
An Open-Source Tool Flow for the Composition of Reconfigurable Hardware Thread
Pool Architectures

Jens Korinth, David de la Chevallerie, Andreas Koch

Embedded Systems and Applications (ESA)
Technical University of Darmstadt

Darmstadt, Germany
Email: {jk, dc, ak}@esa.cs.tu-darmstadt.de

Abstract—
With heterogeneous parallel computing becoming more ac-

cessible from general-purpose languages, such as directive-
enhanced C/C++ or X10, it is now profitable to exploit the
highly energy-efficient operation of reconfigurable accelerators
in such frameworks. A common paradigm to present the
accelerator to the programmer is as a pool of individual
threads, each executed on dedicated hardware. While the
actual accelerator logic can be synthesized into IP cores
from a high-level language using tools such as Vivado HLS,
no tools currently exist to automatically compose multiple
heterogeneous accelerator cores into a unified hardware thread
pool, including the assembly of external control and memory
interfaces. ThreadPoolComposer closes the gap in the design
flow between high-level synthesis and general-purpose IP in-
tegration by automatically composing hardware thread pools
and their external interfaces from high-level descriptions and
opening them to software using a common API.

Keywords-FPGA; hardware thread pools; architecture; de-
sign automation; accelerators; meta flow; Zynq;

I. INTRODUCTION

Modern parallel programming languages such as X10,

Chapel, C/C++ with OpenACC directives, and others are

evolving from homogeneous multi-core computing to het-
erogeneous computing by integrating accelerator devices to

which suitable parts of the computation can be efficiently

offloaded. But FPGAs, DSPs, and GPGPUs use vastly

different models of computation, and require additional ab-

stractions for seamless integration. One possible abstraction

is the thread pool, i.e., a collection of processing elements

executing independent threads. Viewing an FPGA-based

compute unit as hardware thread pool has been investigated

in different contexts in the literature (see, e.g., [1], [2], [3]

or [4]). However, less attention has been paid to tool flows

that automatically construct such thread pools from high-

level descriptions, including all required interfaces and sup-

port blocks. ThreadPoolComposer is an extensible, highly

customizable open-source tool flow that generates complete
thread pool designs, including customizable memory and

control infrastructure, and also encompasses a generic API

hierarchy to achieve re-use and portability.

II. RELATED WORK

System-level integration of hardware threads has been

an active research topic for several years now, with many

different approaches having been proposed in the literature.

The solution in [1] is based on a OS-level API for hardware

threads called Hthreads. The threads are compiled from C

code into intermediate form called HIF, from which simple

non-pipelined hardware accelerators are created in VHDL.

The ReconOS project [2] unified software and hardware

threads by defining software proxy threads for hardware, and

integrated both in a real-time operating system. Similarly,

in the FUSE framework [3], Ismail et al. also proposed a

common interface for hardware and software threads, mak-

ing the locality of execution transparent to the application.

Other efforts, such as SPREAD [4], discuss topics such as

a partially reconfigurable system architecture for streaming-

based computation

Our approach is probably most similar to FUSE [3] and

ReconOS [2], but with a different focus. We are inter-

ested in performing automated design space exploration for

heterogeneous thread pool architectures, and thus require

tool support to automatically assemble a wide range of

system implementations, including support logic (memory

and interrupt controllers, host interfaces etc.), to perform

area/time/power trade-offs on real or simulated hardware.

We provide a flexible API for integrating the created thread

pools into higher-level run-times (such as HSA, pocl for

OpenCL, or FastFlow [5]).

III. THREADPOOLCOMPOSER

In this section we briefly describe the foundations upon

which HW/SW systems using ThreadPoolComposer thread

pools can be built. Throughout this paper, a hardware thread
denotes an IP core, generated from a software kernel by

high-level synthesis, that is capable of independent exe-

cution; it can receive input arguments and returns output

results.

Figure 1 shows the proposed API hierarchy in (a), and its

relation to the overall hardware architecture in (b). The latter

consists of four parts: host and memory interfaces, support

2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-9969-9/15 $31.00 © 2015 IEEE

DOI 10.1109/FCCM.2015.22

195

Application

TPC API

Platform API

Device
Driver

Hardware

Simulator
(DPI)

Simulator

(a) API hierarchy

H
o
st

In
te
rf
a
ce

M
em

o
ry

In
te
rf
a
ce

Infrastructure

Threadpool

(b) Hardware Design Structure

Figure 1: API Hierarchy and Structure

infrastructure (e.g., interrupt control), and the actual, device-

independent thread pool architecture.

