
Towards Purposeful Design Space Exploration of
Heterogeneous CGRAs: Clock Frequency Estimation

Dennis Leander Wolf1, Christoph Spang2 and Christian Hochberger1

1Department for Electrical Engineering and Information Technology Computer Systems Group, TU Darmstadt
2Department of Computer Science, Embedded Systems and Applications Group, TU Darmstadt

Email: {wolf, hochberger}@rs.tu-darmstadt.de, spang@esa.tu-darmstadt.de

Abstract—Coarse Grained Reconfigurable Arrays become in-
creasingly popular. Besides research on scheduling algorithms
and microarchitecture concepts, the use of heterogeneous struc-
tures can be a key approach to exploit their full potential.
Unfortunately, a purposeful design space exploration of CGRAs
is not trivial, since one needs to know the clock frequency of
the resulting hardware implementation. This paper discusses
challenges and a statistical approach to maximum clock frequency
estimation of heterogeneous CGRAs with an irregular intercon-
nect on FPGAs. The presented approach allows estimation with
a maximum error of 8.8 - 17.4 % and a mean error of only 1.9
- 4.6 %.

I. INTRODUCTION

Varying from simple dataflow pipelines to complex parallel
computing processors, all concepts of Coarse Grained Recon-
figurable Architectures/Arrays (CGRAs) are based on Process-
ing Elements (PEs) that can process data almost independently.
Although the discussion of performance most often revolves
around the best possible mapping of an application, the com-
position of a CGRA plays another major role. Composition
means the layout of a CGRA in terms of number of PEs,
their interconnect and the individual provision of operators
in each PE. The optimal composition is indeed dependent
on an application or an application domain, but it is obvious
that a heterogeneous composition promises a more efficient
increase in performance rather than trivial PE scaling, since
more resources can be fitted precisely - resulting in higher
utilization.

SOCs incl. FGPAs became a popular choice for test-
ing hardware accelerators, and overlay architectures such as
CGRAs can reduce configuration time drastically. Therefore,
we extended the CGRA tool presented in [1] to generate arbi-
trary CGRAs, targeting a Xilinx Zynq XC7Z045. This should
be the basis for a purposeful design space exploration (DSE).
The framework supports arbitrary numbers of PEs, provides
128 different operators and any kind of direct interconnect, as
long as all PEs are reachable. Therefore, the DSE should be
fully automated towards a certain property, e.g. run-time of a
given set of applications. Initial tests show a clock frequency
range between 60 MHz and 150 Mhz, which indicates that the
clock frequency must be considered in a purposeful DSE. This
can be realized using optimization algorithms like Simulated
Annealing (SA)1. Such heuristics require a cost-function and
if run-time should be optimized, the clock frequency needs to
be known for any possible composition. SA makes millions of

1Previous experiments, using less accurate estimators, have shown that SA
is the most promising approach in terms of result quality.

changes per run, for which synthesis is infeasible and we need
to estimate substantially fast and as accurate as possible.

Firstly, we will discuss the generation of a database with
12 k reference CGRAs, in order to systematically cover the
design space and gain an understanding of the features of
these designs (see Section IV). Secondly, an analysis of the
database gives a basic understanding of the complexity of the
estimation and is explained in Section V. Thirdly, a statistical
estimation approach is introduced in Section VI. Based on
the most influential parameters concerning the synthesis, ten
most similar CGRAs are picked from a reference set. Then a
weighted Kernel Density Estimator (KDE) is used to compute
the final estimation result. The whole process, from generation
of reference compositions to the export of a final estimator,
is fully automated and eases portability to any other type
of FPGA. To our knowledge all other contributions neither
provide similar accuracy even for homogeneous structures
nor are capable of estimating heterogeneous and irregular
structures nor use a similar estimation technique.

