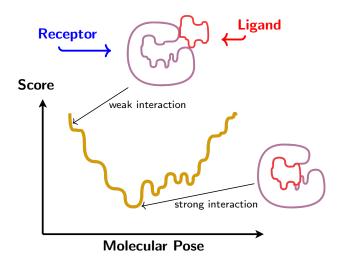
PDP 2020

28th EuroMicro International Conference on Parallel, Distributed, and Network-Based Processing. March 11-13, 2020

Evaluating the Energy Efficiency of OpenCL-accelerated AutoDock Molecular Docking

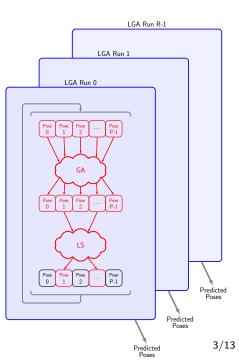
Leonardo Solis-Vasquez *, Diogo Santos-Martins +, Andreas Koch *, Stefano Forli +

> * Embedded Systems and Applications Group Technical University of Darmstadt, Germany


⁺ Center for Computational Structural Biology The Scripps Research Institute, United States

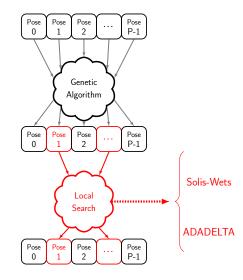
Introduction

- Energy efficiency
 - Important in design of computer systems
 - Future systems will be constrained by their power consumption
- Upcoming trend
 - Replacement of homogeneous with heterogeneous accelerators
 - Top eight systems in the *Green500* list use GPUs
- Scientific applications used at scale
 - Can profit from HPC systems
 - Efficient deployment: performance-/energy-wise


Molecular Docking (MD)

MD aims to find poses of strong interaction

AutoDock


- One of the most cited MD tools
- Lamarckian Genetic Algorithm (LGA)
- LGA = GA + LS
 - Genetic Algorithm (GA)
 - Local Search (LS)

Our previous work on AutoDock

AutoDock-OpenCL

- Data-parallel approach for GPUs/CPUs
- Fine-grained & multi-level parallelization
- Enhanced search
 - More accurate pose prediction
 - Available LS methods
 - Solis-Wets (legacy)
 - ADADELTA (new, gradient-based)

Our Contribution

Energy efficiency analysis of OpenCL-accelerated AutoDock

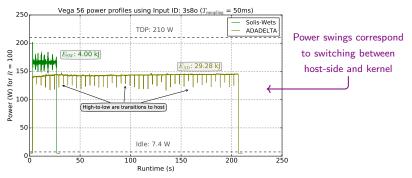
1. Correlation between performance and power consumption

- Solis-Wets vs. ADADELTA
- 2. Impact of molecular complexity on
 - Execution performance
 - Energy efficiency
 - Multi-core CPUs & many-core GPUs

Execution profiling: Vega 56 GPU

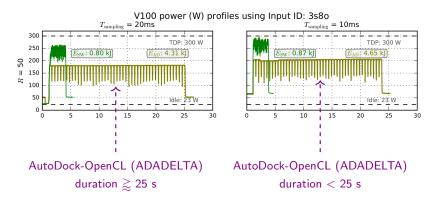
- OpenCL configuration
 - 56 compute units
 - 64 work-items / work-group
- MD setup
 - Harphi Harphi Karakara Harph
 - Input ID: 3s8o
- Profiling is focused on the local-search kernel (Krnl_LS)

Krnl_LS	Solis-Wets	ADADELTA
Total time (%)	99	99 1 1
# Calls	120	46 4
Avg. time (ms)*	225	5526 K
Occupancy (%)	20	10 K


, LS is the bottleneck Solis-Wets requires more kernel enqueues (# *Calls*) than ADADELTA

