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Abstract—
With growing FPGA capacities, applications requiring more

intensive use of floating-point arithmetic become feasible candi-
dates for acceleration using reconfigurable logic. Still among the
more uncommon operations, however, are fast double-precision
divider units. Since our application domain (acceleration of
custom-compiled convex solvers) heavily relies on these blocks, we
have implemented low-latency dividers based on the Goldschmidt
algorithm that are accurate up to 1 bit of least precision (1-
ULP). On Virtex-6 devices, our units operate at 200 MHz and
significantly outperform other state-of-the-art 1-ULP dividers.
We evaluate our blocks both stand-alone, as well as on the
application-level when used for the high-level synthesis of the
convex solver cores.

I. INTRODUCTION
Floating point arithmetic both in software as well as

in hardware is often implemented following the standard
IEEE 754 [1]. While for many applications single-precision
computation suffices, and is preferable both for the reduced
storage size as well as increased memory bandwidth, some
applications require double-precision operations for numerical
stability. On general-purpose processors (GPPs), which use
commonly use the same FPU for both single and double
precision, arithmetic operations often show similar perfor-
mance regardless of the precision used. On FPGAs, however,
double precision operations often have a significantly higher
latency than single precision [2]. Also, with the intensive use
of FPGAs to accelerate classical DSP algorithms, optimiza-
tion efforts have concentrated on multiplication, addition, and
multiply-add units. High-speed division, which is relevant for
novel applications such as convex solvers or model-predictive
control, has received less attention. Since our research con-
centrates on these fields, we have worked to alleviate this
deficiency.

Multiplicative division methods such as Newton-Raphson
and Goldschmidt [3] offer quadratic convergence and thus
a reduced latency when compared to the frequently used
digit-recurrence methods, e.g. the SRT algorithm. An initial
approximation, often retrieved from a lookup table, can be
used to decrease the number of iterations, and further increase
the performance. The higher performance of multiplicative
division methods usually comes at the expense of an increased
area, which may become acceptable with growing FPGA
capacities.

Another way to further reduce latency and area consump-
tion is to perform Faithful Rounding (FR) instead of IEEE754
Conforming Rounding (CR). The latter requires the selection
of the single representable value closest to the infinitely
accurate result, while the former can arbitrarily return any
one of the pair of closest representable values bracketing the

accurate result. In literature the error is often expressed as a
multiple of a unit of least precision (ULP), which has the CR
error at up to 0.5 ULP, while FR has an error of up to 1.0
ULP.

The improved accuracy of CR comes at a significantly
increased hardware cost, however: In multiplicative division
methods, it is often not possible to directly compute the CR
result. Instead, an FR result is returned and post-processing
is required to actually perform CR. Thus, if FR suffices for a
given application, as it does for our convex solver synthesis, it
is worthwhile to design specialized arithmetic units for FPGA
implementation.

The next section will give an overview of related work
on division units in general, and on FPGA division units in
particular. Section III covers two FPGA implementations of
1-ULP accurate double-precision division units, both based
one recent publications [4], [5], but originally targeting the
ASIC domain. The two division strategies are compared while
putting special focus on latency and area efficiency of the
FPGA implementation of the mantissa division. In Section
III-A, we apply FPGA-specific optimizations to the superior
unit to further minimize latency. The proposed divider is then
compared to state-of-the-art FPGA dividers in Section IV-A.
Additionally, the performance and area impact of using the
high-speed divider is examined on the use-case of a number of
convex solver accelerators. Section V concludes the discussion
looks forward to future work.

II. RELATED WORK
A. Floating-Point Representation

In IEEE 754 [1], a finite number R is represented by
three components named mantissa (M ), exponent (E) and
sign (S), so that R = M ∗ 2E−b ∗ (−1)S ,where the bias
b is a positive integer. The standard specifies a number of
fundamental number formats with pre-defined widths of the
M and E fields and bias values.

As an example, Figure 1 shows the structure of the widely
used binary64 format, more commonly known as double-
precision.

11 Bit Exponent 52+1 Bit MantissaSign

Fig. 1. IEEE 754 double-precision number format

The format also guarantees unique representations of each
number, thus avoiding ambiguity. This is achieved by scaling
the mantissa so that its most-significant 1 bit actually becomes
the most significant bit (msb) of the M field in the standardized
binary representation. Since this leads to all numbers (with the
exception of Zero) having an M field beginning with a 1 bit,



this bit is no longer explicitly stored (implied 1), thus ensuring
that the mantissa will be in the range 1 ≤M < 2.