II. RELATED WORK

Only few publications try to provide clock frequency
estimations in the context of CGRA overlays on FPGA. None
of them consider the impact of a composition on the clock
frequency.
CGRA-ME [2] uses a static timing analysis allowing adjust-
ments of the frequency determined by paths that are actually
used by a given application. This means not the resulting
maximum clock frequency of a design but an application
specific path delay of an already existing and therefore well-
known implementation is estimated. An average error of 9.6%
is achieved without mentioning the maximum error. Yan et.
al. [3] present a similar approach for homogeneous CGRAs
yielding an average error of 8% and a maximum error of up
to 30%.
Suh et. al. [4] discuss a tool that is capable of a DSE on PE and
interconnect level on a heterogeneous CGRA. They explicitly
avoid clock frequency estimation and use a priori architectural
knowledge instead, confirming our perception of this being a
complex task. A neural network to estimate the max. clock
frequency for FIR Filters on an FPGA is evaluated in [5]. As
in our case the estimation is only based on the parameters of
the design, but the complexity of a homogeneous FIR filter is
much smaller compared to a heterogeneous CGRA. The mean
relative error is 22.22 %, the maximum error is not mentioned.
Chen et. al. [6] focus on power estimation but also estimate
path delay. For 25 data points they reach a mean error of about

21 % and max error of 50 % for a single benchmark. The run-
time usually lies below one minute. Earlier approaches as [7]
for High-Level estimation suffer from error peaks higher than
100 %. A more complex and certainly more time-consuming
approach is using a VHDL Simulator as in [8]. The runtime
is not mentioned, but since it is based on a detailed analysis,
it would not meet our requisites. However, the estimation is
very accurate with a mean error of 0.89 % and a peak error of
3.39 %.

III. CGRA FRAMEWORK AND HETEROGENEITY

In this section gives a brief introduction to the architecture.
A more detailed explanation can be found in [1].

A. Micro-Architecture

The overview of the CGRA and its PE structure is illus-
trated in Fig. 1. Each PE holds a Registerfile (RF) that is read
combinatorially and an ALU, which can process or bypass
data from neighboring PEs and its own RF. The ALU contains
multiple operator modules, each realizing one operation. There
are operations like an INT-addition that are combinatorial
modules and operations like FLOAT-Division that are realized
in multiple cycles. livein is used to load parameters for
invocations. Local and global result buffers are used to return
results to the host processor. The port out is used to forward
data to other PEs and the result buffers. The interconnect is
realized as an undelayed2 and direct wiring from the output
of one PE to the inputs of other PEs, as it is shown in Fig. 3.
All configurations, e.g. addresses to the RF or the op-code for
the ALU are loaded every cycle from an individual Context
Memory for each PE. All Context Memories are driven by the
Context Counter (ccnt) that is generated in the Context Control
Unit (CCU), as shown in Fig. 1.

s1

Context Control Unit

ccnt

Condition Box

Branch Selection Signals

s0 sns2

Predication (Store)

Context-
Memory 0

PE0

Context-
Memory n

PEn

...

...

CGRA Core

Wrapper and Communication

ALU

Register
File

aalu
aout

in0...

outlivein

inn

awrite

PEn

statusout

Fig. 1: Overview of the CGRA Core and the Wrapper that
includes system specific communication interfaces.

The architecture can handle any kind of control flow by
using speculation and predication. Therefore, PEs can process
comparison operations (if the related operator is included)
and feed a status signal (S0, S1, S2...Sn) to a Condition Box
(CBox). The CBox combines these signals equivalent to the

2General optimization of the microarchitecture, e.g. the insertion of pipeline
registers on the interconnect, shall be discussed in later publications.

logical operation in the code. Then, predication signals for
stores in RFs are used, allowing only valid branches to write
back their results. Switching the ccnt (jump) is done in the
CCU based on the Branch Selection Signal (BSS).

