
A cost model for NDP-aware query optimization for KV-stores
Christian Knödler, Tobias Vinçon, Arthur

Bernhardt, Ilia Petrov
[firstname].[surname]@reutlingen-university.de

Data Management Lab,
Reutlingen University

Leonardo Solis-Vasquez, Lukas Weber, Andreas
Koch

[surname]@esa.tu-darmstadt.de
Embedded Systems and Applications Group,

TU Darmstadt

ABSTRACT
Many modern DBMS architectures require transferring data from
storage to process it afterwards. Given the continuously increas-
ing amounts of data, data transfers quickly become a scalability
limiting factor. Near-Data Processing and smart/computational
storage emerge as promising trends allowing for decoupled in-situ
operation execution, data transfer reduction and better bandwidth
utilization. However, not every operation is suitable for an in-situ
execution and a careful placement and optimization is needed.

In this paper we present an NDP-aware cost model. It has been
implemented in MySQL and evaluated with nKV. We make several
observations underscoring the need for optimization.

ACM Reference Format:
Christian Knödler, Tobias Vinçon, Arthur Bernhardt, Ilia Petrov and Leonardo
Solis-Vasquez, Lukas Weber, Andreas Koch. 2021. A cost model for NDP-
aware query optimization for KV-stores. In International Workshop on Data
Management on New Hardware(DAMON’21), June 20–25, 2021, Virtual Event,
China. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3465998.
3466013

1 INTRODUCTION
Regardless of the increasing data-sizes and the evolution of storage
technology, modern DBMS employ traditional data-to-code archi-
tectures, which require growing amounts of data to be transferred
to the DBMS host. This quickly saturates the available I/O band-
width and ultimately limits the scalability. Currently, computational
storage emerges as a trend. Combined compute and semiconductor
storage elements can be manufactured economically and packaged
in the same storage device. As a result, the device-internal band-
width, parallelism, and latencies are much better than the external
ones (device-to-host). This lifts major limitations to prior work
e.g. database machines [4] or active disks [14]. Furthermore, it en-
ables Near-Data Processing (NDP) architectures and code-to-data
paradigms that execute DB-operations close to where data is physi-
cally stored.
Background. Although, the concept of NDP and in-storage pro-
cessing is deeply rooted in [4] or [14], it has recently reemerged due
to the advances in the semiconductor industry. Lately, numerous
systems [1–3, 7, 9, 10, 12, 15, 16] were proposed and utilize on-
device processing capabilities to speedup database operations like
selections and joins by avoiding costly data transfers between host
and device but resort to in-situ executions. In contrast, we observe
that NDP executions are not always best and therefore there is a
need for execution placement and optimization.

DAMON’21, June 20–25, 2021, Virtual Event,China
2021. ACM ISBN 978-1-4503-8556-5/21/06. . . $15.00
https://doi.org/10.1145/3465998.3466013

Host-
Only

MySQL Query Optimizer

Computational
Storage

Controller
FPGA

Data

Result

Invocation

nKV

Query:
SELECT id, type
FROM nodes
WHERE type < x

Data
Transfers

In-situ
data
transfers

nodes

𝛔
𝛑

nodes

𝛔
𝛑

nodes

𝛔

𝛑

NDP-
Only

Cooperative
NDP/Host

Host

NDP NDP
Cost-
Model

nodes

!
"

Standard
Cost-
Model

nodes

!
"

Figure 1: Optimization strategy for computational storage.

Thus choosing the right optimization strategy gains importance.
Making the optimizer aware of NDP, yields more possibilities for
query plan alternatives and increases the complexity of finding the
optimal plan. Current optimization strategies do not consider the
characteristics of the underlying hardware resulting in choosing
possible non-optimal query plan. [8] is closest to our work however
it does not address KV-Stores.
Motivation. With computational storage many DBMS operations
like scans, selections, projections or joins, to name a few, have a
host-based and a NDP-implementation. This brings up the question
of when to select which one. Clearly, existing DBMS query optimiz-
ers can be leveraged if they are extended with an NDP-aware cost
model. The core intuition is that the DBMS optimizer can decide
what plans or even parts of a plan can be executed in-situ, andwhich
ones on the host (Figure 1). We also envision cooperative plans,
where parts of the query plan are executed on-device, while other
parts consume their results and are processed on the host. This
becomes an interesting problem considering the different on-device
characteristics in terms of I/O, compute, and transfer properties. For
example: (i) full scans and version visibility checks are faster in-situ
given the higher on-device bandwidth and the lower latencies; in
addition (ii) selections (coupled to scans) benefit from on-device
compute elements and possibly from scalable HW-SW co-design
implementations; (iii) results (intermediary or final) can be tem-
porarily (fully or partially) materialized on-device to be transferred
efficiently with a few DMA-transfers back to DBMS/host.

