
pocket

Receptor
(surface)

Receptor
(stick)

Ligand

Figure 1: Binding between a ligand and a receptor of the 3ptb complex. The
receptor is represented simultaneously as surface (surrounding the cavity) and
as sticks (anywhere else). The binding pocket is the cavity on the surface or in
the interior of the receptor that has suitable properties for binding a ligand [17].
This image was created with NGL viewer [18].

project maintains implementations in both OpenCL and CUDA
in its public open-source code repository [22].

Our prior work in [23] is based on AutoDock-GPU v1.2
and discusses how the OpenCL implementation deals with the
irregularity of the docking search problem. This earlier study
analyzes the impact of the molecular complexity on runtime and
the quality of results achievable using different search methods.

This current paper is based on AutoDock-GPU v1.3, an
open-source project with significant contributions from multi-
ple developers at various institutions. The following is a sum-
mary of the major milestones. The original OpenCL version
(predecessor of AutoDock-GPU) was implemented by L. Solis-
Vasquez, A. Koch. Gradient-based optimization was imple-
mented in v1.1 by L. Solis-Vasquez, D. Santos-Martins. Early
termination was introduced in v1.2 by A. F. Tillack. The CUDA
version was ported from the OpenCL code and deterministic
gradients [24] were added by S. LeGrand. The resulting code
was then successively added to v1.3 by Jeff Larkin (NVIDIA)
and A. F. Tillack.

Therefore, extending the prior results in [23], this cur-
rent paper benchmarks the overall performance as well as the
runtime impact of recent algorithmic improvements added to
both the OpenCL and CUDA implementations. The algorith-
mic improvements in AutoDock-GPU v1.3 are based on early-
termination methods, so that unproductive computations can be
safely avoided. Thus, the new contributions of this paper are
the following2:

1. Discussion of code optimizations in v1.3, which relate to
robustness, feature parity, and exploitation of hardware-
specific features. In addition to evaluating such optimiza-
tions, we compare the performance of AutoDock-GPU
v1.3 against that of v1.2.

2. Evaluation of algorithmic optimizations in v1.3, which
feature the autostop and heuristics options to terminate
AutoDock-GPU executions early.

3. A comprehensive literature review of parallelized or
hardware-accelerated molecular docking, where we com-
pare and contrast the different approaches with our own
solution.

In contrast to our previous work, which also examined per-
formance on multi-core CPUs, this work focuses on modern
GPUs. Particularly, our main experiments were performed on
recent NVIDIA A100 GPUs.

This manuscript contents are organized as follows. First,
Section 2 provides an overview of AutoDock-GPU’s function-
ality. Section 3 discusses the performance and algorithmic en-
hancements in v1.3. The experimental setup is described in
Section 4, while the corresponding results are analyzed in Sec-
tion 5. A review of the current state of the art is presented in
Section 6. This paper concludes in Section 7, where it sum-
marizes the outcomes and provides some directions for future
work.

2. Functionality Overview

An extensive discussion on AutoDock-GPU’s functionality
is provided in our previous studies [23, 25]. This section is a
self-contained summary that emphasizes the factors that con-
tribute to the irregular executions of the program.

AutoDock-GPU, as other software applications for molec-
ular docking, systematically explores several poses of a ligand,
i.e., its spatial geometrical arrangements, and aims to find the
pose that binds strongly to a given region on the receptor sur-
face. As shown in Fig. 2, AutoDock-GPU encodes such pose
using the degrees of freedom (translational, orientational, tor-
sional) experienced by the ligand during simulation. Hence, for
a ligand with Nrot rotatable bonds, each of its poses is encoded
as {x, y, z, φ, θ, α, ψ1, ψ2, . . . , ψNrot }, where each set element
is later referred to as a gene.

The pose strength is quantified with a score, which is com-
puted via a scoring function (SF). AutoDock-GPU uses as
a scoring function a semi-empirical physics-based free-energy
force field (kcal/mol), which models atomic interactions such
as Van der Waals, hydrogen bonding, electrostatics, desolva-
tion, as well as the overall entropy [26]. The score depends on
the interatomic distances, which vary when a new pose is gener-
ated. The execution time of the score evaluation increases when
number of ligand atoms (Natom) is larger. As will be detailed
shortly, scores are evaluated in the order of million times per
optimization run (Section 2.1), while the mathematical deriva-
tives of the score are used to drive the optimization more effi-
ciently (Section 2.2).

2Precisely speaking, the versions of AutoDock-GPU referred in this paper
correspond to commits 8fea425 (v1.3) and eed190f (v1.2) in the code repos-
itory on GitHub [22].

2

A B

C D

E

H

I

J

K

L

M
O

N

FG

Translation (x, y, z)

Orientation (φ, θ, α)

Torsion (ψ1)

Torsion (ψ2)

Figure 2: Degrees of freedom of a theoretical ligand molecule. Atoms are
labelled with the A, B, C, . . . , O characters, while bonds between atoms are
depicted as connecting lines. Each rotatable bond (E–H and I–J) is associated
to a torsion, namely the rotation of affected ligand atoms around the rotatable-
bond axis.

2.1. Lamarckian Genetic Algorithm
The docking engine in AutoDock-GPU is a Lamarck-

ian Genetic Algorithm (LGA), which performs a systematic
optimization of molecular poses. By employing an LGA,
AutoDock-GPU maps these pose representations into biologi-
cal evolution elements, and optimizes the latter through genetic
operations.

Particularly, AutoDock-GPU treats each pose as an individ-
ual of a genetic population. Each individual is represented by
its genotype, which in turn is composed of a set of genes. New
individuals are generated through genetic operations from their
genetic ancestors. The LGA in AutoDock-GPU couples a ge-
netic algorithm (GA) and a local search (LS). The GA performs
crossover, mutation, and selection operations. The poses pro-
duced by the GA are refined by LS, which is a local minimiza-
tion procedure. More details on LS methods are provided in
Section 2.2. AutoDock-GPU performs independent LGA-runs
(Algorithm 1: line 2), whose number by default is R = 100. A
single LGA run terminates when a pre-defined maximum num-
ber of score evaluations (default: NMAX

score-evals = 2’500’000) or
generations (default: NMAX

gens = 27’000) is reached, whichever
comes first (Algorithm 1: line 3).

Algorithm 1: Lamarckian Genetic Algorithm (LGA)
1 Function AutoDock-GPU

/* Coarse-Level Parallelism */

2 for each LGA-run do
3 while (Nscore-evals < NMAX

score-evals) and (Ngens < NMAX
gens) do

/* Medium-Level Parallelism */

4 GA (population)
/* Medium-Level Parallelism */

5 for individual in random-subset (population) do
6 LS (get-genotype (individual))

2.2. Local Search
A local-search component refines the poses generated

by the GA. Several alternative methods have been incorpo-

rated as LS and evaluated in AutoDock-GPU. Among these,
and depending on the molecular complexity, two different
methods produce the best scores and poses: Solis-Wets and
ADADELTA. Basically, both methods generate new genotypes
using an initial one as a starting point, while aiming to minimize
the score with every attempt. However, these two methods dif-
fer in the way they generate genotypes.

Solis-Wets [27] generates new genotypes by adding or sub-
tracting small random delta changes to each gene of an initial
genotype. At each iteration, the change size is either increased
or decreased depending on whether the number of consecu-
tive successful (i.e., score is minimized) or failed attempts is
greater than four, respectively. Solis-Wets has divergent exe-
cution paths that depend on the outcome of the score compar-
ison (Algorithm 2: lines 6, 12). Moreover, Solis-Wets has a
runtime-defined termination (Algorithm 2: line 2), i.e., either
when the number of LS iterations reaches the maximum (de-
fault: NMAX

LS−iters = 300), or the change size reaches its minimum
(default: stepMIN = 0.01).

Algorithm 2: Solis-Wets (SW) local search
/* Fine-Level Parallelism */

1 Function SW (genotype)
2 while (NLS-iters < NMAX

LS-iters) and (step > stepMIN) do
3 delta = create-delta (step)

// new-genotype1

4 for each gene in Ngenes do
5 new-gene1 = gene + delta

6 if SF (new-genotype1) < SF (genotype) then
7 genotype = new-genotype1
8 success++; fail = 0

9 else
// new-genotype2

10 for each gene in Ngenes do
11 new-gene2 = gene - delta

12 if SF (new-genotype2) < SF (genotype) then
13 genotype = new-genotype2
14 success++; fail = 0

15 else
16 success = 0; fail++

17 step = update-step (success, fail)

Instead of random deltas, ADADELTA [28] generates new
genotypes by using gradients calculated from the score of
an initial genotype. The higher computational complexity in
ADADELTA compared to Solis-Wets is due to the gradient cal-
culation (GC) involving analytic and numerical derivatives (Al-
gorithm 3: lines 2, 7), as well as due to the update rule us-
ing information of past gradients (Algorithm 3: line 4). An
extended mathematical background and impact on pose predic-
tion of ADADELTA is provided in our previous work [25]. This
method is also characterized by a divergent execution that de-
pends on whether the score was minimized (Algorithm 3: line
5).

Performing the local search takes more than 90% of
the overall execution time. In the original single-threaded
AutoDock program, only 6% of the population was sub-

3

Algorithm 3: ADADELTA (AD) local search
/* Fine-Level Parallelism */

1 Function AD (genotype)
2 gradient = GC (genotype)
3 while (NLS-iters < NMAX

LS-iters) do
4 new-genotype = update-rule (genotype, gradient)
5 if SF (new-genotype) < SF (genotype) then
6 genotype = new-genotype

7 gradient = GC (genotype)

Table 1: Mapping of AutoDock-GPU computations onto OpenCL elements.
The parallelization levels are also indicated as comments in Algorithms 1, 2, 3.