For very small values, scaling the mantissa as described
above may lead to an exponent that cannot be represented
E < Emin. In this case, the IEEE 754 standard defines
the mantissa to be stored without the implied leading 1 as
a subnormal number. Since this irregularity provides only a
minor increase of the range of representable numbers, but
carries a significant area and latency overhead, it is commonly
omitted in FPGA implementations of arithmetic operators (e.g.,
[2]). In our work, we also follow this approach and treat
subnormals as zero, which does not affect the operation of
the convex solvers using the blocks.

B. Hardware Division
Methods for (floating point) division can be divided into

three categories: digit recurrence (or subtractive), lookup table
based, and multiplicative (or iterative) methods.

Digit recurrence algorithms compute one digit of the result
per clock cycle and thus achieve linear convergence. For higher
performance, a radix higher than two can be chosen, allowing
to gather to more than a single bit of the result per cycle at
cost of increased area requirements. One example for a digit
recurrence algorithms is the SRT algorithm [6].

Lookup table based methods are used to compute the
reciprocal of the divisor, and use a later multiplication to
actually compute the quotient. For small word widths, it is
possible to use the entire divisor as address for a single
lookup. However, the exponential growth of the table size
prevents larger lookups. For larger word widths, bipartite tables
[7] or piecewise polynomial approximations can be used. In
piecewise polynomial approximations, the reciprocal function
is divided into 2m equally sized partitions. For each partition,
a polynomial approximation is performed, with the polynomial
coefficients required for each partition being stored in a lookup
table with m entries. The m most significant bits of the divisor
are then used as address to retrieve the coefficients. Afterwards,
the polynomial approximation of the division can be computed
using only multiplications and additions.

Two examples for popular multiplicative methods are
the Newton-Raphson and the Goldschmidt [3] algorithms.
While Newton-Raphson computes the reciprocal of the divisor,
again requiring a final multiplication, Goldschmidt performs
a direct computation of the quotient. Both methods offer
quadratic convergence, making them especially attractive for
computations that require a high accuracy (e.g., double pre-
cision), but usually requiring multiple iterations to reach the
desired accuracy. This number of iterations can be reduced
significantly by providing a good initial approximation, which
can be computed using another division method, e.g., a lookup
table based method. Using Goldschmidt’s approach for the
computation of Q = Y/X , a sequence is computed such that

Ai+1

Bi+1
=
Ai ∗ Zi

Bi ∗ Zi

with A0 = Y ,B0 = X and Zi = 2−Bi. In this sequence, Ai

converges to Q.

C. FPGA Implementations
A number of these approaches have been adapted for FPGA

implementation of double-precision division in the past. The
FloPoCo floating point library uses a Radix-4 digit recurrence

method [8]. As most digit recurrence methods, it allows the
computation of the CR result. However, performance for larger
word widths is limited due to the linear convergence of digit
recurrence methods.

The VFLOAT library implements a lookup table based
Taylor approximation to compute the reciprocal of the divisor
[9], which is then multiplied with the dividend. The result
may differ from the CR result computed by IEEE754 conform
dividers (such as a Xilinx IP core), which lead the authors to
classify their unit as 1-ULP accurate. VFLOAT division was
shown to be faster than the corresponding Xilinx IP core.

A faster FPGA division unit was presented by Pasca
[10]. It uses a piecewise polynomial approximation of second
degree as seed value for a single Newton-Raphson iteration,
which allows the complete double-precision divider to compute
a FR result. The block offers superior performance when
compared to other state-of-the-art division units. However, as
the Newton-Raphson method only computes the reciprocal,
an additional multiplication must be performed afterwards. In
contrast, the Goldschmidt method allows this multiplication
to be performed in parallel and thus could reduce the overall
latency further.

D. Truncated Multiplication
To reduce the size of a division unit’s internal wide fixed-

point multipliers, the use of truncated multipliers is suggested
in [11]. The truncation makes use of the fact that in fixed-point
multiplication, the result is often rounded to avoid a growth in
word length. A truncation of the least significant bits during the
multiplication is proposed, which reduces the hardware cost by
25. . . 35% introducing only a small computation inaccuracy. To
compensate for this and limit the maximum error, a correction-
constant is added to the final result.