In this paper we present an initial NDP-aware cost model. It has
been implemented as an extension of the MySQL optimizer and
based on the cost-models it decides whether a purely host-based or
an NDP-only execution should be preferred. We use nKV [15] as
the underlying NDP-engine, which is a Key/Value-store based on
RocksDB [6] that has been integrated into MySQL with MyRocks
[11]. Our contributions are: (i) we extend MySQL with a NDP-aware
cost-model allowing the optimizer to distinguish betweenNDP-only
and host-only executions. (ii) it shows the value of early selection
and projections as well as NPD result handling. (iii) it is implemented

https://doi.org/10.1145/3465998.3466013
https://doi.org/10.1145/3465998.3466013
https://doi.org/10.1145/3465998.3466013

DAMON’21, June 20–25, 2021, Virtual Event,China Knödler, et al.

in nKV [15] and tested on real computational storage hardware:
COSMOS+ NVMe SSD [13].

2 NDP-AWARE COST MODEL
Cost-based optimization is a classical technique, where the query
optimizer enumerates possible query plans, estimating their exe-
cution costs according to a cost-model and an abstract hardware
model. Ideally, it selects the plan with the lowest total cost. In
MySQL/MyRocks we introduce a new NDP cost-model and costs
of each plan are estimated both by the standard and the NDP cost-
model. Furthermore, we emphasize typical heuristics such as early
selection or early projection because of their NDP relevance. While
both reduce data transfers and sizes, the former yields better uti-
lization of the on-device I/O properties and thus higher selectivity
tolerance, whereas the latter reduces the result sizes and yields
efficient transfers. Early selection (or selection push-down) is an
optimization heuristic, aiming to evaluate selection predicates as
early as possible (ideally as part of a scan) and possibly swapping
the order of joins and selections. In terms of NDP it effectively
reduces the result-set size through in-situ tuple-filtering. In con-
trast, early projection is an optimization heuristic aiming to perform
projections first to reduce the size of the resultant records. Like
early selection it is not always possible, for instance due to com-
mutativity constraints. In NDP settings, early projections enables
in-situ attribute-filtering, which decreases the result-set sizes even
further and minimizes expensive memcpy operations on device.

Moreover, we focus on NDP-operations on the value, as key-
operations are supported by the LSM storage organization, and
by auxiliary structures, i.e. fence pointers or Bloom-filters. Fence
pointers are a kind of Min/Max key index per SST and block that
can support range filtering and estimation. Bloom-filters, typically
created on the key and for each SST, efficiently support point-
filtering.

The total execution time for a value-scan is intuitively expressed
as: 𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑠𝑐𝑎𝑛 + 𝑐𝑐𝑝𝑢 + 𝑐𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 , where 𝑐𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 is the cost for
transferring the data from device to the host; 𝑐𝑠𝑐𝑎𝑛 is the (engine-
specific) cost of scanning the table; and 𝑐𝑐𝑝𝑢 accounts for the CPU
processing costs. We define the individual terms in two different
cost models: (a) host-only execution – equations (2), (3) and (4); and
(b) NDP-execution – equations (5), (6) and (7).

𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑠𝑐𝑎𝑛 + 𝑐𝑐𝑝𝑢 + 𝑐𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (1)

𝑐𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_ℎ𝑜𝑠𝑡 =
(𝑛𝑟𝑒𝑐𝑜𝑟𝑑𝑠 ·𝑀𝑅𝐿)

𝐵𝑆
· 𝐵𝑇𝑇 (2)

𝑐𝑠𝑐𝑎𝑛_ℎ𝑜𝑠𝑡 = 𝑅𝐷𝐵𝑆𝑇 (3)
𝑐𝑐𝑝𝑢_ℎ𝑜𝑠𝑡 = 𝑛𝑟𝑒𝑐𝑜𝑟𝑑𝑠 · 𝑅𝐸𝐶 (4)

𝑐𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑁𝐷𝑃 =
(𝑆𝐸𝐿 · 𝑛𝑟𝑒𝑐𝑜𝑟𝑑𝑠 · 𝑃𝐵)