Computations OpenCL elements Parallelization level
GA/LS generation Kernel Coarse

Individual Work-Group Medium
Scoring/Gradient Work-Item Fine

jected to local search in order to avoid excessively long exe-
cutions while achieving relatively good pose predictions. In
AutoDock-GPU, as it is typically run on GPUs equipped with
thousands of cores, the local-search rate (lsrate) was increased,
with 80% being the default for AutoDock-GPU v1.3.

3. Performance Enhancements

This section describes the overall parallelization strategy
and highlights the differences between the OpenCL and CUDA
variants. Moreover, it discusses the recent new features incor-
porated in the tool after the last publication.

3.1. Parallelization

The OpenCL implementation is based on the mapping
of AutoDock-GPU computations onto OpenCL elements (Ta-
ble 1). This mapping allows us to parallelize the computation
in the structure visualized in Fig. 3.

An AutoDock-GPU execution performs R independent
LGA runs, where runs are represented with indexes RunID =

{0, 1, 2, . . . , R-1}. In every LGA run, a population of P indi-
viduals, with indexes IndID = {0, 1, 2, . . . , P-1}, are processed
through GA and LS. Particularly, AutoDock-GPU processes si-
multaneously individuals from different LGA runs. Thus, R×P
individuals are mapped each to an OpenCL work-group. The
relation between their indexes is ruled as follows: WGID =

RunID × P + IndID. Either GA or LS generate new individu-
als through their respective genetic or local methods applied on
genotypes. Furthermore, GA and Solis-Wets LS involve score
evaluations, while ADADELTA LS additionally computes gra-
dients. The generation, scoring, and gradient calculations are
fine-grained tasks carried out by OpenCL work-items.

The CUDA variant was developed using the OpenCL code
as a starting point. This port was motivated by the interest of
using AutoDock-GPU for COVID-19 research on the Summit
supercomputer [21]. The computing nodes of Summit are com-
posed of POWER9 CPUs and NVIDIA GPUs, where OpenCL

Run 0
LGA

Run <ID>
... LGA ...

Run R-1
LGA

0
Ind

1
Ind ...

P-1
Ind ...

<ID>
Ind ...

0
Ind ...

P-1
Ind

0
WG

1
WG ...

P-1
WG ...

<ID>
WG ...

P(R-1)
WG ...

PR-1

WG

GA / LS generation

Score / Gradient calculation

wi0 wi1 wiL−1...Parallelization level

COARSE

MEDIUM

FINE

Figure 3: Visualization of AutoDock-GPU computations being mapped onto
OpenCL elements. Basically, a population processed by an LGA run (RunID)
is decomposed into their individuals, and each individual (IndID) is mapped
onto a work-group (WGID). Fine-grained tasks are processed by work-items
(wi0 . . .wiL−1).

is not supported. Analogously to the OpenCL case, AutoDock-
GPU computations are mapped to CUDA processing elements
at different granularities. Since both APIs as well as their un-
derlying work-distribution mechanisms strongly resemble each
other, the above index mapping (initially conceived for the
OpenCL code) is also valid for the CUDA variant. Therefore,
the initial approach of code transitioning was to replace the
OpenCL processing elements (work-groups, work-items) with
their respective CUDA counterparts (thread-blocks, threads).

Prior to AutoDock-GPU v1.3, a number of hardware-
related optimizations were applied on top of the CUDA base-
line. One of these was the enhancement of parallel reductions
by explicit warp-level programming. This is based on CUDA
primitives that allow a more efficient data exchange between
warp threads. Using the shfl sync() intrinsic, it is possible
to move a value from one thread to other active threads within
a warp, without accessing shared memory, but employing
registers instead [29]. In order to ensure the correct execution
of all parallel reductions, the size of CUDA blocks was required
to be an integer multiple of 32 threads. Note that this require-
ment does not apply to the OpenCL variant, since OpenCL
lacks low-level programming capabilities for expressing such
warp- or wavefront-level optimizations

3.2. Recent improvements

The development of AutoDock-GPU from v1.2 to v1.3 has
significantly improved the robustness, feature parity between
the OpenCL and CUDA variants, and the use of hardware-
specific optimization. Regarding robustness, to avoid code di-
vergence of the OpenCL and CUDA versions, and issues such
as passing different parameters to the OpenCL and CUDA vari-

4

ant of a given kernel, the host code of both variants has been
carefully unified.

As a good practice for code maintenance, improvements
found in one variant of the tool are ported to the other one
for feature parity (if appropriate). In particular, the OpenCL
code in AutoDock-GPU v1.2 included an extra set of Solis-
Wets hyper-parameters, which were introduced as additional
variables (dependent of Natom and Nrot) to control the genotype
deviation at every Solis-Wets iteration (Algorithm 2). This fea-
ture was ported to the CUDA variant during the development of
AutoDock-GPU v1.3.

With regard to hardware-specific optimizations, a number
of changes have been incorporated into the CUDA variant.
The first one is the dynamic allocation of shared memory.
This contrasts with the static allocation used in the OpenCL
local memory counterpart, where the allocation size is known

at compile time. The second change is the addition of the
launch bounds qualifier to the kernel implementations. Ac-

cording to [29], a kernel using fewer registers may, in turn,
increase the number of threads and thread-blocks residing on
a CUDA streaming multiprocessor (for more details see Sec-
tion 5). The compiler uses heuristics to minimize the register
usage, and a developer can provide hints for the heuristics us-
ing the above qualifier. Since the optimal values for the param-
eters of this qualifier differ across architectures, Listing 1 shows
how the CUDA ARCH macro is used to specify them in a portable
manner. The required parameters are two, namely, the maxi-
mum number of threads per block (NTHREADS BLOCK), and the
desired minimum number of blocks per streaming multiproces-
sor (NBLOCKS A and NBLOCKS B).

Listing 1: Usage of the launch bounds qualifier.

1 #define NBLOCKS_A (1024 / NTHREADS_BLOCK)
2 #define NBLOCKS_B (1408 / NTHREADS_BLOCK)
3
4 __global__ void
5 #if (__CUDA_ARCH__ == 750) // Turing architecture
6 __launch_bounds__ (NTHREADS_BLOCK , NBLOCKS_A)
7 #else
8 __launch_bounds__ (NTHREADS_BLOCK , NBLOCKS_B)
9 #endif

10 gpu_perform_LS_kernel (...)

Furthermore, AutoDock-GPU features new mechanisms to
avoid unproductive searches. These are based on the early
termination of the search procedure, and consequently, avoid
spending computational resources when it is likely that, ei-
ther the best poses have been found, or their quality cannot be
improved with further iterations. Although such mechanisms
were present in AutoDock-GPU v1.2, these were not evaluated
in our previous work [23]. Since then, improved versions of
these mechanisms were incorporated in AutoDock-GPU v1.3.
Concretely, the autostop option allows AutoDock-GPU to stop
the LGA execution prematurely, i.e., before reaching NMAX

score−evals
score evaluations (Algorithm 1: line 3). With this option en-
abled, an early termination due to already-achieved conver-
gence is possible if the top-scored poses above a threshold –
determined by the previously-tested top poses – exhibit score
changes less than 0.15 kcal/mol over a configurable check in-
terval. The default interval leads to checking for optimization
progress every five generations.

Complementarily, the new heuristics option is based on an
adaptive termination criterion that also prevents AutoDock-
GPU from running unreasonably long executions. For this
purpose, heuristics utilizes instead an alternative value of
NMAX

score−evals (Algorithm 1: line 3). Such alternative value de-
pends on two terms. The first one is heurevals (Equation 1),
which depends on the number of rotatable bonds (Nrot) as well
as the set of constants (a and b) that vary according to the se-
lected local-search method. The second term is NMAX−HEURIS

score−evals ,
which is the maximum number of score evaluations under
heuristics (default: 50’000’000). Equation 2 shows how the
alternative value of NMAX

score−evals is calculated. Furthermore, the
(capped) number of evaluations suggested by the heuristics op-
tion can be finished sooner when autostop (if also enabled) de-
tects early convergence.

heurevals = ceil (1000 × 2 a×Nrot+b) (1)

NMAX
score−evals = ceil

heurevals × NMAX−HEURIS
score−evals

heurevals + NMAX−HEURIS
score−evals

 (2)

4. Methodology

In all our experiments, we used AutoDock-GPU v1.3, un-
less otherwise indicated. The program execution and runtime
measurements were fully automated using bash and Python
scripts. The dataset used has been publicly released and is prop-
erly documented. Details of the archive repositories hosting the
sources and data are given in Section 8. Finally, the perfor-
mance evaluation was carried out on compute systems featuring
recent GPUs in both consumer and professional versions.

From the many different protocols possible for validating
docking [30], our experiments consist of re-docking. In this
approach, already-studied ligand-receptor inputs are docked
again, so that resulting ligand poses can be compared to well-
known reference solutions.

4.1. Program configuration

AutoDock-GPU executions perform 100 LGA runs over a
population of 150 individuals. The maximum number of score
evaluations per LGA run was set to 2’500’000. The maximum
number of generations (per LGA run) was set to 99’999, which
is larger than the default value of 27’000. The purpose of this
choice is to ensure the program termination happens only when
the number of score evaluations reaches the aforementioned up-
per bound. In all cases, the entire population is subjected to
local search (lsrate = 100%). Other parameters were left as
default [31]. Table 2 lists program parameters and their config-
urations.

For evaluating the efficiency of the early-termination op-
tions, the corresponding defaults are used. Namely, when using
autostop, the program was configured to automatically stop af-
ter reaching a deviation of stopstd = 0.15 kcal/mol compared
to the best score achieved five generations before (asfreq = 5,
unless specified otherwise). Moreover, the default number of
score evaluations under heuristics is 50’000’000.

5

Table 2: Configuration of AutoDock-GPU parameters in our evaluation.