A. TPC API

The fundamental interface to the thread pools built by

ThreadPoolComposer is the TPC API: It provides methods

to enumerate available kernels, manage device memory,

perform data transfers (synchronously and asynchronously),

define jobs (i.e., sets of parameters for a single kernel

execution), actually launch jobs, and wait/poll for their

completion. Listing 1 shows a tiny example of preparing

and executing a job using the TPC API.

/* allocate 1 KB on device */
tpc_handle_t h = tpc_device_alloc(dev, 1024);
/* copy array ’data’ to device */
tpc_device_copy_to(dev, data, h, 1024, TPC_BLOCKING_MODE);
/* prepare a new job for function id #10 */
tpc_job_id_t j_id = tpc_device_acquire_job_id(dev, 10);
/* set argument #0 to handle h */
tpc_device_job_set_arg(dev, j_id, 0, sizeof(h), &h);
/* launch job */
tpc_device_job_launch(dev, j_id, TPC_BLOCKING_MODE);
/* call blocks until completed, so get return value */
int r = 0;
tpc_device_job_get_return(dev, j_id, sizeof(r), &r);
printf("result of job: %d\n", r);
/* release job id */
tpc_device_release_job_id(dev, j_id);

Listing 1: Threadpool API Example

Furthermore, TPC API provides some optional manage-

ment functions, e.g., to enumerate devices, reconfigure the

device, and perform initial setup (e.g., of memory ranges

shared with the host). Note that no specific implementation

is assumed. Consider, for example, the job scheduler: The

TPC API contains a generic function to launch a job, but the

actual thread scheduling could happen in the implementation

of tpc_device_job_launch, or at device driver level, or even

in custom IP on the FPGA itself. We have actually done

the latter for our current target platform [6], significantly

reducing scheduling latency.

B. Platform API

To cleanly separate the device-dependent from

the device-independent view, TPC API is itself

implemented against the Platform API. The core tasks

of the Platform API are to manage device buffers

(platform_alloc/dealloc), provide access to the hardware

registers (platform_read/write_ctl) and device memory

(platform_read/write_mem), and to offer a general waiting

mechanism (platform_write_ctl_and_wait).

We aim for maximum flexibility using this abstraction,

e.g., register and memory could actually occupy a common

address space, or a platform might not employ a separate

register space at all and rely entirely on shared memory

communication. Waiting could be implemented using polling

or interrupts (or even a combination of the two). This

interface is sufficiently flexible to accommodate all data

transfer mechanisms examined in [7].

C. Simulator Target

TPC API does not assume anything about the nature

or capabilities of the lowest layer used to implement the

Platform API, which will likely be the device driver on most

platforms.

For ease of debugging, it is very useful to implement

Platforms in two modes: A regular device driver imple-

mentation wrapping the actual hardware, and an additional

SystemVerilog DPI (Direct Programming Interface) simu-

lator harness which implements the Platform API against

an RTL simulation model. In this manner, the hardware

simulation can be driven by the actual application without re-

compilation, allowing efficient hardware/software co-design.

To support this, ThreadPoolComposer provides client/server

libraries using UNIX sockets for IPC and includes a sample

harness for the Zynq reference platform on the Mentor

ModelSim/Questa simulator.

D. Flow Overview

The overall ThreadPoolComposer tool flow can be di-

vided into three stages of high- (behavioral), mid- (system

composition) and low-level (logic and layout) synthesis

(HLS/MLS/LLS): We assume that the developer has already

partitioned the application into per-thread kernels suitable

for the high-level synthesis tool selected for the first stage,

e.g., isolated C/C++ kernels for Nymble [8] or Vivado HLS.

A thread pool hardware design is composed in three steps:

1) The HLS tool generates a behaviorally equivalent IP

core with an interface which is defined by the selected

Architecture, e.g., the baseline architecture generates

an AXI4Lite register file for control and value argu-

ments, and AXI4 master(s) for reference-arguments.

2) The MLS tool instantiates each IP core the user-

specified number of times and creates the necessary

intra thread pool infrastructure, as defined by the

selected Architecture; e.g., the baseline architecture

196

generates an AXI4 Interconnect hierarchy to connect

the AXI4Lite slaves and AXI4 masters to the platform.

3) Finally, the MLS tool instantiates the base design, i.e.,

the device-dependent infrastructure as defined by the

selected Platform, and connects it with the thread pool

architecture created in the previous step. E.g., the zynq

platform instantiates the Xilinx Processing System 7 IP

Core and AXI Interrupt Controllers, while the vc709

platform instantiates the PCIe core and DMA engine

subdesign.

