GeMS: A Generator for Modulo

Scheduling Problems

Julian Oppermann’ Sebastian Vollbrecht! Melanie Reuter-Oppermann? Oliver Sinnen® Andreas Koch?
1 Embedded Systems and Applications Group, 2 Discrete Optimization and Logistics, 3 Parallel and Reconfigurable Computing Lab,
Technische Universitat Darmstadt Karlsruhe Institute of Technology University of Auckland

Why generate problems? Formal definition distance
P

» Finding an optimal solution to the MSP is NP-hard An instance of the modulo scheduling problem (MSP) is

= But, we were stubborn... defined by:

- observed most MSPs in a high-level synthesis context can = " Resources types r
be solved with an exact, ILP-based scheduler - latency
- only a handful instances are slow or intractable, too few to - # available units (or)

reason about

Operations j
» Generated problems “fill the gaps” between the benchmark

. - mapping to resource type
Instances

o , Edges/ —
- small/large, sparse/dense, few/many limited operations, ...
- delay (e.g. to control operator chaining)

- investigate what’s “hard” for a particular scheduler

_ _ . - distance (= 1 for inter-iteration dependences)
- long-term goal: build an oracle that picks the “right 11
m

Generation approach

© - - ! N~

O O O O prer 0 | Q L\ Q

OO OO O000 "5 C)C)(A)/t) 0O OO
O v)))

yidep

@ Build layer structure @ Map .o.peratlons to (user- @ Establish Minll (optional) @ Construct edges
SpeCIerd) resource types

Generating graphs with known Minll Code example

= MinllI = lower bound for optimal II, induced by cycles and Resource resA = new Resource("A", 2, 2); Resource resB = new Resource("B", 1, 4);

Resource resC new Resource("C", 0);

resource constraints

- schedulers usually try several candidate IIs until a feasible GraphGenerator gen = new GraphGenerator(
new FixedShapelLayerCreator(/* nodes in layer %/ 1, 2, 4, 1);

solution is found new DistributionNodeCreator(new ProbabilityDistribution<>(resA, resB, resC)),
- important to keep number of tried candidate IIs the same new Eggecgeatgr(l , ConstantValueComouter(d) . T
. . * edage aelay */ new LonstantVatiluelLomputer ’
when comparing scheduler runtimes /* backedge delay */ new ConstantValueComputer(0),
= GeMS allows a desired Minll, and whether the MSP shall be P /* bZCksdge d/iSta”CF? *é ey Coggta?tvflé’ecfg‘pg;%)(l)) @
i i] . - * forward edges */ new ProbabilityEdgeIncluder(0. ,
feasible or infeasible at that MinlI, to be specified /% backedges +/ new ProbabilityEdgeIncluder(0.0030)

- if needed, picks operations to construct a cycle (step 3) to éi FileUtil hToHatScheTFiles(teGraoh (/+ d s/ 42), " h) -
raise the graph’s Minll rapnriltleutiils.grapnionatocneiriiles\gen.createaurap see ’ grap ’

, = GeMS is a toolkit written in Java, offers no CLI
- checks prevent that edges (generated in step 4) change the

desired Minll or its feasibility = Graph representation is simple (~nodes+edges)
- the rest of the MSP is still randomly generated! - supplied export facilities: DOT, and format used by HatScheT scheduler library
Case study Source code available

= Question: How does the
Moovac formulation [CASES’16]
cope with symmetry?

O 50

] HatScheT:

a

_ 0000 gems:

= Experiment (:)

" a2 0O 00 2
a

- 48 operations in different
() O) Outlook

layer structures compete for
this resource type » Add support for specifying the number of incoming edges
(e.g. #operands)

= Result/insight #layers x #ops 48x1 24x2 16x3 12x4 8x6 6x8 4x12 2x24 1x48
- the more Operations in avg time [S] 3.0 116.5 3600 3600 3600 3600 3600 3600 3600
parallel, the harder for avg gap [%] opt. opt. 29 45 61 69 77 88 88F

Moovac to find/prove an Average over 10 random instances *) No solution found for 2 instances
optimal solution

= Finer control over the MSP’s II (e.g. “be feasible at MinlI+3”)

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Karlsruhe Institute of Technology

THE UNIVERSITY OF

AUCKLAND

Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

{oppermann, vollbrecht, koch}@esa.tu-darmstadt.de melanie.reuter@kit.edu o.sinnen@auckland.ac.nz