Parameter Value Description

R 100 Number of LGA runs
P 150 Population size

lsrate 100% Population subset undergoing LS

NMAX
score−evals 2’500’000 Maximum number of score evaluations

NMAX
gens 99’999 Maximum number of generations

stopstd
0.15 Threshold of score deviation causing

[kcal/mol] early termination due to autostop

asfreq 5
Number of generations used
as a repetition interval for the
std. deviation check in autostop

NMAX−HEURIS
score−evals 50’000’000 Maximum number of score

evaluations under heuristics

Table 3: Input dataset used in our evaluation.

ID 1u4d 1xoz 1yv3 1owe 1oyt 1ywr 1t46 2bm2 1mzc 1r55

Nrot 0 1 2 3 4 5 6 7 8 9
Natom 23 30 23 27 34 38 40 33 38 27

ID 5wlo 1kzk 3s8o 5kao 1hfs 1jyq 2d1o 3drf 4er4 3er5

Nrot 10 11 12 15 18 20 23 26 30 31
Natom 46 45 44 44 54 60 44 63 93 108

4.2. Dataset

Similarly as in our previous experiments in [23], a set of 20
ligand-receptor inputs was selected from well-established sets
for assessing molecular docking methodologies. Our dataset
is composed of eleven entries from Astex [32] (IDs: 1u4d,
1xoz, 1yv3, 1owe, 1oyt, 1ywr, 1t46, 2bm2, 1mzc, 1r55, 1kzk),
four from CASF-2013 [33] (IDs: 3s8o, 1hfs, 1jyq, 2d1o), and
five from the Protein Data Bank (PDB) [34] (IDs: 5wlo, 5kao,
3drf, 4er4, 3er5). Table 3 indicates the number of rotatable
bonds and atoms for each input case. This dataset covers up
to 31 rotatable bonds, which is a large range considering that
AutoDock-GPU, from v1.3 onwards supports a maximum of
58 rotatable bonds (NMAX

rot = 58).

4.3. Evaluation platforms

Table 4 lists the main technical specifications of the GPU
cards used in our evaluation. Such devices feature recent archi-
tectures, as well as provide a varied range of compute capabili-
ties that theoretically achieve from ∼9.1 TFLOPs and 448 GB/s
on the RTX 2070 SUPER, up to ∼19.5 TFLOPs and 1’555 GB/s
on the A100.

For a fair comparison, we disregard the different host plat-
forms holding the various GPUs. Specifically, we include only
the GPU-side kernel configuration and execution, plus all re-
quired host-GPU data movements in our measurements. Such
time components are collectively reported as docking runtime.
Host-side operations, such as file I/O and results processing,
were not included and are considered as idle time (from the
GPU perspective).

Table 4: Technical characteristics of the GPU cards used in our evaluation. In
all cards, the system connectivity was PCIe Gen3 x16. The number of OpenCL
compute units (CUs) was obtained with the clinfo utility.

Characteristic RTX 2070 V100 A100SUPER
Vendor NVIDIA NVIDIA NVIDIA
Architecture Turing Volta Ampere

Frequency (boost) 1.77 GHz 1.38 GHz 1.41 GHz
Cores 2’560 5’120 6’912
FP32 performance 9.1 TFLOPS 14.1 TFLOPS 19.5 TFLOPS

Memory subsystem GDDR6 HBM2 HBM2e
Memory bandwidth 448 GB/s 897 GB/s 1’555 GB/s
Memory capacity 8 GB 32 GB 40 GB

Driver support CUDA 11 CUDA 11 CUDA 11
OpenCL CUs 40 80 108

5. Results and Discussion

We begin the evaluation by determining suitable configura-
tion choices. Then, we compare the runtimes achieved by using
our current and prior baseline work. Finally, we show the im-
pact of the new autostop and heuristics options.

5.1. Runtime-based performance

At this point, it is important to note that an OpenCL com-
pute unit (CU) is a hardware block that processes a single
OpenCL work-group (WG) at a time. Basically, the more
CUs are available, the more WGs can be processed in paral-
lel. A CUDA streaming multiprocessor (SM) corresponds to an
OpenCL CU [35], thus analogously, the more SMs are avail-
able, the more thread blocks (TB) can be processed simultane-
ously. Table 4 indicates that for all chosen GPU cards, the ratio
between the number of cores and OpenCL CUs is 64, suggest-
ing that the optimal size for a WG would be of 64 work-items.

Fig. 4 shows the docking runtimes using three input cases:
1u4d, 2bm2, and 3er5. In terms of workload amount, 1u4d

and 3er5 are the corner cases. From an algorithmic per-
spective, 2bm2 represents a threshold case, because for inputs
with Nrot > 7, ADADELTA starts becoming more effective
than Solis-Wets at predicting molecular poses [25]. Consid-
ering these three input cases as well as both Solis-Wets and
ADADELTA methods, it can be observed that OpenCL run-
times (Fig. 4, left) tend to be lower when using WGsize of either
64 or 128 work-items. Although there are some few exceptions,
this is a general tendency observed using our dataset, and goes
in line with the aforementioned ratio of number of cores and
CUs. In the case of CUDA runtimes (Fig. 4, right), minimum
values are achieved mostly for TBsize of 32 threads. An excep-
tion to this in the CUDA version happens when docking 3er5

using Solis-Wets. In this case, lower runtimes are achieved by
using blocks of 64 threads on all GPU cards. Based on these
results, there is no single WGsize or TBsize configuration that
works best for all cases. Hence, a future optimization would
be to enable AutoDock-GPU to automatically choose sizes that
are likely to result in faster executions (see Section 7).

Nevertheless, similar to our previous work [23], we think
64 work-items or threads is a reasonable choice for WGsize or

6

32 64 128 256
100

100.5

101

1u
4d

OpenCL

32 64 128 256
100

100.5

101

CUDA

32 64 128 256

100.5

101

101.5

2b
m

2

32 64 128 256

100.5

101

101.5

32 64 128 256

101.5

102

WGsize

3e
r5

32 64 128 256

101.5

102

TBsize

D
oc

ki
ng

ru
nt

im
e

(s
)

RTX2070 V100 A100
Solis-Wets
ADADELTA

Figure 4: Impact on docking runtime of various OpenCL work-group / CUDA
thread-block sizes.

TBsize, respectively. Thus, we employed this configuration to
compare the performance between all GPU cards. For that
purpose, we consider the geometric mean of runtime values
corresponding to the entire dataset (Fig. 5). Despite that the
OpenCL and CUDA runtimes seem similar at first glance, slight
differences can be found. For instance, when running Solis-
Wets on the RTX2070, OpenCL runtimes (12.8 s) are in av-
erage a bit lower than those of CUDA (13.2 s). Conversely,
for ADADELTA on the RTX2070, CUDA runtimes (25.1 s) are
lower than the respective OpenCL average (27.1 s). Consider-
ing only raw compute capabilities (Table 4, FP32 performance),
the V100 GPU lies in the middle between the RTX2070 and the
A100 GPUs. Particularly, on the V100, for both Solis-Wets
and ADADELTA, both OpenCL and CUDA variants have vir-
tually the same performance. Regarding the A100, the average
OpenCL runtimes are lower than those of CUDA for both Solis-
Wets (4.1 s vs. 6.0 s) and ADADELTA (7.6 s vs. 10.7 s). The
maximum runtimes occur when processing the 3er5 input.

From previous experiments, it is clear that faster executions
(i.e., lower runtimes) are achieved on the A100 GPU. Using this
device, we compare the performance of AutoDock-GPU v1.2
(used in our previous work [23]) and AutoDock-GPU v1.3 (our
work here). Since [23] reported only total execution runtimes,
we will also examine AutoDock-GPU v1.3 in the same way. It
is important to note that this is different from the other measure-
ments in this paper, which report only the docking runtimes,
i.e., the GPU-side and data movement times.

Fig. 6 indicates that for Solis-Wets, the average total run-

RTX2070 V100 A100

0

20

40

60 59.2

29.1

21.6

54.0

29.0
26.0

12.8
6.6 4.1

13.2
6.6 6.0

12.8
6.6 4.1

13.2
6.6 6.0

S
olis-W

ets

RTX2070 V100 A100

0

50

100

150
161.8

73.0

52.2

157.4

72.8
56.5

27.1
13.1 7.6

25.1
13.1 10.7

27.1
13.1 7.6

25.1
13.1 10.7

A
D

A
D

E
LTA

D
oc

ki
ng

ru
nt

im
e

(s
)

OpenCL CUDA

Maximum

Geo. mean

Figure 5: Geometric mean and maximum values of docking runtimes.

Solis-Wets ADADELTA

6.5

32.1

5.2
8.87.0

11.8

To
ta

lr
un

tim
e

(s
)

v1.2 (OpenCL) v1.3 (OpenCL) v1.3 (CUDA)

Figure 6: Geometric mean of total runtimes achieved on the A100 GPU using
v1.2 (our previous work [23]) and v1.3 (Fig 5).

time (GPU and host) of the OpenCL code has been reduced
from 6.5 s (v1.2) down to 5.2 s (v1.3) on the A100 GPU. In-
terestingly, the v1.3 CUDA code is executed a bit slower on
the A100 (7.0 s) than either the v1.3 or v1.2 OpenCL codes.
ADADELTA sees a significant speedup of more than 3.5× for
the OpenCL codes from the v1.2 to the v1.3 code on the A100.
Similar to Solis-Wets, the CUDA implementation of the v1.3
ADADELTA algorithm remains a bit slower than the OpenCL
code. Since both OpenCL and CUDA versions in AutoDock-
GPU v1.3 perform virtually identical computations, we believe
such performance advantage of OpenCL over CUDA might be
caused by several factors. One of these is the implemented on-
device memory allocation, which for the OpenCL version is
performed statically (in contrast to the dynamic allocation in
the CUDA version), and thus, possibly enabling the compiler
to perform more aggressive optimizations. We will investigate
this, and update the code correspondingly in future releases.

