
Work-in-Progress: DAPHNE - An Automotive Benchmark Suite
for Parallel Programming Models on Embedded Heterogeneous

Platforms
Lukas Sommer Florian Stock Leonardo Solis-Vasquez Andreas Koch

{sommer,stock,solis,koch}@esa.tu-darmstadt.de
Embedded Systems and Applications Group

TU Darmstadt, Germany

ABSTRACT
Due to the ever-increasing computational demand of automotive
applications, and in particular autonomous driving capabilities, the
automotive industry and its suppliers are starting to adopt parallel
and heterogeneous embedded computing platforms.

However, C and C++, the currently dominating programming
languages in this industry, do not provide sufficient mechanisms
to fully exploit such platforms. As a result, vendors have begun to
employ true parallel programming models such as OpenMP, CUDA
or OpenCL.

In this work, we report on a benchmark suite developed specifi-
cally to investigate the applicability of established parallel program-
ming models to automotive workloads on heterogeneous platforms.

1 INTRODUCTION
The computational demands of automotive applications has in-
creased steeply in recent years, in particular due to autonomous
driving and advanced driver-assistance (ADAS) functionalities.

To meet this new computational demand, the automotive indus-
try is starting to turn towards parallel and heterogeneous platforms.
The multi-core processors and accelerators (e.g., GPUs) found on
heterogeneous platforms typically require programming language
support to explicitly express parallelism. However, C and C++, the
currently dominating programming languages in the automotive
field, lack sufficient mechanisms. As a consequence, the automotive
industry is keenly interested in parallel programming models.

While a number of well-established standards for parallel and
heterogeneous programming exist in the HPC community, the em-
bedded target platforms used in automotive applications differ sig-
nificantly from the HPC systems these programming models were
originally tailored for.

In this work, we present the DAPHNE (Darmstadt Automotive
Parallel HeterogeNEous) open-source benchmark suite [1], com-
prising multiple kernels from automotive applications, together
with parallel implementations in different programming models
and for different embedded computing platforms. This suite allows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EMSOFT’19 Companion, October 13–18, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6924-4/19/10. . . $15.00
https://doi.org/10.1145/3349568.3351547

Kernel LoC Input [MB] Output [MB] Data Sets
points2image 347 19 000.000 4 300.000 2500
euclidean_clust. 956 45.000 54.000 350
ndt_mapping 1394 4 200.000 0.008 115

Table 1: Kernel statistics
to study the applicability of parallel programming models to dif-
ferent automotive workloads and their performance on embedded,
heterogeneous systems. The insights can also be used to establish
a set of best practices, potential adaptions and possible extensions
of the investigated parallel programming models.

2 BENCHMARK SUITE
Our goal for the development of the benchmark suite was to ex-
tract actual compute-intensive automotive workloads into easy-to-
analyze standalone kernels for parallelization.

For the serial implementations of the automotive workloads that
serve as the basis for our benchmarks suite, we reviewed multiple
open-source frameworks for ADAS. In this process, we found Au-
toware [3] to be the most promising candidate as the source of the
serial implementations.

Autoware contains algorithms for all steps of an AD/ADAS ap-
plication, including sensing, perception, planning, decision making,
and actuation. As such, the modules contained in Autoware are
representative for the kind of computations found in real-world
automotive applications.

Using the test dataset acquired from a real test drive and provided
by Autoware, we used profiling to identify execution hotspots. As
our aim was to accelerate code with a parallel execution model,
only those code parts that seemed promising for parallelization
were considered for extraction.

Currently, our benchmark suite contains three different kernels.
Each kernel was provided in a skeleton for standalone execution
outside of the complex ROS-based Autoware framework. Refer-
ences to third-party libraries were either inlined or replaced with
custom implementations. To make sure that we did not introduce
any artificially slow sections in this process, we compared the per-
formance of our implementation to that of the original Autoware
implementation (for an example, see Fig. 1).

Additionally, we extracted five data sets of increasing size with
input- and reference- data for each kernel, which we provide to-
gether with the benchmark suite, see Table 1 for statistics.

After extraction, we parallelized each kernel using different pro-
gramming models. We chose OpenMP, CUDA and OpenCL for
parallelization, because these standards are supported on most em-
bedded, heterogeneous platforms. For each kernel, we provide an

https://doi.org/10.1145/3349568.3351547

EMSOFT’19 Companion, October 13–18, 2019, New York, NY, USA L. Sommer, F. Stock, L. Solis-Vasquez and A. Koch

Figure 1: Comparison of different radiusSearch implemen-
tations.

implementation in each of the programming models. In the case of
OpenMP we also provide implementations using the new device
offloading features. For the points2image-kernel, we additionally
created an implementation for Xilinx Zynq Ultrascale+ MPSoC
using OpenCL with Xilinx SDAccel.