In [12], Banescu adapts this concept for DSP tiling on
FPGAs. Instead of truncating all bits in the adder tree less
significant than position x, complete DSP blocks are truncat-
ed/omitted, or replaced by smaller LUT-based multipliers with
reduced input word width. Such truncated multipliers were also
used in [10].

E. Goldschmidt Division for ASICs
Our work is based on two prior efforts on implementing

Goldschmidt division for ASICs. In the first approach [4],
which we will refer to as TripleGS, a small lookup table
reciproc containing the reciprocal of X is used to determine a
good seed value for A0. Afterwards, a modified Goldschmidt
algorithm is iterated two times to compute a 1-ULP accurate
single-precision result. To reach double-precision accuracy, an
extension using a third Goldschmidt iteration is proposed. The
modified version of the Goldschmidt [13] algorithm is used
to keep the required multiplications narrow. The difference
between the traditional Goldschmidt method and the modified
version used in the paper is shown in Table I. The computation
of Ai leads to the same result in both versions. However,
with growing i, the required word width of Ri is less in
the modified version than in the original. Furthermore, the
squaring operation performed for Ri requires fewer resources
than a full multiplication.

Figure 2 shows the complete computation performed for a
double-precision division.

A second approach, which we will refer to as PolyGS, is
proposed in [5], a work which covers the high-speed compu-
tation of double-precision floating point reciprocal, division,



method iteration step initial value

Traditional Ai+1 = Ai ∗ (2 − Bi) A0 = Y ∗ reciproc[X]
Goldschmidt Bi+1 = Bi ∗ (2 − Bi) B0 = X ∗ reciproc[X]

Modified Ai+1 = Ai ∗ (1 + Ri) A0 = Y ∗ reciproc[X]
Goldschmidt Ri+1 = R2

i R0 = 1 − X ∗ reciproc[X]

TABLE I. TRADITIONAL VS. MODIFIED GOLDSCHMIDT METHOD

Reciproc[X]

Y X

MulMul

1 - t

Mul Square

Add

Mul Square

Add

Mul

Add
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Fig. 2. TripleGS: Compute Q = Y/X using a small lookup table and three
Goldschmidt iterations

square root, and inverse square root operations. We just con-
centrate on division, which has the structure shown in Figure
3. First, a piecewise second-degree polynomial approximation
is performed. The first 9 bits of mantissa of X are used for the
table lookup of the three polynomial coefficients C0,C1,C2.
The result Rd of this approximation is then used as input
for a single iteration of the Goldschmidt algorithm. As Rd is
already accurate to 30 bits, only a single Goldschmidt iteration
is required to compute the final result. As in TripleGS, the
modified Goldschmidt algorithm [13] is used to reduce area
and latency.

As shown in Figures 2 and 3, both approaches have a chain
of 4 multiplier/squaring units in their critical path (divisor
to quotient). In the next section, we examine how they can
actually be mapped to the Virtex-6 FPGA architecture.

III. FPGA IMPLEMENTATION, OPTIMIZATION, AND
ACCURACY EVALUATION

In this section, we examine initial FPGA implementations
of the TripleGS and PolyGS approaches, suggest optimiza-
tions, and evaluate the accuracy of the units. Both units target
the Virtex-6/-7 architecture using Block RAM (BRAM) for the
lookup tables and DSP blocks for composing the multipliers
and squaring units.

The small lookup table used in the TripleGS approach
takes the 8 most significant bits of X as input for addressing
and returns a 9 bit wide approximation of 1/X . The total
memory usage is only 2304 bits, easily fitting into a block
RAM of type RAMB18E1.

LUT 
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Fig. 3. PolyGS: Compute Q = Y/X using a polynomial approximation and
a single Goldschmidt iteration

The initial lookup is followed by three iterations of the
(modified) Goldschmidt method. Although Han et al. [4]
claim to aim for reduced area, and although the size of the
multiplier has already been reduced by applying the modified
Goldschmidt algorithm instead of the original one, some wide
multiplications remain in the data path, especially in the first
and second iteration (49x49, 42x42).