5.2. Autostop and heuristics
For these experiments, we continue using WGsize / TBsize

of 64 work-items/threads on the A100. For testing the au-
tostop option, executions were configured with different as-

7

OpenCL (no ”AS”): 4.1

CUDA (no ”AS”): 5.9

OpenCL CUDA

3

4

5

6

2.9

3.9
3.6

5.4

4.1

5.9

4.1

6.0

4.1

5.9

S
olis-W

ets

OpenCL (no ”AS”): 7.6

CUDA (no ”AS”): 10.7

OpenCL CUDA

4

6

8

10

2.7

3.94.0

6.5
5.8

8.0

6.7

9.2

6.9

10.1

A
D

A
D

E
LTA

D
oc

ki
ng

ru
nt

im
e

(s
)

5 10 15 20 25
asfreq

Figure 7: Geometric mean of docking runtimes achieved on the A100 GPU
using autostop at different repetition intervals (asfreq). Horizontal lines cor-
respond to the geometric mean of docking runtimes achieved without autostop
(Fig 5).

freq values. Fig. 7 depicts how the docking runtimes vary
when asfreq is equal to {5, 10, 15, 20, 25}. The numbers for
both LS methods (Solis-Wets, ADADELTA) and code variants
(OpenCL, CUDA) indicate two things: First, increasing the as-
freq value, i.e., causing AutoDock-GPU to check less often
whether there is score improvement, increases the runtime with
respect to when asfreq = 5. Second, due to the earlier termi-
nation, the average runtimes were reduced for all asfreq values
so far tested. Particularly, comparing the best autostop case
(asfreq = 5) against the baseline (without autostop, Fig. 5),
we achieved runtime reductions of 24% (OpenCL) and 35%
(CUDA) for Solis-Wets, and 65% (OpenCL) and 63% (CUDA)
for ADADELTA.

In order to have a broader understanding of autostop’s im-
pact, we consider as evaluation metrics not only the docking
runtime, but also the quality, measured by the score (Section 2)
and the root mean square deviation (RMSD). Scores represent
binding free energies, and thus, higher (better) scores corre-
spond to negative values (in kcal/mol) with larger magnitudes.
The RMSD estimates the geometrical deviation (in Å) of a re-
sulting pose with respect to a referencial one. A lower RMSD
is preferred, as it indicates a better geometrical match.

Table 5 reports the docking runtime, as well as the score and
RMSD values achieved by the resulting highest-scoring pose
in a given subset of molecules. The most significant runtime
reductions due to autostop happen for the smaller molecules
(e.g., 1u4d, 2bm2). In the 1u4d case, for Solis-Wets, the run-
time was reduced from 1.36 s down to 0.48 s. Such runtime
improvement was achieved with a low score degradation (from
-7.27 kcal/mol to -7.26 kcal/mol), while with a small improve-
ment in RMSD (from 1.36 Å to 1.35 Å). For ADADELTA,

Table 5: Docking runtimes (s), scores (kcal/mol), and RMSDs (Å) achieved
using the OpenCL version, with and without the autostop option, on the A100
GPU. The best values within each case are colored.

LS ID Metric No autostop autostop

So
lis

-W
et

s

1u4d

Runtime 1.36 s 0.48 s
Score -7.27 kcal/mol -7.26 kcal/mol

RMSD 1.36 Å 1.35 Å

2bm2

Runtime 2.92 s 2.90 s
Score -10.09 kcal/mol -10.54 kcal/mol

RMSD 2.01 Å 5.28 Å

3er5

Runtime 21.61 s 21.58 s
Score -8.92 kcal/mol -9.56 kcal/mol

RMSD 4.92 Å 3.78 Å

A
D

A
D

E
LT

A

1u4d

Runtime 1.69 s 0.52 s
Score -7.27 kcal/mol -7.27 kcal/mol

RMSD 1.36 Å 1.36 Å

2bm2

Runtime 4.89 s 2.23 s
Score -10.59 kcal/mol -10.59 kcal/mol

RMSD 5.31 Å 5.30 Å

3er5

Runtime 52.15 s 52.25 s
Score -14.74 kcal/mol -13.93 kcal/mol

RMSD 4.57 Å 5.04 Å

the runtime was reduced from 1.69 s down to 0.52 s, with no
penalties in the score or in RMSD. In the 2bm2 case, for Solis-
Wets, there is an score improvement (from -10.09 kcal/mol to
-10.54 kcal/mol) along with a significant RMSD degradation
(from 2.01 Å to 5.28 Å). The minor benefits in runtime may
indicate that the docking search was trapped in a local mini-
mum during this execution. For ADADELTA processing the
2bm2 input, by using autostop, we required a shorter runtime
(2.23 s instead of 4.89 s) to achieve the same score value (-
10.59 kcal/mol) and a slightly better RMSD (5.30 Å instead of
5.31 Å). In case of large molecules, autostop may provide few
(e.g., 3er5 for Solis-Wets), or even no advantages (e.g., 3er5
for ADADELTA). As specified in Section 3.2, the stop criterion
in autostop is based on the score improvement rather than the
runtime of its non-autostop counterpart. Therefore, for cases
involving a challenging docking search (e.g., 3er5, Nrot = 31),
it is possible that AutoDock-GPU improves the score slowly as
it progresses over generations, while having the time overhead
due to the additional score checking required for the autostop
functionality.

In addition, Fig. 8 shows the impact on runtime of using
the heuristics options as well as that of the combination of au-
tostop + heuristics. Despite not being as effective as autostop,
the heuristics option still provides performance improvements
over the aforementioned baseline. Furthermore, the combi-
nation of both options leads to average runtime reductions of
53% (OpenCL) and 55% (CUDA) for Solis-Wets, and 73%
(OpenCL) and 76% (CUDA) for ADADELTA.

5.3. Performance comparison between GPUs and CPUs
Up until this point, the impact of the autostop and heuris-

tics options has been evaluated only on the A100 GPU. Here,
to extend our evaluation, we report the achieved performance
on a CPU-based platform and compare it against that on the
A100 GPU. For these experiments, we have chosen an AWS
c5.24xlarge instance [36] based on an Intel Xeon Platinum 8275

8

OpenCL (no ”AS”, no ”HEUR”): 4.1

CUDA (no ”AS”, no ”HEUR”): 5.9

OpenCL CUDA

2

4

6

8

2.9

3.9

3.1

4.1

1.9
2.7

S
olis-W

ets

OpenCL (no ”AS”, no ”HEUR”): 7.6

CUDA (no ”AS”, no ”HEUR”): 10.7

OpenCL CUDA

5

10

2.7
3.9

3.0
4.0

2.0 2.5

A
D

A
D

E
LTA

D
oc

ki
ng

ru
nt

im
e

(s
)

asfreq = 5 heur asfreq + heur

Figure 8: Geometric mean of docking runtimes achieved on the A100 GPU
using either autostop (asfreq = 5), heuristics, or both combined. All cases
result in lower runtimes compared to the baseline (no autostop, no heuristics).

A100 c5.24xlarge

1.9

54.8

2.0

51.6

D
oc

ki
ng

ru
nt

im
e

(s
)

Solis-Wets (OpenCL) ADADELTA (OpenCL)

Figure 9: Geometric mean of docking runtimes achieved combining both au-
tostop + heuristics on the A100 GPU (Figure 8) and the AWS c5.24xlarge CPU.

CPU, and consisting of a dual-socket 24-core node (i.e., a total
of 48 cores). Fig. 9 compares the average runtimes achieved,
combining both autostop and heuristics options, on the A100
and the c5.24xlarge. The performance advantage provided by
the GPU over the CPU is notorious: ∼28.4× (Solis-Wets) and
∼25.8× (ADADELTA), which can be attributed to the superi-
ority of the A100 over the c5.24xlarge in terms of raw perfor-
mance (19.5 TFLOPS vs. 2.3 TFLOPS).

Similarly as in the previous assessment of autostop’s im-
pact on the docking quality (Section 5.2), Table 6 reports the
docking runtime, as well as the scores and RMSDs for the re-
sulting highest-scoring pose in the formerly-employed subset
of molecules. First, in all cases, the executions on the A100 re-
sulted in remarkably shorter runtimes than on the c5.24xlarge.
However, based on the attained – mostly similar – score and
RMSD values, there is no definite winner between these two
platforms. The reason is that, for a given molecule and local-
search method, the same algorithm was run independently
from the employed platform, and thus, high-quality scores and
RMSDs can be achieved on both A100 and c5.24xlarge. An
exception can be noted for 2bm2, where the execution using

Table 6: Docking runtimes (s), scores (kcal/mol), and RMSDs (Å) achieved
using the OpenCL version, combining both autostop + heuristics options, on
the A100 GPU and the AWS c5.24xlarge CPU. The best values within each
case are colored.

LS ID Metric A100 c5.24xlarge

So
lis

-W
et

s

1u4d

Runtime 0.05 s 0.17 s
Score -7.25 kcal/mol -7.26 kcal/mol

RMSD 1.35 Å 1.35 Å

2bm2

Runtime 2.84 s 71.81 s
Score -10.47 kcal/mol -10.52 kcal/mol

RMSD 5.24 Å 5.33 Å

3er5

Runtime 28.78 s 1’582.57 s
Score -12.48 kcal/mol -12.82 kcal/mol

RMSD 5.33 Å 3.95 Å

A
D

A
D

E
LT

A

1u4d

Runtime 0.05 s 0.17 s
Score -7.25 kcal/mol -7.25 kcal/mol

RMSD 1.35 Å 1.33 Å

2bm2

Runtime 1.44 s 71.62 s
Score -10.04 kcal/mol -10.42 kcal/mol

RMSD 1.80 Å 5.30 Å

3er5

Runtime 52.25 s 1’258.69 s
Score -12.66 kcal/mol -13.41 kcal/mol

RMSD 4.69 Å 4.20 Å

ADADELTA, resulted in a significantly smaller (i.e., better)
RMSD on the A100 than on the c5.24xlarge (1.8 Å vs. 5.3 Å).
For this particular case, we believe the cause was not the em-
ployed platform, but instead the heuristic nature of AutoDock-
GPU. Basically, in every program execution, the search starts
from a random point in the molecular space, and thus every ex-
ecution explores a different path through that space. It could
be the case that the above execution on the c5.24xlarge was
trapped in a local minimum, causing that any score improve-
ment (driving the search) led to no corresponding RMSD im-
provement.

