
Optimized High-Level Synthesis of SMT
Multi-Threaded Hardware Accelerators

Jens Huthmann∗, Andreas Koch∗
∗Embedded Systems and Applications Group (ESA), Technische Universität Darmstadt, Germany

Email: {jh,ahk}@esa.cs.tu-darmstadt.de

Abstract—
Recent high-level synthesis tools offer the capability to generate

multi-threaded micro-architectures to hide memory access laten-
cies. In many HLS flows, this is often achieved by just creating
multiple processing element-instances (one for each thread).
However, more advanced compilers can synthesize hardware in
a spatial form of the barrel processor- or simultaneous multi-
threading (SMT) approaches, where only state storage is repli-
cated per thread, while the actual hardware operators in a single
datapath are re-used between threads. The spatial nature of the
micro-architecture applies not only to the hardware operators,
but also to the thread scheduling facility, which itself is spatially
distributed across the entire datapath in separate hardware
stages. Since each of these thread scheduling stages, which also
allow a re-ordering of threads, adds hardware overhead, it is
worthwhile to examine how their number can be reduced while
maintaining the performance of the entire datapath. We report on
a number of thinning options and examine their impact on system
performance. For kernels from the MachSuite HLS benchmark
collection, we have achieved area savings of up to 50% LUTs
and 50% registers, while maintaining full performance for the
compiled hardware accelerators.

I. INTRODUCTION

High-level synthesis tools translating different subsets of
C into synthesizable HDL code are under active develop-
ment from many commercial vendors and academic groups
alike. Commercial tools include Xilinx Vivado HLS [1], Y
Explorations eXCite [2], and Synopsis Synphony C Compiler
[3]. These tools, however, do not perform co-compilation
into hybrid hardware/software-executables, which is still the
domain of a small number of academic projects such as
LegUp [4], ROCCC [5], Comrade [6], and DWARV [7]. The
topic of exploiting multi-threaded execution to hide memory
access latencies in the generated hardware is even more rarely
addressed.

NYMBLE-MT [8] is a specialized back-end for the
NYMBLE hardware compilation system [9]. In addition to
hardware-software co-compilation from C to shared-memory
heterogeneous reconfigurable computers, the MT back-end
is able to generate multi-threaded accelerators following
the barrel processor or SMT approaches. In these micro-
architectures, only state storage is replicated per thread, while
the actual compute operators are shared between threads. This
is achieved by selectively applying coarse-grained dynamic
scheduling and per-thread context data storage. The aim here
is to exploit these mechanisms not just to hide memory access

latencies, but to improve datapath usage in the presence of
Variable-Latency Operations (VLO) in general. Note that in
this model, nested loops having variable execution times (e.g.,
due to variable loop bounds or internal control flow) are
also considered VLOs, making multi-threading even more
applicable.

Section III gives a brief overview over some of the issues
that need to be addressed in NYMBLE-MT. Note that the key
paradigm of reconfigurable computing, namely spatially dis-
tributing the computation, is also followed for the scheduling
facility itself. It is realized as multiple independent Hardware
Thread Scheduling (HTS) stages, which are transparently
inserted into the datapath.

This work presents two main contributions over the original
NYMBLE-MT research: First, it examines the potential for im-
proving the area efficiency of the multi-threaded accelerators
by removing HTS stages from the datapath, introducing the
new concepts of mandatory and optional HTS stages. Second,
it presents two heuristics for the selective HTS removal process
(one using a rule-guided brute-force approach, the second
relying on dynamic profiling of datapath behavior).

II. RELATED WORK

In [10], the CHAT compiler is introduced as a variant
of ROCCC capable of generating multi-threaded accelerators
that allow for a very quick context switch to alleviate the
impact of memory latencies. Like ROCCC, the CHAT com-
piler is focused on generating hardware for highly specialized
classes of input programs, such as sparse matrix multiplication.
According to the authors, CHAT can translate only regular
for-loops with a single index variable.