𝐵𝑆
· 𝐵𝑇𝑇 (5)

𝑐𝑠𝑐𝑎𝑛_𝑁𝐷𝑃 = 𝑅𝐷𝐵𝑆𝑇 · 𝐷𝐸𝑉𝑡𝑦𝑝𝑒 (6)

𝑐𝑐𝑝𝑢_𝑁𝐷𝑃 =
(𝑛𝑟𝑒𝑐𝑜𝑟𝑑𝑠 · 𝑅𝐸𝐶𝑁𝐷𝑃 · 𝑃𝐵)

𝑀𝑅𝐿
(7)

Transfer Costs. The transfer time is expressed by equations
(2) and (5) for both models, as the number of blocks multiplied
by the transfer latency. Some important differences result from
selectivity estimation and from handing early projections. We leave
the in-situ support for the selectivity and cardinality estimation for

Table 1: Flash Latencies and Bandwidth (BW) of theCOSMOS+
OpenSSD for different levels of parallelism.

Read Latency per 4 KB [`𝑠]
Host 486
Device 200 - 400 (depending on LUNs and Channels)

Access Pages Parallelism BW [MB/s] IOPS
Random 1500 1 Ch. 1 LUN 52 3000

1500 2 Ch. 1 LUN 102 6000
1500 1 Ch. 8 LUN 108 6000
1500 2 Ch. 8 LUN 213 13000

Sequential 640 2 Ch. 8 LUN 217 13000

future work. Early projections must be preferably handled in-situ,
as they are important means for reducing the size of the projected
records 𝑃𝐵, and thus the result set size of NDP executions. Since
host executions need to transfer the raw data from device to host,
they can still benefit from early projections, however in terms of
processing cost, not in terms of reduction of data transfers from
storage.

Result-set size estimation is an important factor for estimating
the total cost of NDP-executions. For a full scan (without selection
predicate), it is estimated in terms of the number of records and
the mean-record length (𝑀𝑅𝐿). For a key-scan, the estimation is
facilitated by fence-pointers to determine the expected number of
keys and the𝑀𝑅𝐿 or the projectivity (i.e. the number of projected
attributes). Furthermore, it is possible to pack multiple transfer
units together in-situ and transfer them efficiently as a single DMA
transfer back to the host. All of these lead to lower transfer costs for
the NDP execution, which is accounted by 𝑆𝐸𝐿 (Eq. 5). Alternatively,
for host-executions (Eq. 2), we consider the full amount of records
for the calculation of the transfer costs, since the current cost model
does not differentiate between value- and index-scans.

Scan Costs. During a full scan MySQL as well as the NDP-
execution need to scan the whole data set. However, 𝑐𝑠𝑐𝑎𝑛 costs (Eq.
(3) and (6)) may differ significantly depending on the class of compu-
tational storage devices. Commodity devices, such as the COSMOS+
used in this work, exhibit 𝑐𝑠𝑐𝑎𝑛_𝑁𝐷𝑃 costs (𝐷𝐸𝑉𝑡𝑦𝑝𝑒 = 1) equal
to the host 𝑐𝑠𝑐𝑎𝑛_ℎ𝑜𝑠𝑡 , since the on-device bandwidth is approxi-
mately equal to the device-to-host bandwidth. This changes with
enterprise devices, which tend to have higher on-device bandwidth
and therefore 𝐷𝐸𝑉𝑡𝑦𝑝𝑒 = 0.5 . . . 0.7 (Eq. 6).

Index scans differ because of the on-device properties and the un-
derlying storage organization. nKV is an LSM-tree based KV-store
on top of RocksDB under MyRocks. Hence, the typical auxiliary
structures such as fence pointers and Bloom-filters are available
and memory resident as they are loaded by MySQL/MyRocks dur-
ing startup. This significantly reduces the index-scan effort (key
predicates) in host-only scenarios.

In contrast, an on device index scan needs to read the index first,
however nKV accelerates the process in two stages. Firstly, nKV
also utilizes the fence-pointers in NDP-scenarios as part of the NDP-
call preparation, thus reducing the number of SST to be processed
on device. Secondly, because SST-organized LSM-trees resemble
clustered indices, the respective KV-records (on an SST) can be
read directly without any index-to-record I/O overhead. We leave

A cost model for NDP-aware query optimization for KV-stores DAMON’21, June 20–25, 2021, Virtual Event,China

Table 2: Expensiveness of memcpy on device compared to host

Size [KB] memcpy Device Time [`s] Host Time [`s]
1 1000 284 20
10 1000 2592 202
1 10000 2831 194
10 10000 25920 1973

unclustered indices for future work. Overall, the current cost-model
does not distinguish between full-scan and clustered index-scan,
and consequently calculates the same costs.