The traditional tiling of the multiplications into several DSP
instances thus leads to a large DSP count. To some extent, this
problem is due to the specifics of the target architecture, as
some of the multipliers are ill-matched to the 17x24 bit DSP
Slices of the devices (e.g., the first two multipliers after the
lookup table require input bit widths of 9x53).

Note that while Virtex-5/-6/-7 DSP blocks offer 18x25
bit signed multiplication, only 17x24 bit are available for
unsigned inputs (which are used for floating-point division).
Furthermore, for FPGAs, the area savings in TripleGS due to
using squaring units instead of two-operand multipliers are not
as large as they would be in an ASIC design.

Figure 4 shows the resulting division unit, pipelined for
200 MHz operation as shown by the red dashed horizontal
lines. For adding more than two operands, Carry Save Adders
(CSA) are used to sum the DSP block outputs. In total, 30
DSP blocks have been instantiated to achieve a total latency
of 12 cycles for the division.

The PolyGS approach [5] partitions the divisor X into
three parts: X1 = X[51 : 43], X2 = X[42 : 19], X3 =
X[18 : 0]. X1 is used to perform a lookup of the polynomial
coefficients C0, C1, and C2 of the piecewise polynomial
approximation. The total bit width of C0, C1, and C2 is
30+20+12 = 42 bits, requiring 42∗29 bits of memory that can
be held in single block RAM RAMB36E1. X2 is then used
as input value to the polynomial C2 ·X2

2 + C1 ·X2 + C0. As
a further optimization, it suffices to use just the uppermost
16 bits of X2 for the squarer (please see [5] for details).
The entire polynomial approximation requires only relatively
narrow multipliers: C1 ·X2 is a 20b x 24b unit, C2 ·X2

2 uses
12b x 16b, and the squarer X2

2 is organized as 16b x 16b.
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Fig. 4. FPGA implementation of TripleGS (12 cycles, 30 DSPs)

All of these require just a single DSP block (assisted by
a few slices of logic for C1 ·X2). The multipliers after the
approximation are wider and must be composed from several
DSP blocks (up to six). In total, 20 DSP blocks are required
after performing DSP tiling (using LUT-based sub-multipliers
only if one operand is less than 4 bits wide).

Figure 5 shows the pipelined implementation of the sec-
ond division unit. The narrow arithmetic for the polynomial
approximation allows a tight pipelining of these multipliers. In
summary, PolyGS requires only 10 cycles, but the critical path
length (four multipliers) remains similar to that of TripleGS.

Since TripleGS is both larger and slower than PolyGS
already at the microarchitecture level (as well as on the layout
level, as will be shown later in Section IV-A), further lower-
level optimizations will be applied only to PolyGS.

A. FPGA specific optimization of latency and area
After deciding to use PolyGS as the baseline for further

FPGA-specific optimization, we first consider the critical path
of Figure 5, specifically the two multipliers Mul3 and Mul4.
On closer examination, it is obvious that for each one, only
a single one of the inputs, driven by the 30 bit adder, is
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Fig. 5. FPGA implementation of the PolyGS approach (10 cycles, 20 DSPs)

actually timing critical. This specific configuration allows the
exploitation of the DSP blocks’ integrated pre-adder feature.

However, the direct approach of connecting the individual
sum and carry outputs of the Carry Save Adder (CSA, in
Cycle 4 of Figure 5) to the pre-adders led to excessive routing
delays. These are avoided by replacing the CSA with a discrete
conventional binary adder (computing C1X2+C0, as shown in
Figure 6), which is then connected to the pre-adders of Mul3
and Mul4.

For clarity, Figure 6 omits the following detail: Since Rd is
now computed inside of the DSPs (using the pre-adders, as Rd1

in Mul3 and Rd2 in Mul4), rounding has to be performed dif-
ferently than in Figure 5 (where it occurred before the DSPs).
Rounding each of the two Rd computations individually, how-
ever, would lead to double the previous maximum rounding
error: The two paths through Mul3 and Mul4 converge later
and accumulate each of their individual rounding errors. As a
solution, Rd1 is rounded, Rd2 is truncated, and a condition bit
is asserted if Rd1 − round(Rd1) + Rd2 − trunc(Rd2) > 0.5,
i.e., an addition of 1 is required to correctly round up. This bit
is evaluated in the small LUT-based sub-multipliers assisting
the DSPs in Mul3 and Mul4 and leads to the addition of the
extra 1 if required for rounding.