NYMBLE-MT and CHAT share the general idea that is ben-
eficial to hide memory access latencies by switching execution
to another ready thread. NYMBLE-MT, however, is capable
of translating a much larger subset of C, demonstrated by its
ability to create multi-threaded hardware accelerators for nine
out of the 12 CHStone benchmarks [11].

In contrast, the LegUp developers pursue a different ap-
proach, more similar to software multi-threading [12]. LegUp
accepts a parallel program that uses the pthreads and OpenMPI
APIs, and generates a dedicated hardware accelerator instance
for each (software) thread or for each parallel loop, respec-
tively. This is fundamentally different from NYMBLE-MT,
which aims to increase the utilization of a single accelerator
instance by extending it for SMT multi-threaded execution978-1-4673-9091-0/15/$31.00 c©2015 IEEE

and allowing the processing of data from parallel threads in
the same instance.

As an example for another completely different approach to
multi-threaded accelerators, Convey Computer recently added
support for a concept called Hybrid Threading (HT) to the tool
chain for their FPGA-accelerated computing systems [13]. The
HT flow accepts an idiomatic C++ description (basically an
FSM, with each state representing a clock cycle, extended with
message-based I/O) for efficiently describing computation, but
without support for pointers or variable-bound/non-unit stride
loops. These descriptions are then compiled into synthesizable
HDL and linked to a vendor-supplied HW/SW framework that
allows the starting of threads on the hardware accelerators and
provides the context switching mechanism. Thread switching
requires a single clock cycle and is used to effectively hide
memory latencies. Despite being limited to an idiomatic pro-
gramming style, the abstraction level of the HT C++ code
is significantly higher than low-level HDL programming, with
the actual multi-threading hardware being added automatically
by the tools. The main difference between HT and NYMBLE-
MT is, that the latter accepts true untimed programs, while HT
relies on a manually scheduled/chained program with explicit
message-based communication to host and memories.

III. MULTI-THREADED ACCELERATORS

Multi-threaded execution with re-ordering scheduling re-
quires a controller capable of handling dynamic execution
schedules in hardware. While it is possible to perform dynamic
scheduling based on the readiness of individual operators [14],
the resulting circuit complexity often leads to lower clock
rates. Thus, we base our approach on introducing dynamicity
at the granularity of entire pipeline stages (all operators within
a stage must be ready for the stage to be considered ready).
As shown in [8], this can implemented efficiently in the form
of a Dynamic Stage Controller (DSC), which we use as base
for the multi-threaded microarchitecture.

A. Execution Paradigm

The DSC is based on the principles of C-slow execution
introduced by Leiserson et al. [15]. Data streams, externally
interleaved/deinterleaved on a fixed round-robin (in-order)
basis lead to an improvement in overall processing throughput.
However, Leiserson’s original approach is limited in that in
applies only to Fixed-Latency Operators (FLO).

In the more powerful solution [8], all state in the accelerator
is replicated N times for N threads, with the per-thread storage
called the thread context.

In this manner, it is now possible to effectively handle
VLOs, such as cached memory accesses. Once a thread has
stalled in a stage on a cache miss, the next ready (un-stalled)
thread in that stage can be scheduled. Also, in contrast to
C-slow execution, we can now allow threads to overtake each
other (re-order the schedule), basically dynamically changing
Leiserson’s interleaving scheme on-the-fly. This allows faster
threads to continue without being stalled by other slower
threads.

Stage Stall
0 0
1 20
2 20
3 0
4 0
5 6434k
6 0
7 0

(a) Level 0

Stage Stall
0 0
1 0
2 0
3 6433k
4 0
5 0
6 0

(b) Level 1

Stage Stall
0 0
1 0
2 0
3 6428k
4 0
5 0
6 0

(c) Level 2

Stage Stall
0 11700
1 1531116
2 1575000
3 1575000
4 1575000
5 0
6 0
7 0
8 0
9 450934

10 0
11 0

(d) Level 3
TABLE I

PER-STAGE STALL COUNTERS, WITH ONLY MANDATORY HTS ENABLED;
BOXED=MANDATORY, GREY=OPTIONAL HTS

While this approach of replicating all state for N threads is
effective, it is not efficient. A closer examination reveals that
re-ordering of threads (to allow overtaking) can occur only
in stages with VLOs, thus requiring per-thread context and a
scheduling facility (both realized in the HTS) only in those
stages. In all other stages, the conventional, non-duplicated
pipeline state is used.

