
Hardware-Accelerated Data Compression in
Low-Power Wireless Sensor Networks

Andreas Engel1 and Andreas Koch2

1LOEWE Research Center AdRIA, Darmstadt
2Embedded Systems and Applications Group, Technische Universität Darmstadt

Abstract. In wireless sensor networks, the actual transmission of col-
lected data is often the most energy-consuming operation. Frequently, it
is worthwhile to spend energy aggregating the raw sensor data on the
node to reduce the transmission effort. For many cases, lossless data com-
pression can be employed as a general data aggregation method, as in-
compressible data (noise) generally does not carry any information worth
transmitting. Nevertheless, the energy spent for data compression must
be traded-off against the energy saved for transmitting the compressed
data. In this work, sensor data of two real-life applications is compressed
using a hardware-accelerator of the heterogeneous HaLOEWEn sensor
node. The benefits of providing the node with a reconfigurable compute
unit is demonstrated by comparing its energy consumption with that of
of a purely software-based implementation.

Keywords: reconfigurable computing, wireless sensor network, data com-
pression, heterogeneous architecture, low-power mode

1 Introduction

Wireless Sensor Networks have been the subject of intense research [11]. In
these distributed monitoring applications, the data gathered by the sensor nodes
usually has to be forwarded to a central base station for final processing or
storage. As the radio transceiver is the major power consumer of a wireless sensor
node, even computationally intensive decentralized data aggregation methods
can result in a reduction of the overall energy consumption of the sensor node.
This is a major concern for the typically battery-powered sensor nodes.

In many applications, no specialized high-level data aggregation scheme (e.g.,
actual feature extraction) can be applied. Instead, all of the sensor data has to
be forwarded to the base station. In these cases, lossless data compression can
be employed as a more general form of data aggregation. However, efficiency
can sometimes be improved by considering an application-specific system model
in the compression scheme, e.g., the nature of rotating machinery. Generally,
a trade-off between the compression quality and complexity of the underlying
data model has to be found. When monitoring slowly changing environmental
conditions, differential encoding has often proven useful.

2 Hardware-Accelerated Data Compression in Low-Power WSN

While reducing the communication demands and energy consumption of the
sensor nodes, data compression comes at the cost of encoder and decoder com-
plexity. As the decoding is typically performed at the (often mains-powered) base
station, the decoder complexity is not a major concern, thus this work focuses
on encoding.

To improve the compression quality, many encoders first collect a block of
data to analyze its statistical nature before compressing the block with the appro-
priate settings. This two-pass strategy increases the memory capacity required
on the node as well as the latency between data acquisition and transmission.
The block size, and thus the gains in compression quality, may be limited by
the amount of available memory or real-time requirements in latency-sensitive
applications. In addition, both encoder passes require a certain amount of compu-
tation time and energy, which must be amortized by the reduced communication
effort. Moving operations from software to specialized hardware blocks can often
reduce energy consumption and thus offers an attractive option to improve the
computation vs. transmission energy balance on a sensor node.

In this work, data acquired by two different monitoring applications is loss-
lessly compressed by a heterogeneous sensor node incorporating a low-power
FPGA-based reconfigurable compute unit and a microcontroller-based radio
system-on-chip [4]. The energy required for data transmission as well as for
software and hardware implementations of the encoding are compared to demon-
strate the benefits of hardware-accelerated data compression.

The remainder of this article is organized as follows: Section 2 gives a brief
overview of software- and hardware-based data compression in WSN. In Section
3, the sample applications are introduced and a variety of compression schemes is
applied to the raw sensor data to find the trade-off between compression quality
and encoder complexity. Section 4 details the hardware-accelerated implemen-
tation of the most appropriate compression scheme before evaluating the energy
reduction of the proposed method in Section 5. Section 6 concludes this work
and looks out to further research.

2 Related Work

Fundamentally, we distinguish between generic data compression, applicable to
almost all kinds of sensor data, and compressive sensing [3]. The latter assumes
highly specific properties in the input signals and is not addressed in this work.