6. Related Work

This section discusses relevant studies following a general-
to-specific manner. Thus, we start with a survey of parallelized
molecular docking programs. Then, we compare the latest and
forked developments of AutoDock-GPU.

6.1. Parallelization of molecular docking
Several efforts on performance optimization of molecular

docking leverage hardware-based acceleration. Table 7 lists rel-
evant studies from nearly the last two decades. The brief survey
presented here aims to provide a reasonable understanding of
the state of the art, and it is based on the more extensive discus-
sions in [37, 38, 39], as well as our own recent literature review.
Our scope is on single compute nodes, and hence, approaches
targeting systems that range between clusters, grid, and cloud
computing are not included. Studies listed in Table 7 can be
grouped into the following categories: FFT/correlation, nature
inspired, intrinsically parallel, and pairwise potentials.

The first category in our list includes programs based on ei-
ther Fast Fourier Transform (FFT) or correlation. The ZDOCK
program employs FFT to optimize force-field scoring functions.
Van Court et al. [40, 41] proposed an FPGA-based approach

9

where a correlation is implemented instead of the original FFT-
based search. The core of the correlation architecture is a three-
dimensional systolic array, which enables a long pipeline of
computations as well as low-precision arithmetic. Such ben-
efits are suitable for FPGAs, in contrast to the floating-point
operations needed in the original ZDOCK FFT. With regard
to PIPER, Sukhwani et al. [42, 43] extended the systolic-array
architecture used for ZDOCK on FPGAs (described above) in
order to support large molecules, i.e., receptor-receptor dock-
ing. The same authors developed a GPU version of PIPER [44],
in which the FFT computations were performed directly rather
than through correlation as for the FPGA counterparts. Further-
more, Ritchie et al. [45] accelerated the FFT-based interactions
in Hex using the CUDA CUFFT library to implement one- and
three-dimensional FFT computations.

Nature-inspired programs use search methods based on
evolutionary or swarm-intelligence algorithms. MolDock
employs a scoring function that is very similar to that of
AutoDock. However, its search is based on Differential Evo-
lution (DE), which uses weighted difference of parent indi-
viduals for the genetic selection. Simonsen et al. [46] par-
allelized MolDock with a CUDA-based multi-level approach
similar to that of AutoDock-GPU, while their OpenMP ver-
sion simply distributes the multiple DE runs over CPU cores.
On the other hand, PLANTS combines a global and a local
search method, namely Ant Colony Optimization (ACO) and
the Nelder and Mead algorithm (NMS), respectively. The par-
allelization of PLANTS proposed by Korb et al. [47] offloads
the generation phase and score calculation to a GPU, while
the overall ACO+NMS algorithm runs on a CPU. The code
was developed in OpenGL and NVIDIA Cg, both of which are
intended just for graphics computations and are far less flexi-
ble compared to the general-purpose programming OpenCL or
CUDA frameworks. Regarding the BUDE program, McIntosh-
Smith et al. [48] provided an OpenCL implementation in which
each work-item processes four molecular poses. To achieve
higher performance, the authors optimized the use of memory-
access coalescing, and reduced the negative impact of thread
divergence.

As already discussed in Section 2.1, the core of AutoDock
is the LGA, and thus, it falls into the nature-inspired category
described above. Here, we describe relevant studies addressing
LGA acceleration. Kannan et al. [49] developed a CUDA ver-
sion that excludes the Solis-Wets method from the LGA. The
purpose of this exclusion was to avoid the low GPU utilization
caused by the local search processing only a subset of the pop-
ulation (Section 2.2). Pechan et al. [50, 51] provided versions
for GPUs and FPGAs, written in CUDA and Verilog, respec-
tively. Both efforts by Pechan et al. served as an inspiration
for the predecessor program of AutoDock-GPU, developed by
Solis-Vasquez et al. [52, 53]. In these latter studies, OpenCL
was the main development language for both GPUs and FP-
GAs. While code portability was achieved with virtually no
problems, performance portability proved to be more challeng-
ing, in the end requiring substantial platform-specific tuning of
the code base. Furthermore, Mendonça et al. [54] proposed a
hybrid parallelization utilizing OpenMP and CUDA, which also

excluded the Solis-Wets method.
Intrinsically-parallel programs were designed considering

their inherent parallelism right from the beginning. Exam-
ples are AutoDock Vina [55] and AutoDockFR [56], both
belonging to the AutoDock suite and leveraging the multiple
cores available on a CPU. Regarding Vina, its scoring func-
tion is empirical rather than the potentially too-strict models
based on force fields used in AutoDock. Multi-threading in
Vina is achieved using the C++ Boost::Thread library. On
the other hand, AutoDockFR models the flexibility of the re-
ceptor molecule. Such flexibility results in the growth of
search space, which AutoDockFR deals with by employing a
slightly different GA than AutoDock. AutoDockFR is imple-
mented in Python, and distributes each of its GA runs on a sin-
gle CPU core. For higher speedups, the scoring function of
AutoDockFR has been ported to C++.

The pairwise-potentials category lists studies that do not
focus on complete front-to-back programs, but instead just
on certain score terms based on pairwise interactions, which
could be integrated into a more complete scoring function.
Roh et al. [57] accelerated a scoring function composed of two
terms: dispersion and electrostatics. The authors used a sepa-
rate GPU for each of these terms, which would be impractical
for real applications. Guerrero et al. [58] focused on the elec-
trostatics interactions between a receptor and a ligand. In their
CUDA implementation, each thread computes the interaction
between its corresponding receptor atom and all ligand atoms.
Moreover, the recent studies of Saadi et al. [59, 60] accelerated
the desolvation term in the scoring function of AutoDock. In
their work, the authors aimed for blind docking3 and provided
both CUDA and OpenMP implementations to target GPUs and
CPUs, respectively.

6.2. AutoDock-GPU
Legrand et al. introduced the CUDA variant of AutoDock-

GPU and benchmarked it against an earlier version of the
OpenCL code prior to AutoDock-GPU v1.2 [21]. This work
was intended for virtual screening in COVID-19 research, and
thus, for performing many docking runs. For this purpose,
the program required the capability of streamlining consecutive
docking jobs involving, e.g., multiple ligands with a single re-
ceptor. Initially, AutoDock-GPU was only capable of running
a single docking job per program execution. However, the code
modifications by Legrand et al. enabled the user-specification
of multiple docking jobs, and their serial launch from a sin-
gle program execution. Additional enhancements leverage task
pipelining, i.e., overlapping the execution of the following tasks
using OpenMP threading: docking launch of a current ligand-
receptor system (on the GPU), the file read of next ligand co-
ordinates (on the CPU host), and the file write of the prior re-
sulting ligand poses (on the CPU host). Most improvements by
Legrand et al. are aimed for virtual screening, while our work
here focuses on accelerating single executions of AutoDock-
GPU.

3Blind docking refers to the exploration over an unknown, typically large,
surface of the receptor-ligand interaction.

10

Table 7: Parallelized molecular docking programs. Abbreviations of search methods: DE (Differential Evolution), ACO (Ant Colony Optimization), NMS (Nelder
and Mead), GA (Genetic Algorithm), SW (Solis-Wets), AD (ADADELTA), ILS (Iterated Local Search), BFGS (Broyden Fletcher Goldfarb Shanno).

Category Original Parallelized Release Scoring Global (Local) Target Description
program version year function search method accelerator(s) language

FFT/corr

ZDOCK Van Court et al. [40, 41] 2004, 2006 – 3D correlation FPGA VHDL

PIPER Sukhwani et al. [44] 2009 Force-field FFT GPU CUDA
Sukhwani et al. [42, 43] 2008, 2010 Force-field 3D correlation FPGA VHDL

Hex Ritchie et al. [45] 2010 Force-field FFT GPU CUDA

Nature

MolDock Simonsen et al. [46] 2013 Force-field DE GPU, CPU CUDA, OpenMP
PLANTS Korb et al. [47] 2011 Empirical ACO (NMS) GPU OpenGL, NVIDIA Cg
BUDE McIntosh-Smith et al. [48] 2014 Force-field GA GPU, CPU OpenCL

AutoDock

Kannan et al. [49] 2010 Force-field GA GPU CUDA
Pechan et al. [51, 50] 2010, 2011 Force-field GA (SW) FPGA, GPU Verilog, CUDA
Mendonça et al. [54] 2017 Force-field GA GPU + CPU CUDA, OpenMP
Solis-Vasquez et al. [52, 53] 2017, 2018 Force-field GA (SW) GPU, CPU, FPGA OpenCL
miniAutoDock-GPU [61] 2020 Force-field GA (SW) GPU CUDA, Kokkos, HIP
AutoDock-GPU [21, 23, 25] 2020, 2021 Force-field GA (SW/AD) GPU, CPU, FPGA OpenCL, CUDA

Intrinsic AutoDock Vina Trott et al. [55] 2009 Empirical ILS (BFGS) CPU C++

AutoDockFR Ravindranath et al. [56] 2015 Force-field GA (SW) CPU Python, C++

Pairwise
– Roh et al. [57] 2009 Force-field – GPU CUDA
– Guerrero et al. [58] 2011 Force-field – GPU CUDA
– Saadi et al. [59, 60] 2017, 2019 Force-field – GPU, CPU CUDA, OpenMP

Motivated by the transition of computing facilities towards
exascale systems, Thavappiragasam et al. developed a miniapp
called miniAutoDock-GPU [61]. This has been directly derived
from the CUDA variant of AutoDock-GPU, and its purpose is
to evaluate the performance and portability on different com-
puter architectures. Both AutoDock-GPU and miniAutoDock-
GPU execute LGA runs. However, while AutoDock-GPU pro-
cesses user-specified ligand-receptor inputs, the miniapp uses
pre-loaded ones. This design choice avoids the inclusion of I/O
when measuring the execution time for the miniapp, which fo-
cuses only on computation time. miniAutoDock-GPU has been
implemented in CUDA and Kokkos. Its evaluation was car-
ried on a V100 GPU, where the CUDA variant outperforms the
Kokkos one by a factor of 1.8× for large- and medium-size lig-
ands. In addition, a port to HIP was reported to be in progress,
in which porting low-level and architecture-specific CUDA
optimizations (e.g., warp-level reduction, each warp with 32
threads) to a different architecture using HIP (e.g., wavefront-
level reduction, each wavefront with 64 threads) pose signifi-
cant challenges. Thavappiragasam et al. ported only the Solis-
Wets local search, and not ADADELTA. Our own efforts con-
tinue to target OpenCL and CUDA, but always consider the full
program, and not just a stripped-down miniapp.