Processing/CPU Costs. MySQL uses a fixed cost of 𝑅𝐸𝐶 = 0.2
for evaluating a single record (see Eq. (4)). The NDP costs 𝑅𝐸𝐶𝑁𝐷𝑃

vary significantly, depending on the type of computational storage
device. On the one hand, newer enterprise devices offer extensive
compute performance and parallelism due to higher clock frequen-
cies, larger FPGA area, and optimized heterogeneous processing
elements. On the other hand, we still rely on the dual ARM-cores
of the COSMOS+ for NDP. Due to the limited performance of the
667 MHz dual ARM-cores, the end-to-end performance is lower
and thus, the cost for evaluating a single record 𝑅𝐸𝐶𝑁𝐷𝑃 = 0.5 is
higher than 𝑅𝐸𝐶 (Eq. (7)).

This can be demonstrated by comparing the duration of the
expensive memcpy on-device against the host as shown in Table 2.
Copying 1 KB of data is more than 10× slower on device compared
to the host. Therefore, lower projectivities and early projection
help avoiding unnecessary memcpy-operations on device, and thus
improve performance.

3 EVALUATION
The evaluation is performed in MySQL 5.6/MyRocks [11] on a
server, equipped with a 3.4 GHz Intel i5, 4GB RAM and Debian
4.9 with ext3. The main computational engine of the COSMOS+
platform is a Xilinx Zynq-7000 System-on-Chip that combines two
ARMCortex-A9 cores with an FPGA. The COSMOS+ [13] is exposed
as NVMe block device (BLK-baseline), and as an NVMe NDP-device
to nKV (NDP-baseline). The block size is 32KB. Its basic I/O charac-
teristics are shown in Table 1.

Our dataset is based on the nodetable of LinkBench [5], with
minor changes to align for the 32-bit COSMOS+ ARM: id field is
UINT32, while the data field is a fixed size char[144]. The dataset
comprises 1M records amounting to 181MB. Due to a hardware
limitation in the COSMOS+ DMA-engine, the max. result size of
an NDP-call is 1MB. For larger sizes, we extrapolate 𝑐𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑁𝐷𝑃

(Eq. (5)) based on the 1MB latency (NDP Extrapolated, Figure 3).

Workload. We execute a query varying its selectivity and pro-
jectivity (i.e. number of projected attributes):

SELECT proj FROM nodetable WHERE type < sel.
Execution is performed in host-only settings – based on cold-

data, as well as in NDP-only settings – utilizing a single core on the
COSMOS+ in an intervention-free manner.

Experiment 1: In an initial experiment (Figure 2) we stress
MySQL with different selectivities SEL and projectivities PROJ. The

Table 3: Parameters of the NDP-aware cost-model

Variable Description
𝑀𝑅𝐿 Mean record length [bytes] (MySQL statistics)
𝑃𝐵 Projected record length [bytes]
𝐵𝑆 Block size [bytes]
𝐵𝑇𝑇 Block transfer time

𝑅𝐷𝐵𝑆𝑇 RocksDB scan time
𝐷𝐸𝑉𝑡𝑦𝑝𝑒 NDP scan acceleration factor w.r.t. device type
𝑅𝐸𝐶 Row evaluate cost

𝑅𝐸𝐶𝑁𝐷𝑃 NDP row evaluate cost
𝑛𝑟𝑒𝑐𝑜𝑟𝑑𝑠 Number of records
𝑆𝐸𝐿 Estimated selectivity (with key) otherwise 1

goal is to investigate the parts of the problem space where the
sub-optimal plans are chosen due to inexact cost estimation.

We observe that the wrong plan is selected for index-scans at the
mid-selectivity range (Figure 2). The root cause for this behaviour is
that the selectivity estimation for index-scans yields approximately
the same costs and therefore the both cost models (NDP and host)
differ in the CPU and transfer costs. That said, the cost estimations
differ by a small margin and the real execution times for those
selectivities are close to each other (Figure 3.b, 20%-40%).

Insight: Given the basic workload, the cost model estimates the
costs mostly correctly, yielding appropriate plan selection.

