Towards Purposeful Design Space Exploration of Heterogeneous CGRAs: Clock Frequency Estimation

M.Sc. Dennis Leander Wolf and Prof. Christian Hochberger Computer Systems Group

Embedded Systems & Applications

M.Sc. Christoph Spang Embedded Systems & Applications

Authors

M.Sc. Dennis Leander Wolf

Majored in Electrical Engineering and Information Technology and PhD candidate since end of 2015. Research associate with focus on CGRA hardware.

Prof. Christian Hochberger

Chair for Computer Systems in EE department at TU Darmstadt since 2012. Before: Associate professor for embedded systems in CS department at TU Dresden since 2003. Diploma and PhD in computer science in 1992 and 1998.

M.Sc. Christoph Spang

Accomplished his master thesis at the Computer Systems group. Now a research associate at the Embedded Systems and Applications Group.

Micro-architecture & Automation

- Benefits:
 - Easy to modify and adjust
 - Free choice of CGRA composition/parameterization

[1] Wolf et al., "UltraSynth: Integration of a CGRA into a Control Engineering Environment"

Design Space Exploration

· Goal: Find optimal CGRA composition

Design Space Exploration

· Goal: Find optimal CGRA composition

Design Space Exploration

· Goal: Find optimal CGRA composition

- Most promising DSE methodology: Simulated Annealing
 - Requires cost function \rightarrow run-time of benchmarks
 - − Synthesis infeasible \rightarrow fast(!) estimation

State of the Art

· Heterogeneous designs: explicitly avoided [4]

- Homogeneous: max error <50%, mean error <10% [2][3][6]
 - Well known implementation
 - Static timing analysis
 - Neural networks

Creation of Reference Set

- · Systematical segmentation of design space
- Design space size = 1.21×10^{2596}
- · Data base of **12.131** synthesized CGRAs

Analysis of Reference Set

· 43 types of critical paths

· No clear correlation

· Analytical approach infeasible

• Initial ML approaches failed!

Statistical Estimator: Tool

• "Similar compositions should have a similar critical path"

Statistical Estimator: Tool

• "Similar compositions should have a similar critical path"

Statistical Estimator: Methodology

Reference Selection

- 10 closest CGRAs (empirical)
- Determined by Euclid Distance

- # of interconnects	- max. # of PE inputs
- max # of estimated LUTs for a single PE	- standard dev. est. #LUTs per PE
- max RF size	- standard deviation RF sizes
and af DE sizes	
- sum of RF sizes	- max context width
standard day of contaxt widths	sum of contaxt widths
- standard dev. of context widths	- sum of context widths
max Log Buffer size	max OcmBuffer size
- max Log Dunci Size	- max ochibunci size
- size of Context Memory	- #PEs containing CE OPs
- SIZE OF CONCERT MEMORY	- #1 Ls containing C1 OI s
- empiric sum for specific CE path type	
- empirie sum for speeme er paul type	

Kernel Density Estimation

- Hann Curve over each delay
- Weighted with the distance
- Peak of the sum of all curves is the estimation

Statistical Estimator: Methodology

Reference Selection

- 10 closest CGRAs (empirical)
- Determined by Euclid Distance

- # of interconnects	- max. # of PE inputs
- max # of estimated LUTs for a single PE	- standard dev. est. #LUTs per PE
- max RF size	- standard deviation RF sizes
- sum of RF sizes	- max context width
- standard dev. of context widths	- sum of context widths
- max Log Buffer size	- max OcmBuffer size
- size of Context Memory	- #PEs containing CF OPs
- empiric sum for specific CF path type	

• Kernel Density Estimation

- Hann Curve over each delay
- Weighted with the distance
- Peak of the sum of all curves is the estimation

Evaluation: Accuracy

- Combinatorial branch selection
- · References set: 7764
- Test set: 753

- · Sequential branch selection
- · References set: 3079
- Test set: 501

[3] Yan et al., "Area and Delay Estimation (...) of Coarse-grained Reconfigurable Architectures"

[6] Chen et al., "High-Level Power Estimation and Low-Power Design Space Exploration for FPGAs"

- · Combinatorial branch selection
- · References set: 7764
- Test set: 753

[3] Yan et al., "Area and Delay Estimation (...) of Coarse-grained Reconfigurable Architectures"

[6] Chen et al., "High-Level Power Estimation and Low-Power Design Space Exploration for FPGAs"

Evaluation: Accuracy

- Combinatorial branch selection
- · References set: 7764
- Test set: 753

- · Sequential branch selection
- · References set: 3079
- Test set: 501

[3] Yan et al., "Area and Delay Estimation (...) of Coarse-grained Reconfigurable Architectures"

[6] Chen et al., "High-Level Power Estimation and Low-Power Design Space Exploration for FPGAs"

 Clock frequency estimation of heterogeneous and irregular CGRAs is highly challenging.

• Statistical estimation with a mean error of 1.9-4.6% and a maximum error below 17.4%.

• Run-time per estimation: 17.26 ms – 85.33 ms.