FLOs residing in (or spanning) pipeline stages together with
VLOs must also be provided with context storage, as thread
reordering may occur due to VLOs, and the active thread is
tracked by the HTS only at the granularity of an entire pipeline
stage. However, it suffices to place the context only at the end
of such FLOs, as reordering cannot take place within them.
The only issue to consider here is that the context must use
queues sufficiently deep to buffer all of the data inside of a
multi-cycle FLO, if the FLO cannot be completely stopped
(e.g., by deasserting a Clock Enable signal), when the rest of
the stage is stalled.

IV. SELECTIVE PLACEMENT OF HTS STAGES

As presented in [8], the approach discussed in the prior sec-
tion already results in area efficient multi-threaded hardware-
accelerators, where the throughput improvements significantly
exceed the area growth due to more complex multi-threaded
hardware.

But further area efficiency gains are possible. On closer
examination, it turns out that the locations for HTS stages
discussed in Section III-A actually fall into one of two
categories: Those that are mandatory to achieve multi-threaded
execution at all, and those that are optional and potentially just
increase performance (by allowing thread reordering).

HTS stages are mandatory only to encapsulate entire loops,
which are treated as VLOs from the perspective of the sur-
rounding code. Without HTS support, only a single thread
could enter a loop (while the rest would be blocked in a
prior stage), which would prevent multi-threading especially
in those parts of the program that could profit from them most.
In all other places, HTS stages are just optional.

It is thus promising to explore if (and which) optional
HTS stages could be removed from the accelerator with
limited (or ideally even no) loss in performance. To this end,
NYMBLE-MT was extended to insert per-thread performance
counters into each DSC stage. These track the number of

cycles this stage would stall if only mandatory HTS stages
were created. For stencil3d of the MachSuite [16] benchmark
collection, this is shown in Table I along the HTS stage
placement. The levels indicate the loop nesting levels, with
0 indicating the main function itself. Mandatory HTS stages
are boxed, optional HTS stage have a grey background. As
for all evaluations in this work, we generate an accelerator
with four hardware threads. Also, we always target a Xilinx
XC7VX690T device using Vivado 14.1 for logic synthesis and
mapping.

Most of the activity occurs in the inner loop (at Level 3).
Obviously, the optional HTS at Stage 4 would be useful (as its
lack causes a large back-pressure of stalls, due to the inability
to re-order threads in the seven memory read operators located
at that stage). On the other hand, a HTS at Stage 9 would not
be that useful (only a relatively small number of stalls occurs
in the single write operator). The results of these studies have
led to two proposed optimization heuristics.

A. Backward HTS Deletion

When examining the profiling results for larger examples,
it becomes clear that the lack of optional HTS stages in the
later stages of the inner loops causes fewer stalls than having
HTS capability missing from the earlier stages. This is already
visible in the small stencil3d example of Table I, where the
lack of HTS at Stage 4 is much more severe than on Stage 9
in the Level 3 loop.

This observation can be explained by considering the nature
of datapath execution in the presence of VLOs. At the begin-
ning of the loop (which itself is a VLO), all threads start at the
same time, causing significant demand for shared ressources
(such a memory accesses), and thus being most likely to stall.
The variable-latency of the VLOs then causes a spreading-out-
in-time of threads, as they get deeper in the pipeline (since the
threads are often subject to different latencies). Thus, there is
less potential for conflict among threads, and correspondingly
less need for re-ordering by HTS.