Another cause for delay is the large addition required to
compute the 56-bit result of Mul3 at the end of Cycle 6. In con-
trast to the final addition of the beginning of Cycle 9 (required
for an IEEE 754 compatible result in binary representation),
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internal additions can be partitioned into narrower (and thus
faster) operations using Carry Save Arithmetic. Here, the result
of Mul3 is not completely computed in binary, but in a partial
Carry Save representation, with extra carry bits inserted at bit
positions 30 and 42. This breaks the original 56b computation
into three narrower additions that can run in parallel, yielding
a result consisting of 56 bits plus 2 carry bits. The carry bits
will be handled separately in the LUT-based sub-multipliers of
Mul5. The widening of the result of Mul4 from 28 to 29 bits
will be explained below.
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Fig. 7. Using a partial carry save format for the result of Mul3

Based on the work of [12], the multiplier design and tiling
can be reworked to show better results in both performance
and area consumption. As stated earlier, truncated multipliers
reduce resources, delay, or power consumption. In the division
unit under discussion, the bit width of the multiplier output
is always much smaller than the sum of its input bit widths
(see Figure 5). This indicates that the full output width is not
required in the next step. All multipliers are candidates for
a truncated multiplication. However, Mul2 and the squaring
unit are already smaller than a single DSP and therefore not
considered.

Using truncated multipliers generally increases the max-
imum error of an arithmetic unit. However, we still require
1-ULP accuracy at the final and thus need to carefully com-
pensate for the accuracy loss due to tiling. We achieve this
by selectively increasing the width of some operations. The
error introduced by rounding the result of Mul4 to 56 bits
has been shown to be the most significant error term [12].
To compensate, its bit width was increased here to 57 bits
(56 fractional bits), reducing the rounding error at Mul4 by
50%. Also according to [12], the most significant 29 bits
of 1-Mul4 are known to be all zero (or all one), so only
57 − 29 + 1 = 29 bits are actually required for the two’s

complement representation of 1-Mul4.
With these constraints, we can use the tiling for Mul1,

Mul3, Mul4, and Mul5 shown in Figure 8 for the truncated
multiplications. Empty areas in the multiplication rectangle
represent the truncated parts. As another measure to compen-
sate for the truncation error, half of the maximum result of
the truncated areas is added to the result. E.g., if a 2x5 bit
multiplier is truncated, 11b · 11111b/2 = 101110b is added to
the product as compensation. This addition is performed either
in the adder tree of the multiplication, or using an empty C-
input of a DSP block.
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Fig. 8. Truncated tiling for multipliers Mul1(a), Mul3+Mul4(b) and Mul5(c)

Mul1 is a 20x24 multiplier, with a maximum truncation
error as shown in Figure 9. As an integer, the sum would be
the value 101111111111111111001b. However, since the 44
bit result of Mul1 is actually a fixed-point number less than
one (due to X2 < 2−9∧C1 < 1, details in [5]), the introduced
error is quite small and does not lead to a violation of our
1-ULP accuracy requirement (see Section III-B for an error
analysis).
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Fig. 9. Maximum error scenario for truncated multiplication in Mul1

Mul3 (and Mul4) are 30x53 wide. In both inputs, all but
one bit are fractional bits, leading to a full precision result
with 83 bits, of which 81 bits are fractional bits. Furthermore,
the highest bit of the result is known to be zero because Rd is
known to be less or equal to one. The remaining 82 result bits
are rounded to 56 (57, respectively) bits so the last 26 (25)
bits are dropped after rounding. A 6x16 bit wide part of the
computation is truncated, with a maximum truncation error of

(26 − 1) · (216 − 1) < 222.

To compare the errors introduced by rounding and truncated
multiplication, the maximum truncation error (after the com-
pensation addition described above) is 24 (23, respectively)
times smaller than the error due to rounding. Also, note that
for Mul4, the large LUT multiplier shown in Figure 8(b) is
partially removed by logic optimization, since the higher 28
bits of the subsequent computation of 1 − t (in Cycle 7 of
Figure 5) are not used.