B. CGRA Framework for Arbitrary Heterogeneous Structures

In order to search the design space, arbitrary CGRA
compositions can be modeled. Table I lists the main parameters
and their range, by which a composition is defined. Depending
on the parameterization, the framework can realize any kind
of feasible CGRA. Global states a parameter’s equality for all
components, e.g. the context-memory size. A local parameter
can be chosen for each component individually. The column
This Contribution in Table I denotes the parameter’s range
for the presented work. Concerning the BSS of the CBox, a
combination using a multiplexer allows up to 5 points in the
CBox, where the BSS can be selected from. Zero denotes that
there is no branch selection signal. Two of them are in front
of an internal memory, three are behind the memory.

TABLE I: LIST OF MAIN PARAMETERS OF A COMPOSITION

Parameter Global/Local Supported Range This Contribution
#PEs - 2 - 8 2 - 49

Interconnect - any feasible any feasible
Set Operator local 1 - 128 1 - 128
Context size global 2 - 8 64 - 4096

RF size local 1 - 8 1 - 256
Local buffer size local 0 - 8 0 - 256

Global buffer size global 0 - 8 32 - 256
CBox BSS - 0 - 5 0 - 5

IV. REFERENCE DATABASE

The critical path of heterogeneous and irregular CGRAs
can only be exactly determined with the lengthy process of
first generating Verilog, then synthesizing and implementing.
Since this takes too long for an iterative DSE, we explore clock
frequency estimation based on the CGRA-Model.

A. Design Space and Challenges

For this contribution we have limited the number of PEs to
49, since finding CGRAs with over 40 PEs fitting on the tar-
geted FPGA becomes difficult. The dimension of the resulting
design space with a valid interconnect can be calculated with
equation 1. The interconnect can be interpreted as the number
of unlabeled strongly connected digraphs with n nodes, while
the operators can be modelled as a simple distribution problem.

sizedesignspace “ 2nrPEsˆpnrPEs´1q ˆ 2nrPEsˆnrOps

“ p249ˆp49´1qq249ˆ128 “ 1.21ˆ 102596
(1)

The given amount of combinations clearly demonstrates the
massive size of the design space. Moreover, there is another
factor which makes the estimation even more challenging: due
to heterogeneous PEs and interconnect, we have found 43
different types of critical paths (more details in Section V-A).
A critical path can lie within a PE’s multi-cycle operation or
almost randomly be spread over the interconnect. This leads to
an increase of complexity, particularly in comparison to other
approaches which exclusively estimate well-known path types
like [2].

B. Creating the Reference Database

As a first step, we create a large reference database to allow
a fundamental analysis of the design space. A fully automated
and parallelized tool randomly generates legal CGRA compo-
sitions. Then, the related Verilog code is generated and run
through Xilinx Vivado. In order to avoid synthesizing CGRAs
that will surely not fit onto the FPGA, we have implemented a
LUT estimator, which linearly adds up reference values (LUTs)
for each operator in the composition. Finally, the timing report
is read in and all relevant information is stored in a reference
data entry on disk, see Table II.

TABLE II: MAIN INFORMATION IN A REFERENCE ENTRY

Entry Contained Information
Path 1-20 20 most critical paths incl. routes, delay and slack
Platform FPGA device, here: xc7z045ffg676-2

LUTs Consumed and total # LUTs
BRAMs Consumed and total # BRAMs

Registers Consumed and total # Registers
DSPs Consumed and total # DSPs

For each CGRA the timing constraint is iteratively adapted
until the highest frequency is found. It took four months
to generate the reference set on two not-exclusively used
server class machines (2x Intel Xeon E5-2690 and AMD
EPYC 7501) with 32 Vivado instances, leading to 12.131
synthesized compositions. Random generation avoids patterns
in generation, but may lead to an unequal distribution. Hence,
the tool uses a coarse multidimensional grid to enhance equal
distribution and ensure good coverage of the design space.
Grid dimensions are: # PEs, # OPs per PE and their standard
distribution, interconnect density, standard dist. of # Inputs per
PE and # LUTs.