Experiment 2: Selectivity. We continue our experimental eval-
uation by investigating the impact of varying the selectivity SEL
from 0% to 100% (Figure 3.c). For this experiment we limit the pro-
jectivity to a single attribute – the ID column. Furthermore, the
selection is performed on the value attribute TYPE. Consequently,
the impact of typical auxiliary structures such as fence pointers
and Bloom-filters is avoided, and only the effects of the scan are
visible. Interestingly, the optimizer prefers early selection and NDP-
execution to minimize the execution costs, which is inline with our
initial hypothesis. As a result the in-situ selection is faster for all
selectivities.
Insight: The expected performance impact of early selection and
in-situ filtering is correctly preferred by the cost model, yielding
2× performance improvement.

Furthermore, we investigate the impact of varying selectivity
SEL on NDP index-scans (Figure 3.b). Because of the underlying

0 10 20 30 40 50 60 70 80 90 100

SELECT id FROM nodes
WHERE type<=x NDP NDP NDP NDP NDP NDP NDP NDP NDP NDP NDP

SELECT * FROM nodes
WHERE type <=x BLK BLK BLK BLK BLK BLK BLK BLK BLK BLK BLK

SELECT id FROM nodes
WHERE id <= x BLK BLK NDP NDP NDP NDP NDP NDP NDP NDP NDP

SELECT * FROM nodes
WHERE id <= x BLK BLK BLK BLK BLK BLK BLK BLK BLK BLK BLK

selectivity [%]
Query

Figure 2: Overall, the cost-model estimates the correct exe-
cution plan. Only index-scans with projection are estimated
falsely for certain selectivities.

DAMON’21, June 20–25, 2021, Virtual Event,China Knödler, et al.

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

tim
e

[s
]

x (% selectivity)

MySQL

NDP

NDP Extrapolated

(a) SELECT * FROM nodes WHERE type <= x

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

tim
e

[s
]

x (% selectivity)

MySQL

NDP

NDP Extrapolated

(b) SELECT id FROM nodes WHERE id <= x

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

tim
e

[s
]

x (% selectivity)

MySQL NDP NDP Extrapolated

(c) SELECT id FROM nodes WHERE type <= x

Figure 3: Comparison of MySQL and Extrapolated NDP exe-
cution times (lower is better) for different types of projection-
and selection- queries showing the benefits and limitations
of computational storage execution.

LSM-tree storage organization, it is reasonable to claim that the
experiment resembles a clustered index. We leave experiments
with unclustered indices for future work. Our expectation is that
increasing selectivities will have lower impact on the NDP index-
scan because of the better I/O and result set transfer properties. We
observe that for SEL ≥ 40% the NDP scan is faster. This is because
the in-situ random I/O has low overhead and is as fast as sequential
(see Table 1).

Another hypothesis is that the NDP index-scan curve (Figure 3.b)
should remain essentially flat with increasing selectivities because
of the low-overhead in-situ I/O. However, we observe theNDP curve
increases (Figure 3.b), indicating rising NDP index-scan costs. This
is due to memcpy overhead on ARM (Table 2), which is proportional
to the number of records to be processed and the selectivity.
Insight: Considering the better on-device I/O properties, the in-situ
index-scan outperforms the host for high selectivities.

Experiment 3: Selectivity and Projectivity. In the last experi-
ment we investigate the effect of result set transfer (Figure 3.a). To
this end we repeat Experiment 2, Figure 3.c with full PROJ.

Our expectation, based on experiments 1 and 2, is that the per-
formance is sensitive to size of the result-set, which in turn depends
on the projectivity (and on the selectivity).

As expected, we observe that with full PROJ the performance
decreases (NDP execution time increases, Figure 3.a), yet with SEL
≤ 60% NDP is faster. As already mentioned, we extrapolate the

Table 4: Execution time delta [ms] to measure the expensive-
ness of memcpy-operations on device

Projectivity (columns) Selectivity [%]
30 50 80 100

4 byte (id) baseline
8 byte (id, type) +41 +67,96 +106.63 +134,87
12 byte (id, type, time) +84,71 +141,82 +226, 61 +284,06

NDP performance (NDP Extrapolated) for result-sets ≥ 1MB, to
circumvent a hardware limitation in the COSMOS+ DMA-engine.