A very simple heuristic can thus, for each loop level, attempt
to omit the last N optional HTS stages, and only implement
the earlier ones in each pipeline. The impact of this approach is
shown in Figure 1, relative to an accelerator using all optional
HTS stages. For each benchmark, each bar indicates the last
N = 0 . . . 4 HTS stages being dropped from each loop level.
Figure 1.a gives the run-time in clock cycles (note: the clock
frequency itself was not affected by the HTS removal) and
.b the number of LUTs in the accelerator core (not including
system interface logic).

The results are already promising: Even dropping only the
last HTS stage (N:1) from a loop level can result in area
savings of up to 20% (e.g., for aes), while maintaining the
same performance of the fully-HTS-populated version. For
many benchmarks, even the four last HTS stages can be
dropped (N:4) without adversely affecting performance (e.g.,
also bfs queue, spmv ellpack), leading to area savings of
up to 50% for aes. However, there is too much of a good
thing: The performance of kmp begins to deteriorate if more

0.0
0.5
1.0
1.5
2.0
2.5

N:0
N:1

N:2
N:4

(a) Relative Runtime

0.0
0.2
0.4
0.6
0.8
1.0

aes
bfs

bulk

bfs
queue

fft strided

kmp
md

knn

nw spmv
ellpack

stencil3d

(b) Relative #LUTs Kernel in Accelerator Core

Fig. 1. Greedily deleting the last N optional HTS stages

than one optional HTS stage is dropped, while md knn cannot
afford even the removal of a single level of HTS 1. Obviously,
a more targeted optimization strategy is required for consistent
results.

B. Profile-Guided HTS Insertion

HTS stages can be removed more selectively by taking the
actual run-time behavior of the accelerator into account. This
is achieved by relying on the performance counters described
above to collect a stall profile when executing the accelerator
(in simulation or hardware), with only mandatory HTS stages
present, on representative input data.

The key idea here is to selectively insert only those optional
HTS stages that are responsible for stalls that make up a
significant fraction Q of the entire execution clock cycles. As
the choice of Q is crucial for this heuristic, we will evaluate
its performance over a wide range of values to examine the
robustness of the algorithm. Note that this algorithm still relies
on the already restricted places for HTS stages in general (see
Section III-A). For stencil3d, this leads to the HTS-ineligible
Stages 1. . . 3 in Loop Level 3 (Table I.d) being disregarded for
HTS insertion (despite their large stall counts), as the observed
stalls are just the result of back-pressure that will be removed
by a HTS inserted into Stage 4 (which, being optional, is
actually eligible for HTS insertion).

As seen in Figure 2, the approach is robust with regard to
the choice of Q. It already gives good results for Q = 10, 000
(e.g., yielding 40% of LUT savings for aes), with only minor

1The odd effect of increasing performance when dropping more stages
appears to be a side effect of also removing the priority-based scheduler in
the HTS, which in itself might not be the best scheduling strategy for the
specific benchmark, see Section V.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

all Opt.
Q:10000

Q:1000
Q:100

Q:10

(a) Relative Runtime

0.0
0.2
0.4
0.6
0.8
1.0

aes
bfs

bulk

bfs
queue

fft strided

kmp
md

knn

nw spmv
ellpack

stencil3d

(b) Relative #LUTs Kernel

Fig. 2. Profile-guided HTS insertion

area improvements achievable for Q = 1, 000 . . . 100. Only
for Q = 10 becomes the insertion criterion too selective: A
HTS would only be inserted into a stage with stalls exceeding
more than 10% of the entire execution time. The benchmarks
fft strided and md knn will be adversely affected by this, as
too many useful HTS stages (but having smaller stall counts)
would be omitted.

Compared to the Backwards Deletion heuristic, the results
of the profile-guided approach are much more predictable (e.g.,
choosing Q = 100), while still realizing almost all the benefits
(similar performance with less hardware area).

The key disadvantage of this approach is of course, that
the HLS process now has to include the profiling (simulation
or generation of actual hardware) of the accelerator. For
the MachSuite benchmarks presented here, simulation takes
between 4 and 14 minutes on current x86 compute servers.