C. Timing Report Interpretation

Path information in Vivado Timing Reports often contains
naming inconsistencies. We call them artifacts. For instance,
they occur when two elements of different modules are packed
into the same CLB. Then both elements names are extended
with the same hierarchy module. This happens due to hierarchy
flattening. As another example, artifacts may appear for wires
that drive more than one element, since routing elements are
named after the sink. Fig. 2 shows the original path as found
in the timing report and below the legalized path. It can be
seen that there is a suspicious RF from PE2 (red), duplicate
ALU entries for PE2 (green) and a missing CCU (yellow).

C
o
n
te

x
t

P
E

5

R
e
g

is
te

rF
ile

 P
E
5

C
o
n
tr

o
lF

lo
w

 P
E
2

fl
o
a
t_

4
C

R
e
g

is
te

rF
ile

 P
E
2

C
o
n
tr

o
lF

lo
w

 P
E
2

lo
n
g

_2
C

C
o
n
tr

o
lF

lo
w

 P
E
2

fl
o
a
t_

4
C

 Da
ta

Fl
o
w

 P
E

0
fl
o
a
t_

1
0

C

C
B

ox

R
e
g

is
te

rF
ile

 P
E
5

C
o
n
tr

o
lF

lo
w

 P
E
2

lo
n
g

_2
C

D
a
ta

Fl
o
w

 P
E

0
fl
o
a
t_

1
0

C

C
B

ox

C
C

U

C
o
n
te

x
t

P
E

5

Legalized path:

Original path
(from Vivado
timing report):

Fig. 2: Cleaning of naming artifacts in Xilinx Vivado reports.

Artifact correction is realized by a large set of sequential
functions gradually legalizing the path. These are basically

filters forcing a path to stick to the architecture of the CGRA.
I.e. multiple duplicate and suspicious control flow ALU op-
erations prior to the CBox are resolved. Impossible RFs are
removed and a missing CCU, which combinatorially generates
the eventual abort signal for a multi-cycle ALU operation, is
inserted after the CBox in example 2. This correction approach
has limits, such as a low probability of artifacts transforming
a path into a wrong but legal path.

V. ANALYSIS OF THE REFERENCE SET

One needs to understand the complexity and characteristics
of a problem, before proposing an estimation approach. Hence,
we analyze the reference set in order to gain first insights.

A. Types of Critical Paths

In the reference data set, we found a total of 43 path
types. Following are some examples. Fig. 3 can be used to
track the described path possibilities. Most paths start at a PEs
Context Memory and continue with the PEs RF. Then the path
may continue (RF is read combinatorial) to the local or to a
neighboring ALU, and may end at a multicycle operator (Path
A) or continue to the RF (Path B). Alternatively, the path may
continue to the CBox, if the operator is a comparison operator.
There, the path might end (Path C) or continue (Paths D1...n)
depending on whether at least one BSS selection option is in
front of the CBox Condition Memory. If it continues, the next
possible ending may be the CCU (Path D0). Otherwise, the
path continues and ends at an arbitrary ALU-operator (as an
abort signal for a multi-cycle operator - not shown in Fig. 3)
or at a Context Memory of the OCM- (D2), LogBuffer, PE
(D1) or Actuator (D3).

B. Correlating Model Parameters and Critical Path

There is another type of critical path, which is located
in a single multi cycle operator in the ALU. An intuitive
guess would be that the maximum frequency should be in a
fairly narrow range for different CGRAs if their path is in the
exact same operator. As an example, we manually filtered the
reference database and identified all CGRAs with the most
critical path in a DOUBLE-ADD operation. Unfortunately,
the path delay was neither in the same range nor could it
be clearly interpreted by trying to find correlations to the
CGRA’s parameters. The same result can be observed for
critical path types in multiple other operators. Some of the
CGRAs have a smaller value in all parameters but result in
a longer critical path. This finding disallows the critical path
estimation strategy of linearly adding up static or individually
pre-computed delays even for short and well-known paths as
it is presented in [2]. We expect the search for correlation to
be even more difficult for more complex paths.