Data compression in WSN was investigated frequently in the last decade
[7]. For example, an LZW-compressor was implemented on an MSP430 MCU
to analyze the effect of reduced data rates on the end-to-end packet delay in a
multi-hop network [2]. The energy savings achievable by an nonlinear adaptive
pulse code modulator running on the ARM processor of a Beagle Board were
investigated in [6]. However, these authors erroneously considered the compres-
sion ratios achieved directly as energy savings, completely ignoring the energy
required for the encoding. This gross simplification was not used in [9], where
run-length and adaptive Huffman encoding were implemented on the AVR MCU

Hardware-Accelerated Data Compression in Low-Power WSN 3

of a Mica2 mote. The energy for encoding was determined solely by simulations
and datasheet-specifications, using just synthetic data streams with guaranteed
statistical properties as inputs.

Hardware-accelerated data compression in context of wireless sensor networks
focused mainly on lossy image compression in visual surveillance networks, such
as the JPEG compression on an Altera EP2C35 FPGA [12], or the identification
of relevant image sections using a Xilinx Virtex II FPGA [8]. In addition to
not compressing losslessly, these investigations aimed at reducing the required
data rate to the throughput limits of the wireless transmission channel, instead
of minimizing overall system energy consumption. The acceleration of a second
order ADPCM compressor on a Xilinx XC4000 device was proposed in [1], but
did not report any energy requirements.

The use of hardware accelerators for lossless data compression under energy
constraints, which is the focus of this work, has not been studied extensively
before.

3 Characteristics of Monitoring Applications

To investigate the potential and difficulties of compressing sensed data, two
different applications were examined. The first one, neural activity in primates, is
delay constrained, while the second one, condition monitoring of heavy industrial
machinery, is computationally expensive due to multiple parallel data channels.

3.1 Evaluation of Compression Algorithms

As a baseline for our work, we examined the fundamental efficiencies of various
compression algorithms for the applications, using off-the-shelf software imple-
mentations running on a non-energy constrained x86 processor.

In both cases, 8192 samples of each data stream were split into blocks of
different size and fed into the compression algorithms listed in Table 1 with
their specific run-time options. Static overhead (e.g., file headers) generated by
these tools was disregarded when calculating compression ratios.

tool options version codec overhead

bzip2 -9 1.0.6 RLE + BWT + MTF + Huffman 24 B

rar -m5 -en 5.00 proprietary 55 B

zp c3 1.00 context modeling + arith. coding 221 B

mp4als -7e RM23 adapt. linear prediction + Rice 34 B

flac -8 1.3.0 adapt. linear prediction + Rice 8292 B

ffmpeg -acodec alac -f u8 0.8.7-6 adapt. linear prediction + Rice 0 B

Table 1. Compression algorithms and options used in further evaluation

4 Hardware-Accelerated Data Compression in Low-Power WSN

In addition to using these off-the-shelf encoders, a custom forward-adaptive
differential pulse code modulation (ADPCM-APF) compressor was implemented
to allow a fine-grained trade-off between encoder complexity and compression
rate. Here, the first M samples of a sample-block (x1, . . . ,xN) are transmitted
uncompressed. The successive samples xi are mapped to a prediction error

di = xi −
∑M

k=1 akxi−k M < i ≤ N (1)

for the linear predictor of order M with coefficients a1, . . . , aM ∈ R. The
classical approach of using an encoder based on a static first-order (M = 1)
predictor and a1 = 1 is referred to in the following as dpcm scheme.

For the forward adaptive predictor, which is referred to as a adpcm scheme,
the predictor coefficients a1, . . . , aM are not static but fitted to the current sam-
ple block by calculating the autocorrelation values for the block:

rk = sk
N−k with sk =

∑N−k
i=1 xixi+k 0 ≤ k ≤M (2)

These values are then used to build a system of linear equations, whose solution
results in prediction coefficients that minimize the variance of the prediction error
sequence (d1, . . . , dN) [10]. This is important for the downstream Rice encoder,
which maps the error value sequence to an actual bit stream, aiming for short
bit representations for each error value. We will use Rice encoding in both the
dpcm and adpcm schemes.