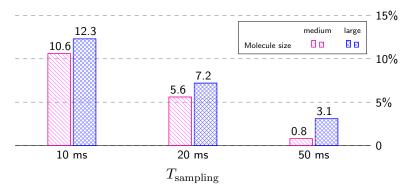
> Overall duration: # $Calls \times Avg. time$

> In both cases, GPU utilization is low


^{*}Avg. time measured per kernel enqueue

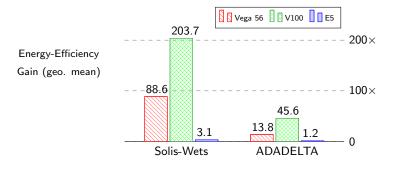
Preliminary power profiling: Vega 56 GPU

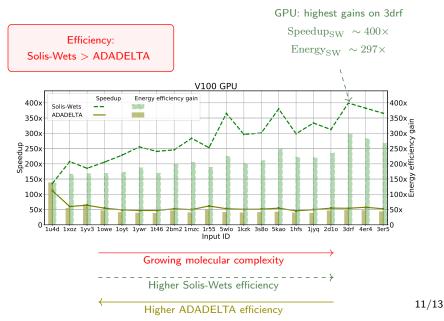
- Internal sensors accessed through software-based meters
 T_{sampling} = 50 ms (max. supported on Vega 56)
- Energy consumption (power integrated over time)
 - Solis-Wets: $E_{\rm SW} = 4.0 \text{ kJ}$
 - ADADELTA: $E_{AD} = 29.3 \text{ kJ}$


Power profiling: V100 GPU

- Sampling period does not affect profile shape ...
- ... but the shorter T_{sampling} , the more samples are lost
- For Energies at $T_{\text{sampling}} = \{20, 10\}$ ms are slightly different

Impact of T_{sampling} on V100 power

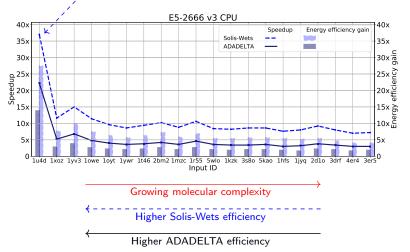

Power sample loss (%)


- More samples are lost with $T_{\text{sampling}} = 10 \text{ ms}$
- Next experiments are performed using $T_{\text{sampling}} = 50 \text{ ms}$

Energy-Efficiency Gain

- Accelerator devices
 - GPUs: Vega 56 (on-premise), V100 (AWS p3.2xlarge)
 - CPUs: E5-2666 v3 CPU (18 cores, AWS c4.8xlarge)
- Baseline: original AutoDock
 - Implements only Solis-Wets LS method
 - Does not support multithreading

Performance & Energy Efficiency



Performance & Energy Efficiency

CPU: highest gains on 1u4d

 $\begin{array}{ll} {\rm Speedup}_{\rm SW} \ \sim 18 \times \\ {\rm Energy}_{\rm SW} \ \sim 14 \times \end{array}$

GPUs faster than CPUs: more suitable mapping of AutoDock-OpenCL onto GPU hardware

Final Remarks

- 1. AutoDock-OpenCL: comparing LS methods
 - > ADADELTA
 - Lower speedups (3)
 - Lower energy efficiencies (S)
 - Higher quality of dockings (for complex molecules)
 - Solis-Wets
 - More efficient for small molecules
- 2. Energy gains
 - V100 GPU: most efficient
 - Solis-Wets: \sim 297 \times , ADADELTA: \sim 137 \times
 - E5 CPU: *least* efficient
 - Solis-Wets: \sim 13×, ADADELTA: \sim 7×
- 3. GPUs more efficient than CPUs
 - Fine-grained parallelization more suitable for GPUs

Evaluating the Energy Efficiency of OpenCL-accelerated AutoDock Molecular Docking

https://github.com/ccsb-scripps/AutoDock-GPU

Leonardo Solis-Vasquez solis@esa.tu-darmstadt.de

https://www.esa.tu-darmstadt.de