C. Different Path Types in the same Composition

Another observation is the presence of more than one path
type within the 20 most critical paths for a single composition.
During synthesis, placement obviously searches for a solution
with a lowest maximum delay, meaning most critical paths
get prioritized. Therefore, their final delay comes closer to
the delay of less critical paths. This complicates the isolation
of path types and the correlation to composition parameters.

ALU0

Register
File0

...

livein

ALU1

...
nin

Log
Buffer0

OCM
Buffer

PE 0 PE 1
OCM

≥1 ≥1

& &

1

pred0,0

orpos orneg

... pred0,n-1

& &

1

predm-1,0
... predm-1,n-1

...

CBox

Context0

Branch Selection Signal

in0

Eva
Block 0

Eva
Block n

CCU

Context1

Actuator

Actuator

OCM
Context

Actuator
Context

Sensor

out

D1end

Cstart

D1end

D3endD2end

Cend

AendBend

Dstart

Astart

Evaluation Block 0 Eval. Block m-1

X

XX

XX X

≥1 ≥1

orpos orneg

in

aALU
aout
awrite

aALU

aout

awrite

livein

Sensorin

out

ninin0

Condition Memory

Register
File1

Log
Buffer1

Bstart

Fig. 3: Examples A - D of the possible critical paths. Only the context memories are read sequentially.

Since the underlying FPGA is bit accurate whereas the overlay
CGRA has a word-width of 32 bit, the same path may occur
multiple times within Vivado’s timing reports. When analyzing
the first 20 critical paths, we noticed that 5.402% of the
compositions contain the same path multiple times (different
bits), while the amount of different paths per model is 4.034
on average. 13.985% of the reference models contain only one
type of critical path and the average amount of different path
types per model is 2.965.

D. Multidimensional Parameters and Visualization

To answer the question which parameterization results in
what type of critical path, we have implemented a tool that
takes a reference data (sub-) set and outputs table documents
for manual analysis. To break down the multi-dimensionality
of parameters, the search space is divided into user-defined
segments which can be bound to # PEs and/ or # LUTs. Each
of these segments can then be easily analyzed concerning the
percentage of paths per type. Fig. 4 shows the occurrence of
the path type of the single most critical path in the reference
set. The tool allows even deeper analysis not discussed here.

E. Evidences

To sum up, the identification of all correlations between
a composition, the resulting critical path type and its delay
is cumbersome and unpromising. Hence, an analytical ap-
proach seems pointless, even though this would be our favored
method. The use of a neural network might be an alternative,
but preliminary tests have shown that a neural network needs
more than 12k compositions for training.

VI. A STATISTICAL ESTIMATOR

The proposed statistical estimator relies on the insight that
CGRAs with certain similar parameters likely result in quite
similar clock frequency. As shown in Figure 5, we pick the
most similar compositions and calculate a weighted KDE.

Fig. 4: Probabilities of critical path types from 2-49 PEs.

CGRA Model
to be estimated

Reference
Database

Modell: 123
DimA: 3
DimB: 521
DimC: 990
DimD: 0
DimE: 1000
DimF: 768
DimH: 412
DimI: 316
DimJ: 500
....

Modell: 123
DimA: 3
DimB: 521
DimC: 990
DimD: 0
DimE: 1000
DimF: 768
DimH: 412
DimI: 316
DimJ: 500
....

Modell: 123
DimA: 3
DimB: 521
DimC: 990
DimD: 0
DimE: 1000
DimF: 768
DimH: 412
DimI: 316
DimJ: 500
....

Modell: 123
DimA: 3
DimB: 521
DimC: 990
DimD: 0
DimE: 1000
DimF: 768
DimH: 412
DimI: 316
DimJ: 500
....

Modell: 123
DimA: 3
DimB: 521
DimC: 990
DimD: 0
DimE: 1000
DimF: 768
DimH: 412
DimI: 316
DimJ: 500
....