The resulting hardware design can either be synthesized into

a bitstream by the LLS tool, or used in simulation via the

SystemVerilog DPI platform layer. ThreadPoolComposer is

based on Scala/SBT and controlled by simple key-value con-

figuration files; Architecture and Platform implementations

consist mostly of template files which control, e.g., hardware

interface generation, and software libraries implementing the

TPC API and Platform API, respectively. Software applica-

tions are written against TPC API, and can be used without

change or recompilation on different platforms simply by

linking against the appropriate libtpc and libplatform.

IV. CASE STUDY: ZYNQ-7000 PLATFORM

To demonstrate the use of ThreadPoolComposer, we

investigated the Xilinx Zynq-7000 series system-on-chip

(SoC). The XC7Z045(-2) device we used integrates a dual-

core ARM Cortex A9 CPU (called Processing System, PS)

with a reconfigurable fabric, communicating over AMBA

AXI3 interfaces:

• general purpose ports GP0-1 have masters commu-

nicating from the PS to the fabric, and slave ports

communicating from the fabric to main memory

• high performance slave ports HP0-3 communicate from

the fabric to main memory

• application coherent port ACP, which allows cache-

coherent access from the fabric to shared main memory

The baseline Architecture generates AXI4Lite register sets

for control and value arguments of each kernel, and AXI4

master interface(s) for the reference arguments. Our proto-

typical zynq Platform implementation uses GP0 to connect

these register files to the host, and GP1 to control up to two

instances of the AXI Interrupt Controller IP (from the Xilinx

IP Catalog). We assume thread-private memory access in

this evaluation, therefore the AXI4 masters are connected to

HP0-3 (as coherency via ACP is not required). This simple

environment provides a minimal, but already useful baseline

for ThreadPoolComposer on Zynq.

V. EVALUATION

A. Environment and Kernels

Our prototypical implementation of ThreadPoolComposer
uses Vivado HLS 2014.4, the mid-level synthesis is based

on the Tcl scripting interface of the Vivado IP Integrator,

and the low-level step (logic synthesis, mapping, place &

route) also relies on Vivado tools. To evaluate the designs

generated by ThreadPoolComposer, we used the MachSuite
benchmark set [9], which is designed specifically to exercise

high-level synthesis systems, and and evaluate the resulting

accelerator architectures. We are able to process all examples

accepted by Vivado HLS, but (for space reasons) will

focus the following discussion on the MachSuite sort/merge
benchmark.

B. Evaluation

On our prototypical zynq Platform, we can support up

to 48 hardware threads of the sort/merge kernel using

ThreadPoolComposer, and aim for the 250 MHz supported

as maximum clock frequency on the ZC706 board. Table I

shows the actually achieved operating frequency Fmax, the

resources (both absolute as well as relative to the XC7Z045

device), and the overhead of the total architecture area vs.

that of the actual thread cores.

sort/merge is one of the more complex kernels we exam-

ined from MachSuite. As Figure 2 shows, it easily scales

from 1 to 48 hardware threads, always exceeding the 100

MHz system clock frequency commonly used on the ZC706

platform. At up to 24 instances, the thread pool array could

even execute double-pumped at 200 MHz frequency. When

scaling-up the number of instances, the size of the support

infrastructure (interfaces, signaling, etc.) also begins to grow,

but this is easily amortized for more complex thread cores:

A thread pool consisting only of a single thread core has

a support overhead of 58%, which drops to just 36% for a

fully loaded thread pool with 48 hardware thread cores.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated how ThreadPoolComposer can be

employed to provide a seamlessly automated flow from

high-level language programming to system-level synthe-

sis of hardware thread pools. The evaluation shows that

ThreadPoolComposer-created systems-on-chip are scalable,

as even pools of 48 cores do not slow down below the 100

Fmax LUTs % Regs. % Overh. %

1 250 4155 1.9 4862 1.1 57.6
4 250 12738 5.8 14646 3.4 44.6
8 200 23522 10.8 27171 6.2 40.0

12 200 34631 15.8 39750 9.1 38.9
16 200 45620 20.9 52299 12.0 38.2
20 200 56976 26.1 65801 15.1 38.1
24 200 67963 31.1 78362 17.9 37.7
28 150 78972 36.1 90910 20.8 37.5
32 150 88876 40.7 103436 23.7 36.5
36 150 100454 46.0 117108 26.8 36.8
40 150 111312 50.9 129669 29.7 36.7
44 150 122510 56.0 142223 32.5 36.7
48 150 132813 60.8 154763 35.4 36.3