The limiting factor is the amount of ARM processing and es-
pecially the memcpy overhead needed to perform NDP projection,
while the DMA transfers themselves incur relatively low overhead.
We investigate this effect, by reporting (Table 4) the execution times
for different projectivities and selectivities, relative to PROJ of the
column ID from Experiment 2 (Figure 3.c). Clearly, the overhead of
to preparing the result-set in the expected format in-situ is signifi-
cant. Interestingly, the portion of DMA transfer times is marginal.
Insight: The result-set processing overhead has a significant perfor-
mance overhead and necessitates dedicated optimizations.

4 CONCLUSION AND FUTUREWORK
In this work we make the case for NDP-aware cost models for
computational storage, as in such settings DBMS operations come
in Host- and NDP-flavours and an automated selection is needed.
Furthermore, we propose an initial NDP-aware cost model and sub-
stantiate it with preliminary results. Given the basic workload, the
cost model estimates the costs mostly correctly, yielding appropri-
ate plan selection.We also demonstrate the impact of early selection
and early projection as well as in-situ result-set processing.

In future we see much potential and intend to extend the work
to cover: (a) cooperative host/NDP plans; (b) other NDP-operations,
i.e. JOIN or GROUP BY; (c) auto-tuning model parameters based on
Integer-Linear-Programming to address heterogeneous computa-
tional storage hardware. Especially targeting cooperative host/NDP
executions as well as heterogeneous hardware is a challenge be-
cause of its expected impact on DBMS operations in terms of re-
ducing data transfers and targeting hardware/software co-design
and configurability.

ACKNOWLEDGMENTS
The authors wish to thank the anonymous reviewers for the valu-
able comments, which significantly improved the quality of the
paper. This work has been partially supported by BMBF PANDAS –
01IS18081C/D;DFG neoDBMS – 419942270;HAWProm,MWK, Baden-
Würrtemberg, Germany.

A cost model for NDP-aware query optimization for KV-stores DAMON’21, June 20–25, 2021, Virtual Event,China

REFERENCES
[1] Ian F. Adams, John Keys, and Michael P. Mesnier. 2019. Respecting the Block

Interface - Computational Storage Using Virtual Objects. In Proc. FAST 2019.
[2] Wei Cao, Yang Liu, and et al. 2020. POLARDB Meets Computational Storage:

Efficiently Support Analytical Workloads in Cloud-Native Relational Database.
In USENIX FAST. 29–41.

[3] Arup De, Maya Gokhale, Steven Swanson, and et. al. 2013. Minerva: Accelerating
Data Analysis in Next-Generation SSDs. In Proc. FCCM.

[4] David DeWitt and Jim Gray. 1992. Parallel Database Systems: The Future of High
Performance Database Systems. Commun. ACM 35, 6 (June 1992), 85–98.

[5] Facebook. 2012. Facebook Graph Benchmark. https://github.com/
facebookarchive/linkbench.

[6] Facebook. 2020. RocksDB. https://github.com/facebook/rocksdb.
[7] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelligent Dis-

tributed Storage. In Proc. VLDB 2017.
[8] Insoon Jo, Duck-ho Bae, and et al. 2016. YourSQL : A High-Performance Database

System Leveraging In-Storage Computing. In Proc. VLDB.
[9] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and

Bongki Moon. 2016. In-storage processing of database scans and joins. Inf. Sci.

(Ny). 327 (jan 2016), 183–200.
[10] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-

Wei Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: Trading
Communication with Computing NearStorage. In Proc. MICRO-50 ’17. 219–231.

[11] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks: LSM-Tree
Database Storage Engine Serving Facebook’s Social Graph. Proc. VLDB Endow.
13, 12 (Aug. 2020), 3217–3230.

[12] Sang-woo Jun Ming, Arvind, and et al. 2015. BlueDBM: An Appliance for Big
Data Analytics. Proc. ISCA (2015).

[13] OpenSSD Project 2021. COSMOS Project Documentation. OpenSSD Project. http:
//www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources.

[14] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. 2001. Active
disks for large-scale data processing. Computer. 34, 6 (2001), 68–74.

[15] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Andreas Koch, and Ilia Petrov.
2020. nKV: Near-Data Processing with KV-Stores on Native Comp. Storage. In
Proc. DaMoN 2020.

[16] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: An Intelligent Storage
Engine with Support for Advanced SQL Offloading. Proc. VLDB (2014).

https://github.com/facebookarchive/linkbench
https://github.com/facebookarchive/linkbench
https://github.com/facebook/rocksdb
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

	Abstract
	1 Introduction
	2 NDP-aware cost model
	3 Evaluation
	4 Conclusion and Future Work
	Acknowledgments
	References