2.1 points2image Kernel
The points2image-routine gets as input a point cloud (which orig-
inates from a LIDAR) with intensity and range information. The
points are then projected onto a given 2D view.

With thousands of points being projected at the same time, this
seemed like a very good candidate for parallelization. However,
in practice, multiple of the 3D LIDAR points may end up being
projected to the same point in the 2D view. This leads to race
conditions in parallel execution, and can result in incorrect results
when not handled with care.

The original Autoware code prioritizes the point that is closer to
the projected view. This behavior is implemented in our parallel
versions by using atomic min functions in the threads accessing
the 2D view. In case of accessing the same 2D element, the atomic
min function guarantees that the correct thread writes its value.

Similar atomic and synchronization functions can be used to keep
the array with the corresponding intensity up to date. While these
atomic operations diminish the resulting speed up, the accelerators
were still able to improve the run time by up to a factor of 3.5x.

2.2 euclidean_clustering Kernel
Similar to points2image, the euclidean_clustering-kernel also oper-
ates on a point cloud. The algorithm clusters points that are close
together, to identify objects.

The original implementation uses a kd-tree to compute the dis-
tances between points. This was provided by the Point Cloud Li-
brary (PCL, [4]). To remove the dependency on the PCL and enable
stand-alone, library-less compilation and execution, a custom im-
plementation was created. As the distances from all points to all
others were required, our replacement for the radiusSearch func-
tion from PCL employs a look-up of the distances in a precomputed
table. The table does not need to hold the distances between two
points, but just a boolean indicating if the distance between those
points is below the given threshold. This reduces the memory re-
quired for the table significantly.

To verify that this standalone kernel has a similar performance to
the original one, it was benchmarked against the original Autoware
version. Fig. 1 shows that the performance of the two implementa-
tions is almost identical.

2.3 ndt_mapping Kernel
The ndt_mapping kernel is a SLAM (simultaneous location and
mapping) algorithm that works with Normal Distribution Transfor-
mations (NDT, [2]). As input, two point clouds are accepted, one
representing the current LIDAR scan, and a second one represent-
ing the map built during the drive so far. The newly discovered
points from the LIDAR scan are then added to the map by aligning
them with the existing map.

The computational result is a transformation consisting of a rota-
tion and a translation. The transformation is the best transformation
that fits the newly acquired LIDAR point cloud to a pre-existing
map point cloud using NDT.

To make the kernel code library free, we replaced the complex
SVD algorithm, with a much simpler Gaussian solver. In general the
SVD solver deals better with singular matrices, but for our purpose,
the precision of the replacement turned out to be sufficient.

Beyond that, we again replaced a radius search within a kd-tree.
In this case, the search was not used to compute the distances from
all points to each other within the kd-tree. Instead it was used to
actually find the closest point inside the tree to a point outside the
tree. This search was implemented as a linear search within the
point cloud. Our evaluation showed that neither of these changes
slows down the sequential baseline. On the contrary, they actually
improve the runtime of the sequential baseline, and thus do not
artificially inflate the speedups we achieve through parallelization.

3 CONCLUSION AND OUTLOOK
We presented the DAPHNE open-source [1] benchmark suite, com-
prising three different workloads typical for automotive applica-
tions. For each of the kernels we provided parallelizations with
CUDA, OpenCL and OpenMP, all qualified for execution on actual
embedded computing platforms.

The benchmark suite can be used to assess the applicability of
established parallel programming models to automotive workloads,
or to evaluate new compute platforms for the AD/ADAS domains.

In the future, we plan to extend the benchmark suite by adding
more kernels and parallelization with other programming models,
such as SYCL. Besides that, we will use the benchmark suite to inves-
tigate the performance of established parallel programming models
on embedded heterogeneous platforms and how these models can
be adapted to better meet the needs of the automotive industry.

ACKNOWLEDGMENTS
This project was funded by VDA FAT as part of the research of
AK31. The authors would also like to thank Xilinx for supporting
this work by donations of hard- and software, as well as Renesas
and Codeplay for their help with the acquisition of the V3M and
the timely support for using their programming tools.

REFERENCES
[1] 2019. DAPHNE Benchmark Suite. https://github.com/esa-tu-darmstadt/daphne-

benchmark. Accessed: 2019-08-01.
[2] P. Biber andW. Strasser. 2003. The normal distributions transform: a new approach

to laser scan matching. In Intl. Conf. on Intelligent Robots and Systems (IROS 2003).
[3] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada. 2015.

An Open Approach to Autonomous Vehicles. IEEE Micro 35, 6 (Nov 2015), 60–68.
[4] Radu Bogdan Rusu and Steve Cousins. 2011. 3D is here: Point Cloud Library (PCL).

In IEEE Intl. Conf. on Robotics and Automation (ICRA). Shanghai, China.