Table I: Evaluation of sort/merge benchmark

197

 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000

 100

 150

 200

 250

1 4 8 12 16 20 24 28 32 36 40 44 48

Sl
ic

e
LU

Ts

F m
ax

 (M
H

z)

Instances

threadpool area total design area Fmax

Figure 2: Detailed analysis of sort/merge benchmark

MHz typically employed as the reference clock frequency

of Zynq-7000 devices.
ThreadPoolComposer will be available as open-source at

[10], with the initial version supporting the Zynq-7000 SoC

Platform. In the future, we aim to support more powerful

PCI Express Gen3-attached platforms, with porting to the

Xilinx VC709 board already being in progress. On the

software side, we will integrate the hardware thread pools

with the FastFlow run-time [5] for heterogeneous parallel

execution. ThreadPoolComposer itself will be extended to

support automated customization of the thread pool support

logic and architecture exploration.

ACKNOWLEDGMENT

This work was performed in the context of ”REPARA –

Re-engineering and Enabling Performance and poweR

of Applications” [10], a Seventh Framework Programme
project of the European Union.

REFERENCES

[1] S. Ma, M. Huang, and D. Andrews, “Developing application-
specific multiprocessor platforms on FPGAs,” Reconfigurable
Computing and FPGAs (ReConFig), Int. Conference on,
2012.

[2] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner,
M. Platzner, and C. Plessl, “ReconOS: An operating system
approach for reconfigurable computing,” IEEE Micro, 2014.

[3] A. Ismail and L. Shannon, “FUSE: Front-End User Frame-
work for O/S Abstraction of Hardware Accelerators,” Field-
Programmable Custom Computing Machines (FCCM), IEEE
19th Ann. Int. Symposium on, 2011.

[4] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng,
and J. Tong, “SPREAD: A Streaming-Based Partially Re-
configurable Architecture and Programming Model,” Very
Large Scale Integration Systems (VLSI), IEEE Transactions
on, 2013.

[5] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,”
in Programming Multi-core and Many-core Computing Sys-
tems, ser. Parallel and Distributed Computing, S. Pllana and
F. Xhafa, Eds. Wiley, 2014.

[6] D. de la Chevallerie, J. Korinth, and A. Koch, “Integrating
FPGA-based Processing Elements into a Runtime for Parallel
Heterogeneous Computing,” in Field-Programmable Technol-
ogy (ICFPT), International Conference on, 2014.

[7] J. Kelm and S. Lumetta, “HybridOS: runtime support for re-
configurable accelerators,” Field Programmable Gate Arrays
(FPGA), Proceedings of the 16th International ACM/SIGDA
symposium on, 2008.

[8] J. Huthmann, B. Liebig, and A. Koch, “Hardware/software
co-compilation with the Nymble system,” Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 8th Int.
Workshop on, 2013.

[9] B. Reagen, R. Adolf, Y. Shao, G. Wei, and D. Brooks,
“MachSuite: Benchmarks for Accelerator Design and Cus-
tomized Architectures,” Workload Characterization (IISWC),
IEEE International Symposium on, 2014.

[10] “REPARA - Reengineering and Enabling Performance
and poweR of Applications,” 2013. [Online]. Available:
http://www.repara-project.eu

[11] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avizienis, J. Wawrzynek, and K. Asanovic, “Chisel: con-
structing hardware in a scala embedded language,” Design
Automation Conference (DAC), 49th ACM/EDAC/IEEE, 2012.

[12] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,
T. S. Czajkowski, S. D. Brown, and J. H. Anderson, “LegUp:
An Open Source High-Level Synthesis Tool for FPGA-
Based Processor/Accelerator Systems,” Embedded Computing
Systems (TECS), ACM Transactions on, 2013.

[13] T. Oguntebi, S. Hong, J. Casper, N. G. Bronson, C. Kozyrakis,
and K. Olukotun, “Farm: A prototyping environment
for tightly-coupled, heterogeneous architectures,” Field-
Programmable Custom Computing Machines (FCCM), 18th
Annual Int. Symposium on, 2010.

[14] Y. Wang, J. Yan, X. Zhou, L. Wang, W. Luk, C. Peng, and
J. Tong, “A partially reconfigurable architecture supporting
hardware threads,” Field-Programmable Technology (ICFPT),
International Conference on, 2012.

198