Group of
related CGRA

models

Regression
Estimator

(KDE with Distance
as Co-Factor)

127
MHz

Clock
Frequency
Estimation

Data Base
Generator
(design space

segmentation)

Reference
Selection

(by Distance)

Fig. 5: Estimation toolflow: First reference selection, then
regression using KDE.

A. Implementation

The estimation is based on the previously described
database containing synthesized and implemented references
covering the design space. The parameters selected for analysis
are the ones used during reference database creation for dis-
tribution levelling (Section IV) plus 15 additional parameters

which are listed in Table III. These were picked based on
the greatest correlations in the previously mentioned analysis
of the reference set. Empiric test runs showed that providing
only a subset of these parameters may lead to better results
in some parts of the design space while degrading estimation
quality for other parts.

TABLE III: ADDITIONAL PARAMETERS FOR REFERENCE
SELECTION

- # of interconnects - max. # of PE inputs
- max # of estimated LUTs for a single PE - standard dev. est. # LUTs per PE
- max RF size - standard deviation RF sizes
- sum of RF sizes - max context width
- standard dev. of context widths - sum of context widths
- max Log Buffer size - max OcmBuffer size
- size of Context Memory - # PEs containing CF OPs
- empiric sum for specific CF path type

The estimation is described in Algorithm 1. As a first
step, we distinguish between compositions with and without
a combinatorial BSS, effectively cutting search space in half.
Next, we compute a multidimensional euclidean distance value
to create a group of 10 closest CGRAs using the parameters
above. The parameters are normalized beforehand. For each
member of the group, we take the critical path delay and place
it on the x-axis of a diagram (see Fig. 6). We then draw a Hann-
Curve over the center of each of these x-values and scale it with
the inverse of its multidimensional distance normalized to 1,
thus decreasing the impact of far-away references. The width
of the Hann-Curve stays constant for all entries and equals
the difference from longest to shortest reference’s critical path
delay. Hann-Curve is picked as it yields best results with
low computational complexity. As a last step the curves are
summed up and the x-value that is coupled to the highest y-
value is returned. This is the point with highest kernel density.

Algorithm 1: Statistical estimation algorithm
Data: Reference CGRAs, CGRA to estimate
Result: Clock period estimation

1 load CGRA to estimate;
2 if CGRA has combinatorial BSS then
3 load reference CGRAs with combinatorial BSS;
4 else
5 load reference CGRAs with non-comb. BSS;
6 for all loaded CGRAs do
7 for each relevant parameter do
8 compute normalized dimension value;

9 select 10 nearest CGRAs in multidimensional space
using euclidean distance;

10 width of Hann-Curves = difference from fastest to
slowest reference;

11 for each CGRA in group fill up a KDE graph do
12 x = critical path delay;
13 y = Hann-Curve scaled height with inverse

distance to CGRA to est.;
14 sum up all 10 curves;
15 return x-value of highest y;

E
st

. p
ro

ba
bi

li
ty

Critical Path Delay in ns

Legend:
⋅⋅⋅⋅ = References
 ⋅ = Accum. Kernel Density

Fig. 6: Regression with KDE using a group of similar CGRAs.

VII. EVALUATION

A. Timing Report Interpretation

Artifact filtering increases the percentage of legal timing
report paths from 17.96 % to 99.30 % for the reference set.
The term “legal“ does not directly imply “correctness“. There
is a risk that an illegal path mutates to be incorrect but legal.
However, we could not find wrong cleanings based on a
manual verification.

B. Estimation Accuracy

The estimation accuracy correlates with the desired region
of the design space. Accuracy also depends on the amount,
density and distribution of the reference data. For models with
9 PEs we could observe, that the estimation accuracy stays
almost constant for reference data amounts between 256 and
1152. When using less than 256 reference entries, the mean
accuracy only worsens slightly. Instead, the risk of a CGRA-to-
estimate lying outside the relatively small reference database
rises, leading to error peaks.