Our recently published study in [25] focuses mainly on
evaluating the benefits of AutoDock-GPU v1.2 from an appli-
cation domain perspective. Specifically, Santos-Martins et al.
introduced the E50 metric to quantify the number of score eval-
uations required to achieve a 50% of success, where success
means finding the global optimum of either the score or RMSD.
Resulting E50 values on a large set of 140 ligand-receptor in-
puts indicate that according to the score criterion, ADADELTA
executions require only ∼1 / 23 of the evaluations than those re-
quired when using Solis-Wets for inputs with Nrot = 20.

Furthermore, motivated by the increasing importance of en-
ergy efficiency in HPC systems, in [62] we measured the elec-

trical power draws (W) on V100 GPUs due to AutoDock-GPU
v1.0 executions. Energy efficiencies achieved on a V100 GPU
were improved by ∼67× and ∼37× compared to those on a E5-
2666 18-core CPU, when running equivalent Solis-Wets and
ADADELTA computations, respectively.

Besides multi-core CPUs and GPUs, docking acceleration
has been explored on FPGAs as well. In general, the fact that
fewer studies target FPGAs is attributed to the larger develop-
ment effort compared to GPUs. Traditional development for
FPGAs requires reasoning in terms of low-level transfers be-
tween hardware registers (RTL) and synchronous logic design.
In recent years, this entry barrier for programmers has been
lowered by development tools from FPGA vendors (e.g., Xil-
inx Vitis [63]) and cross-industry standards (e.g., oneAPI [64]),
in which the application can be written in OpenCL or SYCL,
rather than the traditional VHDL or Verilog RTL hardware de-
scription languages. In this context, our previous work [23]
summarized our last attempts to improve the performance of
an OpenCL implementation of AutoDock, specifically tailored
for FPGAs. While our FPGA implementations are faster than
executing software on a CPU, they are far slower than using
GPUs. Thus, FPGAs will realistically not be deployed to solve
large docking problems. However, as described in Section 7,
there still exist optimization opportunities which could poten-
tially speed-up FPGA-based docking accelerators further.

7. Conclusions and Future Work

In this paper, we described the code and algorithmic im-
provements introduced in AutoDock-GPU v1.3, and evaluated
them against our previous work based on AutoDock-GPU v1.2.
Besides showing that v1.3 maintains (and sometimes exceeds)
the average performance with respect to v1.2, we showed sig-
nificant benefits by utilizing the new autostop and heuristics
options introduced in v1.3. Concretely, when both options

11

are combined, AutoDock-GPU achieves average runtime re-
ductions of 53% (Solis-Wets) and 73% (ADADELTA) on a
NVIDIA A100 GPU.

Our literature review indicates that a variety of hardware
devices are being used for accelerating different docking sce-
narios. Of these studies, the majority target GPUs and uti-
lize CUDA as the main programming model. Recent ports of
docking programs to OpenCL and HIP suggest a growing in-
terest in alternatives to the proprietary NVIDIA CUDA. Ad-
ditionally, hybrid approaches combining OpenMP and Open-
CL/CUDA for heterogeneous CPU+GPU systems, are becom-
ing more common.

As future work, besides further optimizations, we plan
to exploit recent platforms and tools. Regarding GPUs, we
will equip AutoDock-GPU with the capability of automati-
cally choosing an appropriate work-group or thread-block size
for higher performance, instead of the current manual selec-
tion. Moreover, we will perform further tests on new genera-
tion GPUs such as AMD’s MI100 device. On the FPGA side,
we will explore variants of the AutoDock code that attempt to
reduce the irregularity of execution, which in turn might allow
more efficient FPGA execution. For the actual implementation,
recently improved FPGA design tools such as Xilinx Vitis [63]
and Intel oneAPI [64] could be leveraged.

8. Appendices

Source code, input data, and auxiliary material used for our
experiments is open source and available in the links indicated
below.

• AutoDock-GPU: https://github.com/ccsb-scripps/

AutoDock-GPU

• Input data: https://gitlab.com/L30nardoSV/ad-gpu_

miniset_20.git

• Scripts to reproduce experiments: https://github.com/

L30nardoSV/reproduce-parcosi-moleculardocking

9. Acknowledgements

This work was supported by the National Institutes of
Health GM069832 (to S. Forli).

We want to thank Jeff Larkin and Aaron Scheinberg for their
code contributions during the CUDA porting as well as ORNL
and NVIDIA for their impetus and support of the porting effort.

Calculations on the V100 GPU for this research were con-
ducted on the Lichtenberg high performance computer of TU
Darmstadt.

References

[1] Leibniz Supercomputing Centre, Scientific Application Packages.
URL https://doku.lrz.de/display/PUBLIC/Scientific+

Application+Packages

[2] Louisiana State University: High Performance Computing, Alphabetical
List of Software.
URL http://www.hpc.lsu.edu/docs/guides/index.php#

Chemistry

[3] Max Planck Computing & Data Facility, HPC Application Packages.
URL https://www.mpcdf.mpg.de/services/computing/

software/hpc_application_packages.html

[4] BioWulf: High Performance Computing at the NIH, Scientific Applica-
tions on NIH HPC Systems.
URL https://hpc.nih.gov/apps

[5] University of North Texas: High Performance Computing, Scientific
Software Guide.
URL https://hpc.unt.edu/software?field_research_area_

value=chem

[6] Universität Paderborn: Paderborn Center for Parallel Computing (PC2),
Software.
URL https://wikis.uni-paderborn.de/pc2doc/Software#

Software_Availability

[7] Microsoft Azure, Predicting ocean chemistry using Microsoft Azure.
URL https://www.microsoft.com/en-us/research/blog/

predicting-ocean-chemistry-using-microsoft-azure

[8] Amazon Web Services, Pharma & Biotech in the Cloud.
URL https://aws.amazon.com/health/biotech-pharma

[9] W.-G. Gu, X. Zhang, J.-F. Yuan, Anti-HIV Drug Development Through
Computational Methods, AAPS J. 16 (4) (2014) 674–680. doi:10.

1208/s12248-014-9604-9.
[10] F. A. San Lucas, J. Fowler, K. Chang, S. Kopetz, E. Vilar, P. Scheet,

Cancer In Silico Drug Discovery: A Systems Biology Tool for Identifying
Candidate Drugs to Target Specific Molecular Tumor Subtypes, J. Mol.
Cancer Ther. 13 (12) (2014) 3230–3240. doi:10.1158/1535-7163.

MCT-14-0260.
[11] L. Casalino, A. Dommer, Z. Gaieb, E. Barros, T. Sztain, S.-H. Ahn,

A. Trifan, A. Brace, A. Bogetti, H. Ma, H. Lee, M. Turilli, S. Khalid,
L. Chong, C. Simmerling, D. Hardy, J. Maia, J. Phillips, T. Kurth,
A. Stern, L. Huang, J. McCalpin, M. Tatineni, T. Gibbs, J. Stone, S. Jha,
A. Ramanathan, R. Amaro, AI-Driven Multiscale Simulations Illuminate
Mechanisms of SARS-CoV-2 Spike Dynamics, Tech. rep., Cold Spring
Harbor Laboratory Press, United States (Nov. 2020). doi:10.1101/

2020.11.19.390187.
[12] I. Halperin, B. Ma, H. Wolfson, R. Nussinov, Principles of docking: An

overview of search algorithms and a guide to scoring functions, Proteins:
Struct., Funct., Bioinf. 47 (4) (2002) 409–443. doi:10.1002/prot.

10115.
[13] N. S. Pagadala, K. Syed, J. Tuszynski, Software for molecular dock-

ing: a review, Biophys. Rev. 9 (2) (2017) 91–102. doi:10.1007/

s12551-016-0247-1.
[14] Swiss Institute of Bioinformatics, Directory of computer-aided Drug De-

sign tools.
URL https://www.click2drug.org

[15] FightAIDS@Home.
URL https://www.worldcommunitygrid.org/research/faah/

overview.do

[16] OpenPandemics: COVID-19.
URL https://www.worldcommunitygrid.org/research/opn1/

overview.do

[17] A. Stank, D. B. Kokh, J. C. Fuller, R. C. Wade, Protein Binding Pocket
Dynamics, Acc. Chem. Res. 49 (5) (2016) 809–815. doi:10.1021/acs.
accounts.5b00516.