V. CONCLUSION AND FUTURE WORK

We have refined the concepts of SMT multi-threaded execu-
tion in HLS-generated accelerators by differentiating between
mandatory and optional HTS stages. This distinction can
be exploited to further reduce the area overhead of SMT
execution, yielding reductions of up to 50% of LUTs and 50%
of registers in SMT accelerators generated by HLS for the
MachSuite benchmark collection.

We then presented two heuristics (one static, one dynamic)
for maintaining SMT performance, while reducing the number
of optional HTS stages. The later method is profile-guided,
making it significantly more precise than the static one,
but requires simulation time in the 10’s of minutes during
compilation, even for the relatively small benchmarks used in
this study.

Future work will concentrate on improving the actual
scheduling strategy beyond the simple priority based scheme
used here. It is highly likely that different applications will
require different strategies to achieve the best performance.
To this end, we will evaluate both simple static methods
(e.g., round-robin, pseudo-random) as well as truly dynamic
approaches (tracking the past behavior of threads to make
current scheduling decisions).

ACKNOWLEDGMENT

The authors would like to thank Xilinx, Inc. for supporting
their work by hardware and software donations.

REFERENCES

[1] Xilinx Inc., “Vivado Design Suite User Guide, UG902,” 2012.
[2] Y Explorations Inc., “eXCite C to RTL Behavioral Synthesis.”
[3] Synopsis Inc., “Synphony C Compiler User Guide,” 2011.
[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,

S. D. Brown, and J. H. Anderson, “From Software to Accelerators
with LegUp High-Level Synthesis,” ACM Transactions on Embedded
Computing Systems, vol. 13, no. 2, Sep. 2013.

[5] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular
Hardware Accelerators in C with ROCCC 2.0,” in 2010 18th IEEE An-
nual Intl. Symp. on Field-Programmable Custom Computing Machines,
2010.

[6] H. Gädke-Lütjens, “Dynamic Scheduling in High-Level Compilation for
Adaptive Computers,” Dissertation, TU Braunschweig, 2011.

[7] R. Nane, V.-M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels,
“DWARV 2.0: A CoSy-based C-to-VHDL hardware compiler,” in 22nd
Intl. Conf. on Field Programmable Logic and Applications (FPL), Aug.
2012.

[8] J. Huthmann, J. Oppermann, and A. Koch, “Automatic high-level
synthesis of multi-threaded hardware accelerators,” in 2014 24th Intl.
Conf. on Field Programmable Logic and Applications (FPL), 2014.

[9] J. Huthmann, B. Liebig, J. Oppermann, and A. Koch, “Hardware/-
software co-compilation with the Nymble system,” in 2013 8th Intl.
Workshop on Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC), Jul. 2013.

[10] R. Halstead and W. Najjar, “Compiled multithreaded data paths on
FPGAs for dynamic workloads,” Compilers, Architecture and Synthesis
. . . , 2013.

[11] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quanti-
tative analysis of the CHStone benchmark program suite for practical C-
based high-level synthesis,” Information and Media Technologies, vol. 4,
no. 4, 2009.

[12] J. Choi, S. Brown, and J. Anderson, “From Software Threads to Parallel
Hardware in High-Level Synthesis for FPGAs,” in 2013 Intl. Conf. on
Field-Programmable Technology (FPT), Dec. 2013.

[13] Convey Computer Corp., “Hybrid Threading Reference Manual, Version
1.0,” 2014.

[14] H. Gädke and A. Koch, “Accelerating speculative execution in high-
level synthesis with cancel tokens,” in Reconfigurable Computing:
Architectures, Tools and Applications, 2008.

[15] C. Leiserson, F. Rose, and J. Sax, “Optimizing synchronous circuitry by
retiming,” in Third Caltech Conf. On VLSI, 1993.

[16] B. Reagen, R. Adolf, S. Y. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for Accelerator Design and Customized Architectures,” in
IEEE Intl. Symp. on Workload Characterization (IISWC), 2014.