The clock frequencies in the used reference set ranges from
55 MHz to 190 MHz. We have realized two estimators - the
first one for CGRAs with a combinatorial BSS, see Figure
7 and the second one for CGRAs with non-combinatorial
BSS, see Figure 8. There is a peak of inaccuracy for CGRAs
with 6 or less PEs. Fortunately, most applications mapped
on CGRAs scale well with a growing amount of PEs, as
shown by Rákosy et. al. [9] for instance. Eventually, if an
application does not benefit from a larger CGRA, e.g. a modern
(embedded) CPU might be a more suitable choice anyhow.
Regarding the use of SA in a DSE, the run-time of a given
application(-set) is most likely used as the cost-function. In
test runs of SA, we could notice that the scheduling length
dictates the run-time of an application for PE amounts lower
than 9. Therefore, the relevance of the lower end of the design
space in terms of PE amount is low and can be arguably
neglected. Estimations for more than 6 PEs all lie below
17.37 % with a maximum mean error of 4.63 % (see Figure 8).
Results for CGRAs with a combinatorial CBox are even better.
In certain regions of the design space a maximum error of
8.83 % and mean errors of around 1.9%̇ are reached (see Figure
7). The critical paths in CGRAs with an non-combinatorial
BSS are usually shorter causing the relative error to increase.
The same holds for CGRAs with fewer PEs, which explains
an increase of accuracy for an increase in PE numbers. All
presented values result from completely separated reference
and verification sets. Both sets were created by different runs of
the database creation tool in order to equally cover the design
space. Amounts per region are shown in Table IV.

[3] [6] 2-6 7-10 11-20 21-30 31-40 41-49

10

25

40

55

30

50

25.5

11.7 10.4 10.1 9.7 8.88.8

21

6.7 3.3 2.3 1.9 2.1 2.9

E
rr

or
of

es
ts

.i
n

%
Max. error

Abs. mean error

Fig. 7: Estimation Error for CGRAs with combinatorial BSS.

[3] [6] 2-6 7-10 11-20 21-30 31-40 41-49

10

25

40

55

30

50

25.6
17 17.4 13.3 12 12.748.8

21

6 4.6 4.1 3.7 3.9 4.2

E
rr

or
of

es
ts

.i
n

%

Max. error
Abs. mean error

Fig. 8: Estimation Error for CGRAs with non-comb. BSS.

C. Run-time and Complexity

We expect the built-in sorting algorithm of the frequently
used SortedMaps within the reference selection to be the most
complex part of our estimation process with Opnˆplogpnqqq.
The following barchart (Fig. 9) presents run-time per region
of the setup, including loading of training and verification data
for CGRAs with combinatorial BSS. The graph shows the total
run-time per PE-region for estimations. Table IV contains the
corresponding amounts of reference and verification data as
well as the mean run-time per estimation and appends run-
time information for CGRAs with non-combinatorial BSS. All
measurements were taken on an AMD RYZEN 1600@3.2 GHz
with activated boost and 32 GB of memory.
Run-time not only depends on the amount of reference data,
but also correlates with CGRA complexity, particularly the
amount of PEs. This is mainly caused by the not run-time
optimized linearly adding-up LUT-estimator which we use per
PE per Model. Preparation and estimation run-time may be
further improved by increasing parallelism. This work is par-
tially implemented in an estimator-extension which optimizes
parameter weights with SA, reaching single-digit ms run-time
per estimation.

2-6 7-10 11-20 21-30 31-40 41-49

50

100

150

40.12 47.02

100.27

150.95
128.15

83.16

1.64 2.23 9.63 16.48 11.69 4.37To
ta

l
ru

n-
tim

es
[s

]

setup run-time
estimation run-time

Fig. 9: Total setup and estimation run-times per region for
combinatorial BSS dataset.