[18] A. S. Rose, A. R. Bradley, Y. Valasatava, J. M. Duarte, A. Prlić,
P. W. Rose, NGL viewer: web-based molecular graphics for large com-
plexes, Bioinformatics. 34 (21) (2018) 3755–3758. doi:10.1093/

bioinformatics/bty419.
[19] L. El Khoury, D. Santos-Martins, S. Sasmal, J. Eberhardt, G. Bianco,

F. A. Ambrosio, L. Solis-Vasquez, A. Koch, S. Forli, D. L. Mob-
ley, Comparison of affinity ranking using AutoDock-GPU and MM-
GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4, J.
Comput.-Aided Mol. Des. 33 (12) (2019) 1011–1020. doi:10.1007/

s10822-019-00240-w.
[20] D. Santos-Martins, J. Eberhardt, G. Bianco, L. Solis-Vasquez, F. A.

Ambrosio, A. Koch, S. Forli, D3R Grand Challenge 4: prospec-
tive pose prediction of BACE1 ligands with AutoDock-GPU, J.

12

https://github.com/ccsb-scripps/AutoDock-GPU
https://github.com/ccsb-scripps/AutoDock-GPU
https://gitlab.com/L30nardoSV/ad-gpu_miniset_20.git
https://gitlab.com/L30nardoSV/ad-gpu_miniset_20.git
https://github.com/L30nardoSV/reproduce-parcosi-moleculardocking
https://github.com/L30nardoSV/reproduce-parcosi-moleculardocking
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://hpc.nih.gov/apps
https://hpc.nih.gov/apps
https://hpc.nih.gov/apps
https://hpc.unt.edu/software?field_research_area_value=chem
https://hpc.unt.edu/software?field_research_area_value=chem
https://hpc.unt.edu/software?field_research_area_value=chem
https://hpc.unt.edu/software?field_research_area_value=chem
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://www.microsoft.com/en-us/research/blog/predicting-ocean-chemistry-using-microsoft-azure
https://www.microsoft.com/en-us/research/blog/predicting-ocean-chemistry-using-microsoft-azure
https://www.microsoft.com/en-us/research/blog/predicting-ocean-chemistry-using-microsoft-azure
https://aws.amazon.com/health/biotech-pharma
https://aws.amazon.com/health/biotech-pharma
http://dx.doi.org/10.1208/s12248-014-9604-9
http://dx.doi.org/10.1208/s12248-014-9604-9
http://dx.doi.org/10.1158/1535-7163.MCT-14-0260
http://dx.doi.org/10.1158/1535-7163.MCT-14-0260
http://dx.doi.org/10.1101/2020.11.19.390187
http://dx.doi.org/10.1101/2020.11.19.390187
http://dx.doi.org/10.1002/prot.10115
http://dx.doi.org/10.1002/prot.10115
http://dx.doi.org/10.1007/s12551-016-0247-1
http://dx.doi.org/10.1007/s12551-016-0247-1
https://www.click2drug.org
https://www.click2drug.org
https://www.click2drug.org
https://www.worldcommunitygrid.org/research/faah/overview.do
https://www.worldcommunitygrid.org/research/faah/overview.do
https://www.worldcommunitygrid.org/research/faah/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
http://dx.doi.org/10.1021/acs.accounts.5b00516
http://dx.doi.org/10.1021/acs.accounts.5b00516
http://dx.doi.org/10.1093/bioinformatics/bty419
http://dx.doi.org/10.1093/bioinformatics/bty419
http://dx.doi.org/10.1007/s10822-019-00240-w
http://dx.doi.org/10.1007/s10822-019-00240-w

Comput.-Aided Mol. Des. 33 (12) (2019) 1071–1081. doi:10.1007/

s10822-019-00241-9.
[21] S. LeGrand, A. Scheinberg, A. F. Tillack, M. Thavappiragasam, J. V.

Vermaas, R. Agarwal, J. Larkin, D. Poole, D. Santos-Martins, L. Solis-
Vasquez, A. Koch, S. Forli, O. Hernandez, J. C. Smith, A. Sedova,
GPU-Accelerated Drug Discovery with Docking on the Summit Super-
computer: Porting, Optimization, and Application to COVID-19 Re-
search, in: Proceedings of the 11th International Conference on Bioin-
formatics, Computational Biology and Health Informatics, ACM, 2020.
doi:10.1145/3388440.3412472.

[22] AutoDock for GPUs and other accelerators.
URL https://github.com/ccsb-scripps/AutoDock-GPU

[23] L. Solis-Vasquez, D. Santos-Martins, A. Tillack, Andreas F. Koch,
J. Eberhardt, S. Forli, Parallelizing Irregular Computations for Molecular
Docking, in: Proceedings of the 10th International Workshop on Irregu-
lar Applications: Architectures and Algorithms (IA3), IEEE/ACM, 2020,
pp. 12–21. doi:10.1109/IA351965.2020.00008.

[24] S. Le Grand, A. W. Götz, R. C. Walker, SPFP: Speed without com-
promise—A mixed precision model for GPU accelerated molecular dy-
namics simulations, Comput. Phys. Commun. 184 (2) (2013) 374–380.
doi:https://doi.org/10.1016/j.cpc.2012.09.022.

[25] D. Santos-Martins, L. Solis-Vasquez, A. F. Tillack, M. F. Sanner, A. Koch,
S. Forli, Accelerating AutoDock4 with GPUs and Gradient-Based Local
Search, J. Chem. Theory Comput. 17 (2) (2021) 1060–1073. doi:10.

1021/acs.jctc.0c01006.
[26] R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A semiempirical

free energy force field with charge-based desolvation, J. Comput. Chem.
28 (6) (2007) 1145–1152. doi:10.1002/jcc.20634.

[27] F. J. Solis, R. J. B. Wets, Minimization by Random Search Techniques,
Math. Oper. Res. 6 (1) (1981) 19–30. doi:10.1287/moor.6.1.19.

[28] M. D. Zeiler, ADADELTA: An Adaptive Learning Rate Method,
arXiv.org. abs/1212.5701.
URL https://arxiv.org/abs/1212.5701

[29] CUDA C++ Programming Guide.
URL https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html

[30] G. M. Morris, D. S. Goodsell, M. E. Pique, W. L. Lindstrom, R. Huey,
S. Forli, W. E. Hart, S. Halliday, R. Belew, A. J. Olson, AutoDock Ver-
sion 4.2 - Automated Docking of Flexible Ligands to Flexible Receptors.
User Guide (Updated for version 4.2.6) (2014).
URL http://autodock.scripps.edu/faqs-help/manual/

autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf

[31] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S.
Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: Automated
docking with selective receptor flexibility, J. Comput. Chem. 30 (16)
(2009) 2785–2791. doi:10.1002/jcc.21256.

[32] M. J. Hartshorn, M. L. Verdonk, G. Chessari, S. C. Brewerton, W. T.
Mooij, P. N. Mortenson, C. W. Murray, Diverse, high-quality test set
for the validation of protein-ligand docking performance, J. Med. Chem.
50 (4) (2007) 726–741. doi:10.1021/jm061277y.

[33] Y. Li, L. Han, Z. Liu, R. Wang, Comparative assessment of scoring func-
tions on an updated benchmark: 2. Evaluation methods and general re-
sults, J. Chem. Inf. Model. 54 (6) (2014) 1717–1736. doi:10.1021/

ci500081m.
[34] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weis-

sig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank, Nucleic Acids
Res. 28 (1) (2000) 235–242. doi:10.1093/nar/28.1.235.

[35] OpenCL Programming Guide for the CUDA Architecture.
URL http://developer.download.nvidia.com/compute/

DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.

pdf

[36] Amazon Web Services, Amazon EC2 C5 Instances.
URL https://aws.amazon.com/ec2/instance-types/c5

[37] I. Pechan, B. Fehér, Hardware Accelerated Molecular Docking: A Sur-
vey, in: Bioinformatics, InTechOpen, London, United Kingdom, 2012.
doi:10.5772/48125.

[38] D. Dong, Z. Xu, W. Zhong, S. Peng, Parallelization of Molecular Dock-
ing: A Review, Curr. Top. Med. Chem. 28 (12) (2018) 1015–1028.
doi:10.2174/1568026618666180821145215.

[39] L. Solis-Vasquez, Accelerating Molecular Docking by Parallelized Het-
erogeneous Computing - A Case Study of Performance, Quality of Re-

sults, and Energy-Efficiency using CPUs, GPUs, and FPGAs, Ph.D.
thesis, Technical University of Darmstadt, Germany (2019). doi:10.

25534/tuprints-00009288.
[40] T. Van Court, Y. Gu, M. C. Herbordt, FPGA acceleration of rigid molecule

interactions, in: Proceedings of the 12th Annual Symposium on Field-
Programmable Custom Computing Machines, IEEE, 2004, pp. 300–301.
doi:10.1109/FCCM.2004.33.

[41] T. Van Court, Y. Gu, V. Mundada, M. Herbordt, Rigid Molecule Docking:
FPGA Reconfiguration for Alternative Force Laws, EURASIP J. Adv.
Signal Process. 2006 (1) (2006) 097950. doi:10.1155/ASP/2006/

97950.
[42] B. Sukhwani, M. C. Herbordt, Acceleration of a production rigid

molecule docking code, in: Proceedings of the International Conference
on Field Programmable Logic and Applications, IEEE, 2008, pp. 341–
346. doi:10.1109/FPL.2008.4629955.

[43] B. Sukhwani, M. C. Herbordt, FPGA acceleration of rigid-molecule
docking codes, IET Comput. Digit. Tech. 4 (3) (2010) 184–195. doi:

10.1049/iet-cdt.2009.0013.
[44] B. Sukhwani, M. C. Herbordt, GPU Acceleration of a Production Molec-

ular Docking Code, in: Proceedings of the 2nd Workshop on General
Purpose Processing on Graphics Processing Units, ACM, 2009. doi:

10.1145/1513895.1513898.
[45] D. W. Ritchie, V. Venkatraman, Ultra-fast FFT protein docking on graph-

ics processors, Bioinformatics. 26 (19) (2010) 2398–2405. doi:10.