Mul5 has been changed from 56x28 to 56x29 bits due to
the modification described above. However, the 29 bit input
was originally 57 bits wide, but had the first 28 bits removed
(see discussion above). The result could therefore be regarded



as a 57 + 56 = 113 bit wide value, of which 111 bits are
fractional bits. However, the final result of the mantissa result
just requires the 53 fractional bits as defined by IEEE 754
double precision (in the worst case, if Y/X < 1). Thus,
rounding for this final computation can remove 111−53 = 58
bits. Truncation is performed on Mul5 as shown in Figure 8(c)
removing large parts of the computation. The error introduced
by the truncation shown is less than 252:

(229 − 1) · (222 − 1) + (25 − 1) · (224 − 1) · 222 < 252

After the compensation addition, the error due to truncated
multiplication is 26 times smaller than the maximum error due
to the rounding of the final result.

Figure 10 shows the complete division unit optimized using
these measures, named PolyGSopt. Its latency is reduced to 8
clock cycles at 200 MHz operation frequency. Of the 20 DSP
blocks used in the first implementation, only 11 are remaining
here.
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Fig. 10. PolyGSopt implementation with reduced latency and area (8 cycles,
11 DSPs)

B. Error Analysis
As the use of truncated multipliers increases the maximum

error, it is necessary to perform a new error analysis for the
PolyGSopt implementation. A maximum error of 1-ULP in
a double-precision floating-point mantissa implies an upper
bound of 2−52. The result of the mantissa division will be
between 0.5 and 2, requiring a normalization shift for results
smaller than 1. Here, εZ must be smaller or equal to 2−53 to
ensure an 1-ULP accurate final result.

The overall maximum error εZ is composed of the error
of the method (minimax approximation and Goldschmidt it-
eration), and the error introduced by using finite precision
arithmetic in the computation.

εZ = εmethod + εcomp.

According Pineiro et al. [5], the error of the method
applying a single Goldschmidt iteration is

εmethod = X ·Y · ε2Rd.

This also applies to the modified Goldschmidt method. The
computation error εcomp is calculated as

εcomp = εM3 + Y ·Rd · εM4 + Y · εM4 · εRd

+X · εM3εRd
+ εM3 · εM4 + εM5Z

with εM5Z denoting the error introduced by final rounding
to the 54 bit result and truncated multiplication in Mul5 and
εMx denoting the error introduced by rounding and truncated
multiplication in multiplier x.

For the mantissa division, there are 252+52 possible inputs,
so a complete simulation of all possible inputs is generally
not practical. However, the computation of Rd only depends
on X1 and X2, resulting in only 29+24 possible combinations.
The maximum error εRd

can therefore be determined experi-
mentally. The computed value of Rd must be compared to the
exact value 1/X with X = {X1,X2,X3}. For the comparison,
X3 must be set both to all 1s and all 0s to maximize the error.
As the maximum error decreases with growing X , the value of
X · ε2Rd

was also determined experimentally. This resulted in
the following upper bounds for the 8-cycle division unit shown
in Figure 10:

εRd ≤ 2−28.969

X · εRd ≤ 2−28.331

X · ε2Rd ≤ 2−57.644

With Y < 2, an upper bound for the method error can be
computed:

εmethod ≤ 2−56.644

The computation error at each multiplier consists of the
rounding error and the (compensated) error of the truncated
multiplication. The result of Mul3 is 56 bits wide, of which
55 bits are fractional bits. Rounding to nearest therefore causes
an maximum error of 2−56. Furthermore, the error introduced
by truncated multiplication was shown to be 24 times smaller.

εM3 ≤ 2−56 + 2−60

The result of Mul4 is 57 bits wide, of which 56 bits are
fractional bits. However, the leading 28 bits are not used
because they are known to be all zero after subtraction.
Rounding to nearest causes a maximum error of 2−57, while
the error introduced by truncated multiplication is the same as
at Mul3.

εM4 ≤ 2−57 + 2−60

The result of Mul5 is passed to the final addition without
rounding. But after the addition, it is rounded to 54 bits in
worst case (if the result is smaller than 1). 53 of these 54 bits
are fractional bits, so the error of rounding to nearest is 2−54.