TABLE IV: NUMBER OF REFERENCES, ESTIMATIONS AND
MEAN RUN-TIME PER ESTIMATION PER REGION

PEs 2-6 7-10 11-20 21-30 31-40 41-49
References comb. 1561 1198 1510 1537 1193 765

Estimations comb. 95 75 190 204 137 52
Run-time per est. in ms 17.26 29.73 50.68 80.78 85.33 84.04
References non-comb. 730 596 496 534 407 316

Estimations non-comb. 63 53 129 112 93 51
Run-time per est. in ms 17.81 27.11 46.31 77.04 82.95 77.31

VIII. CONCLUSION

The estimation of the clock frequency of heterogeneous
CGRAs is complex due to the massive design space and mul-
tiple different paths that can occur. Using a segmentation of the
design space, reference data can be generated systematically
and used for a statistical approach. By choosing references of
similar compositions, any composition above 6 PEs can be
estimated with a mean error of 1.9 - 4.6 % and a maximum
error below 17.4 %.

This research work has been funded by the German Federal
Ministry of Education and Research and the Hessen State
Ministry for Higher Education, Research and the Arts within
their joint support of the National Research Center for Applied
Cybersecurity ATHENE.

REFERENCES

[1] D. Wolf, T. Ruschke, C. Hochberger, A. Engel, and A. Koch, “Ul-
traSynth: Integration of a CGRA into a Control Engineering Environ-
ment,” in Applied Reconfigurable Computing, C. Hochberger, B. Nelson,
A. Koch, R. Woods, and P. Diniz, Eds. Cham: Springer International
Publishing, 2019, pp. 247–261.

[2] K. Niu and J. H. Anderson, “Compact Area and Performance Modelling
for CGRA Architecture Evaluation,” in 2018 International Conference
on Field-Programmable Technology (FPT), Dec 2018, pp. 126–133.

[3] L. Yan, T. Srikanthan, and N. Gang, “Area and Delay Estimation for
FPGA Implementation of Coarse-grained Reconfigurable Architectures,”
SIGPLAN Not., vol. 41, no. 7, pp. 182–188, Jun. 2006. [Online].
Available: http://doi.acm.org/10.1145/1159974.1134677

[4] D. Suh, K. Kwon, S. Kim, S. Ryu, and J. Kim, “Design Space Explo-
ration and Implementation of a High Performance and Low Area Coarse
Grained Reconfigurable Processor,” in 2012 International Conference on
Field-Programmable Technology, Dec 2012, pp. 67–70.

[5] A. Monostori, H. Holm Frühauf, and G. Kókai, “Quick Estimation of
Resources of FPGAs and ASICs Using Neural Networks,” in LWA, 01
2005, pp. 210–215.

[6] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-Level Power Estimation
and Low-Power Design Space Exploration for FPGAs,” in 2007 Asia and
South Pacific Design Automation Conference, Jan 2007, pp. 529–534.

[7] R. Enzler, T. Jeger, D. Cottet, and G. Tröster, “High-Level Area and
Performance Estimation of Hardware Building Blocks on FPGAs,” in
Field-Programmable Logic and Applications: The Roadmap to Reconfig-
urable Computing, R. W. Hartenstein and H. Grünbacher, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 525–534.

[8] M. L. J. Sokolovic and V. B. Litovski, “Using VHDL Simulator to
Estimate Logic Path Delays in Combinational and Embedded Sequen-
tial Circuits,” in EUROCON 2005 - The International Conference on
"Computer as a Tool", vol. 2, Nov 2005, pp. 1683–1686.

[9] Z. E. Rákossy, D. Stengele, G. Ascheid, R. Leupers, and A. Chattopad-
hyay, “Exploiting scalable CGRA mapping of LU for energy efficiency
using the Layers architecture,” in 2015 IFIP/IEEE International Confer-
ence on Very Large Scale Integration (VLSI-SoC), Oct 2015, pp. 337–
342.