1093/bioinformatics/btq444.
[46] M. Simonsen, M. H. Christensen, R. Thomsen, C. N. S. Pedersen,

GPU-Accelerated High-Accuracy Molecular Docking Using Guided Dif-
ferential Evolution, Springer, 2013, pp. 349–367. doi:10.1007/

978-3-642-37959-8_16.
[47] O. Korb, T. Stützle, T. E. Exner, Accelerating Molecular Docking Cal-

culations Using Graphics Processing Units, J. Chem. Inf. Model. 51 (4)
(2011) 865–876. doi:10.1021/ci100459b.

[48] S. McIntosh-Smith, J. Price, R. B. Sessions, A. A. Ibarra, High perfor-
mance in silico virtual drug screening on many-core processors, Int. J.
High Perform. Comput. Appl. 29 (2) (2014) 119–134. doi:10.1177/

1094342014528252.
[49] S. Kannan, R. Ganji, Porting Autodock to CUDA, in: Proceedings of

the IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1–8.
doi:10.1109/CEC.2010.5586277.

[50] I. Pechan, B. Fehér, Molecular Docking on FPGA and GPU Platforms, in:
Proceedings of the 21st International Conference on Field Programmable
Logic and Applications (FPL), IEEE, 2011, pp. 474–477. doi:10.1109/
FPL.2011.93.

[51] I. Pechan, B. Fehér, A. Bérces, FPGA-based acceleration of the
AutoDock molecular docking software, in: Proceedings of the 6th Con-
ference on Ph.D. Research in Microelectronics Electronics, IEEE, 2010,
pp. 1–4.
URL https://ieeexplore.ieee.org/document/5587139

[52] L. Solis-Vasquez, A. Koch, A Performance and Energy Evaluation of
OpenCL-accelerated Molecular Docking, in: Proceedings of the 5th Inter-
national Workshop on OpenCL, ACM, 2017. doi:10.1145/3078155.
3078167.

[53] L. Solis-Vasquez, A. Koch, A Case Study in Using OpenCL on FPGAs:
Creating an Open-Source Accelerator of the AutoDock Molecular Dock-
ing Software, in: Proceedings of the 5th International Workshop on FP-
GAs for Software Programmers (FSP), VDE Verlag, 2018, pp. 1–10.
URL https://ieeexplore.ieee.org/document/8470463

[54] E. Mendonça, M. Barreto, V. Guimarães, N. Santos, S. Pita, M. Bo-
ratto, Accelerating Docking Simulation Using Multicore and GPU Sys-
tems, in: Proceedings of the 17th International Computational Science
and Its Applications (ICCSA), Springer, 2017, pp. 439–451. doi:

10.1007/978-3-319-62392-4_32.
[55] O. Trott, A. J. Olson, AutoDock Vina: Improving the speed and ac-

curacy of docking with a new scoring function, efficient optimization,
and multithreading, J. Comput. Chem. 31 (2) (2010) 455–461. doi:

10.1002/jcc.21334.
[56] P. A. Ravindranath, S. Forli, D. S. Goodsell, A. J. Olson, M. F. Sanner,

AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Spec-
ified Binding Site Flexibility, PLoS Comput. Biol. 11 (12) (2015) 1–28.
doi:10.1371/journal.pcbi.1004586.

[57] Y. Roh, J. Lee, S. Park, J.-I. Kim, A molecular docking system using

13

http://dx.doi.org/10.1007/s10822-019-00241-9
http://dx.doi.org/10.1007/s10822-019-00241-9
http://dx.doi.org/10.1145/3388440.3412472
https://github.com/ccsb-scripps/AutoDock-GPU
https://github.com/ccsb-scripps/AutoDock-GPU
http://dx.doi.org/10.1109/IA351965.2020.00008
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.09.022
http://dx.doi.org/10.1021/acs.jctc.0c01006
http://dx.doi.org/10.1021/acs.jctc.0c01006
http://dx.doi.org/10.1002/jcc.20634
http://dx.doi.org/10.1287/moor.6.1.19
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://dx.doi.org/10.1002/jcc.21256
http://dx.doi.org/10.1021/jm061277y
http://dx.doi.org/10.1021/ci500081m
http://dx.doi.org/10.1021/ci500081m
http://dx.doi.org/10.1093/nar/28.1.235
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
https://aws.amazon.com/ec2/instance-types/c5
https://aws.amazon.com/ec2/instance-types/c5
http://dx.doi.org/10.5772/48125
http://dx.doi.org/10.2174/1568026618666180821145215
http://dx.doi.org/10.25534/tuprints-00009288
http://dx.doi.org/10.25534/tuprints-00009288
http://dx.doi.org/10.1109/FCCM.2004.33
http://dx.doi.org/10.1155/ASP/2006/97950
http://dx.doi.org/10.1155/ASP/2006/97950
http://dx.doi.org/10.1109/FPL.2008.4629955
http://dx.doi.org/10.1049/iet-cdt.2009.0013
http://dx.doi.org/10.1049/iet-cdt.2009.0013
http://dx.doi.org/10.1145/1513895.1513898
http://dx.doi.org/10.1145/1513895.1513898
http://dx.doi.org/10.1093/bioinformatics/btq444
http://dx.doi.org/10.1093/bioinformatics/btq444
http://dx.doi.org/10.1007/978-3-642-37959-8_16
http://dx.doi.org/10.1007/978-3-642-37959-8_16
http://dx.doi.org/10.1021/ci100459b
http://dx.doi.org/10.1177/1094342014528252
http://dx.doi.org/10.1177/1094342014528252
http://dx.doi.org/10.1109/CEC.2010.5586277
http://dx.doi.org/10.1109/FPL.2011.93
http://dx.doi.org/10.1109/FPL.2011.93
https://ieeexplore.ieee.org/document/5587139
https://ieeexplore.ieee.org/document/5587139
https://ieeexplore.ieee.org/document/5587139
http://dx.doi.org/10.1145/3078155.3078167
http://dx.doi.org/10.1145/3078155.3078167
https://ieeexplore.ieee.org/document/8470463
https://ieeexplore.ieee.org/document/8470463
https://ieeexplore.ieee.org/document/8470463
https://ieeexplore.ieee.org/document/8470463
http://dx.doi.org/10.1007/978-3-319-62392-4_32
http://dx.doi.org/10.1007/978-3-319-62392-4_32
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1371/journal.pcbi.1004586

CUDA, in: Proceedings of the International Conference on Hybrid Infor-
mation Technology, ACM, 2009, pp. 28–33. doi:10.1145/1644993.

1644999.
[58] G. D. Guerrero, H. Pérez-Sánchez, W. Wenzel, J. M. Cecilia, J. M.

Garcı́a, Effective Parallelization of Non-bonded Interactions Kernel for
Virtual Screening on GPUs, in: Proceedings of the 5th International
Conference on Practical Applications of Computational Biology &
Bioinformatics (PACBB), Springer, 2011, pp. 63–69. doi:10.1007/

978-3-642-19914-1_9.
[59] H. Saadi, N. Nouali Taboudjemat, A. Rahmoun, B. Imbernón, H. Pérez-

Sánchez, J. M. Cecilia, Parallel Desolvation Energy Term Calculation for
Blind Docking on GPU Architectures, in: Proceedings of the 46th Inter-
national Conference on Parallel Processing Workshops (ICPPW), IEEE,
2017, pp. 16–22. doi:10.1109/ICPPW.2017.16.

[60] H. Saadi, N. Nouali Taboudjemat, A. Rahmoun, B. Imbernón, H. Pérez-
Sánchez, J. M. Cecilia, Efficient GPU-based parallelization of solvation
calculation for the blind docking problem, J. Supercomput. 76 (3) (2019)
1980–1998. doi:10.1007/s11227-019-02834-5.

[61] M. Thavappiragasam, A. Scheinberg, W. Elwasif, O. Hernandez, A. Se-
dova, Performance Portability of Molecular Docking Miniapp On Lead-
ership Computing Platforms, in: Proceedings of the International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC),
IEEE/ACM, 2020, pp. 36–44. doi:10.1109/P3HPC51967.2020.

00009.
[62] L. Solis-Vasquez, D. Santos-Martins, A. Koch, S. Forli, Evaluating the

Energy Efficiency of OpenCL-accelerated AutoDock Molecular Docking,
in: Proceedings of the 28th Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing (PDP), IEEE, 2020, pp.
162–166. doi:10.1109/PDP50117.2020.00031.

[63] Xilinx Vitis: Unified software platform for all developers.
URL https://www.xilinx.com/products/design-tools/

vitis.html

[64] The oneAPI Specification.
URL https://www.oneapi.com

14

http://dx.doi.org/10.1145/1644993.1644999
http://dx.doi.org/10.1145/1644993.1644999
http://dx.doi.org/10.1007/978-3-642-19914-1_9
http://dx.doi.org/10.1007/978-3-642-19914-1_9
http://dx.doi.org/10.1109/ICPPW.2017.16
http://dx.doi.org/10.1007/s11227-019-02834-5
http://dx.doi.org/10.1109/P3HPC51967.2020.00009
http://dx.doi.org/10.1109/P3HPC51967.2020.00009
http://dx.doi.org/10.1109/PDP50117.2020.00031
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.oneapi.com
https://www.oneapi.com

	Introduction
	Functionality Overview
	Lamarckian Genetic Algorithm
	Local Search

	Performance Enhancements
	Parallelization
	Recent improvements

	Methodology
	Program configuration
	Dataset
	Evaluation platforms

	Results and Discussion
	Runtime-based performance
	Autostop and heuristics
	Performance comparison between GPUs and CPUs

	Related Work
	Parallelization of molecular docking
	AutoDock-GPU

	Conclusions and Future Work
	Appendices
	Acknowledgements