Furthermore, the truncated multiplication error is known to be
26 times smaller:

εM5Z ≤ 2−54 + 2−60

Substituting these inequalities into the inequality for εcomp

results in

εcomp ≤ 2−56 + 2−60 + 2 · (2−57 + 2−60)
+ 2 · (2−57 + 2−60) · 2−28.969

+ 2 · (2−56 + 2−60) · 2−28.969

+ (2−56 + 2−60) · (2−57 + 2−60)
+ 2−54 + 2−60

εcomp ≤ 2−54 + 2−55 + 2−58 + 2−83.269

Further substitution into the inequality for εZ proves, that
the divider is actually accurate within 1-ULP:

εZ ≤ 2−54 + 2−55 + 2−56.644 + 2−58 + 2−83.269 < 2−53

IV. EXPERIMENTAL RESULTS
A. Post-Place&Route Performance

The division units presented in this paper have been suc-
cessfully tested using randomized mantissas. The results were
compared to a 75 bit Xilinx IP Core divider and did not violate
the 1-ULP error constraint.

Table II shows the synthesis results for the division units
presented for a Virtex-6 device, specifically a XC6VLX240T-
1. Our optimized implementation of the polynomial approx-
imation followed by a single Goldschmidt iteration clearly
outperforms all other division units. The wall clock time of
a single division is reduced by 62% compared to the Xilinx
IP Core and by 58% compared to the VFLOAT division unit.

For comparison, the divider presented in [10] is also in-
cluded in Table II, although it was not implemented for Virtex
6 but for Altera Stratix V. However it also uses polynomial
approximation followed by a single Newton-Raphson iteration.
Its similar structure thus makes it an interesting competitor.
It also reaches much higher clock frequencies than the prior
work on Virtex-6 dividers, even though the Virtex-6 and Stratix
V generally perform comparably in practice for optimized
designs. Our implementation manages to outperform even that
very fast unit, reaching a 40% shorter wall clock time.

For completeness, we also present data when mapping
our implementation to Virtex-7 XC7VX690T-2 and Virtex-5
XC5VFX200T-1 devices. Note that the Virtex-5 lacks the DSP
pre-adder capability and can thus only support the 10-cycle
PolyGS, but not the 8-cycle PolyGSopt implementation.

B. Impact on High-Level Synthesis
Our work on high-performance division was motivated by

research into high-level synthesis tools for the automatic gener-
ation of custom convex solver accelerators on FPGAs. We use
CVXGEN [14] to generate the actual solver as behavioral C,
which is then processed by our Nymble hardware/software co-
compiler [15], generating synthesizable Verilog and hardware/-
software interface code. Nymble exploits domain knowledge
of the nature of the solver code structure to perform a number
of optimizations not available to general high-level synthesis
tools.

As target platform, we employ a Xilinx ML507 board
(Virtex-5 FX-based), using the hardware and software environ-
ment described in [16] to achieve high-throughput low-latency
access to shared memory between the accelerator(s) and the

general-purpose PowerPC 440 processor. As the XC5VFX70T
device on the actual board is too small to hold the complete
system-on-chip (processor buses, memory controller, network
interface, etc.) for the larger solver examples, we also employ
a simulated version of the board that virtually substitutes
the larger XC5VFX200T device into the same architecture.
For our measurements, we performed post-layout simulations,
including cycle-accurate models for memories and caches. All
Nymble-family compilers currently use LLVM 3.3 as front-end
and for machine-independent optimization. Furthermore, we
relied on Synopsys Synplify-I-2014.03-1 for logic synthesis,
and Xilinx ISE 14.7 for physical mapping.

Four example solvers provided on the CVXGEN website
were used as benchmarks (with the specified parameters):
SQP (m = 3,n = 10), Lasso (m = 100,n = 10), SVM
(N = 20,n = 4), Portfolio (n = 25,m = 5). In addition,
we translate Stan5P, a significantly more complex example
containing a complete model-predictive control problem for
collision avoidance in autonomous ground vehicles. Note that
most of these solvers actually require double-precision to
achieve convergence.

Table III shows the floating-point operators used for the
comparison. As a baseline, we employed only Xilinx Core-
Gen units, which perform IEEE754 Conforming Rounding
(CR). The cores were configured for the lowest latency that
still allowed operation with 200 MHz on our target FPGA
(XC5VFX200T-1). We then replace the Xilinx divider with a
10-cycle PolyGS core using faithful rounding (FR). Note that
even higher performance is possible by also substituting the
Xilinx multiplier core with a truncated mantissa multiplier as
described in [12], but this lies outside the scope of this paper.

Baseline Optimized

Mul 6 cycles, 232 MHz, CR
Add 3 cycles, 222 MHz, CR
Div 57 cycles, 248 MHz, CR 10 cycles, 210 MHz, FR

TABLE III. FLOATING POINT UNITS USED

Table IV shows the results of the high-level synthesis,
using the performance of a placed-and-routed design. Wall-
clock speed-ups of more than 2x are achievable using the new
floating-point operators. Note that the division units are not the
bottleneck for the clock frequencies here. Instead, large routing
delays, caused by high fan-in of the instantiated floating point
units (due to resource sharing) have been observed as the
limiting factor.

CR Division FR Division Speed
Cycles fmax Time Cycles fmax Time -up

[MHz] [ms] [MHz] [ms]

SQP 65313 91.1 0.72 33885 91.1 0.37 1.93
Lasso 49821 87.9 0.57 26769 91.2 0.29 1.93
SVM 95314 66.8 1.43 47548 83.5 0.57 2.51
Portfolio 127468 66.7 1.91 68907 80.2 0.86 2.22
Stan5P 1223450 65.9 18.56 678733 71.2 9.54 1.95

TABLE IV. COMPARISON OF SOLVER ACCELERATORS USING CR AND
FR FLOATING POINT OPERATIONS

V. CONCLUSION AND FUTURE WORK
Two low-latency 1-ULP accurate division units have

been presented and compared. The approach using polyno-



Method Acc. Device Latency Max Freq. Latency Resources
[cycles] [MHz] [ns]

IP Core from Xilinx [9] CR Virtex-6 20 192 104 3216 LUTs, 2035 Reg., 0 BRAM, 0 DSP
VFLOAT [8] (results as reported in [9]) 1 ULP Virtex-6 14 148 95 6957 LUTs, 934 Reg., 0 BRAM, 0 DSP
FloPoCo 2.5.0 FPDiv CR Virtex-6 17 136 125 4419 LUTs, 2509 Reg, 0 BRAM, 0 DSP
TripleGS 1 ULP Virtex-6 12 201 60 1474 LUTs, 1294 Reg., 1 BRAM18K, 30 DSP
PolyGS 1 ULP Virtex-6 10 230 44 1297 LUTs, 1244 Reg., 1 BRAM36K, 20 DSP
PolyGSopt 1 ULP Virtex-6 8 202 40 1525 LUTs, 1094 Reg., 1 BRAM36K, 11 DSP
Polynomial Approx (d=2) + Newton-Raphson [10] 1 ULP Stratix V 18 268 67 887 ALUTs, 823 Reg., 2 M20K, 9 DSP
FloPoCo Radix-4 [10] CR Stratix V 36 219 164 5209 ALUTs, 5473 Reg, 0 M20K, 0 DSP

PolyGS 1 ULP Virtex-5 10 210 48 1251 LUTs, 1244 Reg., 1 BRAM36K, 20 DSP
PolyGSopt (speed grade -2) 1 ULP Virtex-7 8 260 31 1853 LUTs, 1094 Reg., 1 BRAM36K, 11 DSP

TABLE II. PERFORMANCE OF PLACED&ROUTED DIVISION UNITS

mial approximation of second degree followed by a single
Goldschmidt-iteration was shown to deliver superior perfor-
mance in terms of latency and area when compared to the
TripleGS approach. This superior design was then further
optimized using truncated multipliers. To our knowledge, the
resulting 8-cycle division unit is the lowest latency 1-ULP
accurate division unit available for Virtex-6/-7 architecture that
also reaches at least a 200 MHz clock frequency.

The immediate relevance of these improvements was
demonstrated by integrating the divider into a high-level
synthesis system for automatic generation of convex solver
accelerators, leading to application-level speed-ups of more
than 2x without adversely affecting numerical stability.

Future work could address the automatic generation of
dividers for different word widths, using the truncation and
tiling algorithms proposed in [12] to find optimal solutions.
In addition, the design was optimized for a 200 MHz target
frequency. Deeper pipelining should be possible and might
allow much higher frequencies.
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