As an initial step for Rice encoding, the sequence of signed difference (pre-
diction error) values di is converted to a sequence of unsigned values pi by a
simple transformation:

pi =

{
2di, for di ≥ 0

−2di − 1, for di < 0
(3)

The values pi are then encoded into Rice-form bit sequences

RK(pi) = concat(U(pi

2K
),BK(pi mod 2K)) (4)

withK being the Rice parameter that balances the widths of a zero-terminated
unary code U and the binary block code BK in a bit-wise concatenation. Precise
predictions (pi < 2K) can thus be represented by K+1 bits. Infrequently occur-
ring larger prediction errors, caused by unforeseen spikes, can still be expressed
losslessly by exploiting the variable length unary code. In our experiments, K
was statically chosen for each data channel and not adapted to each sample
block, in contrast to the audio encoders listed in Table 1.

3.2 Neural Activity in Primates

At the German Primate Center in Göttingen, the neural activities of primates
solving different tasks are measured by a micro-electrode inside the probands
brains. As the apes have to move freely over a wide testing area, wired instru-
mentation is impractical and thus the sensor data sampled with 16 bit resolution

Hardware-Accelerated Data Compression in Low-Power WSN 5

0 330
−150

150

time (ms)

sa
m
pl
e
va
lu
e

Fig. 1. 8192 samples of neural activity data
(min = -155, max = 169, mean = 6.3, stddev = 45.5)

channel 1 2 3

min -3872 -4156 -22466
max 5203 13104 16307
mean 110 2919 -3339
stddev 1213 2374 13041

Table 2. Statistical characteris-
tics of 8192 samples of machinery
condition monitoring data

at a frequency of 24.414 kHz (see Figure 1) has to be transmitted wirelessly. The
resulting data rate of 391 kbit/s exceeds the capability of the popular IEEE
802.15.4 protocol, on which many recent low power radio transceivers are based.
The captured data stream thus has to be compressed by about 50 % before it
can actually be transmitted by an IEEE 802.15.4 transceiver.

Based on the received neural data, the variable penetration depth of the
micro-electrode is controlled remotely by an operator at the control station. In
order to allow timely interactive manipulation of the probe depth, the maxi-
mum end-to-end latency is thus restricted by the human response time of about
100 ms. Thus, the maximum block size used by a two pass encoder may not not
exceed 2, 400 samples at 24.414 kHz.

The compression ratios (compressed data size / uncompressed data size)
achieved by applying the compression algorithms from Section 3.1 are shown
in Figure 2. As expected, the compression ratios of all encoders improve with
increasing block sizes. With the exception of mp4als, the predictive audio en-
coders clearly outperform the dictionary-based compression schemes. Given the
audio-like characteristics of the neural activity data, this in itself is unsurprising.
However, the additional encoder complexity necessary for adapting the higher
order linear predictor coefficients in the algorithms used in mp4als, alac or flac
does not improve the compression ratios significantly compared to the static

32 64 128 256 512 1024 2048
30

40

50

60

70

80

90

100

co
m
pr
es
si
on

ra
ti
o
(%

)

encodersbzip2 rar zp mp4als alac flac dpcm

Fig. 2. Reduction of neural activity data achieved by various compression schemes

6 Hardware-Accelerated Data Compression in Low-Power WSN

first-order dpcm predictor. For instance, at a block size of 2048 samples, the flac
encoder achieves only a 3 % improvement in compression ratios at the cost of
double the execution time when compared to the dpcm encoder running on the
same platform.

3.3 Condition Monitoring of Heavy Industrial Machinery

The second application deals with detecting damage or fatigue of the rotating
parts of very large industrial machines. This condition monitoring is used to
schedule inspection/maintenance intervals before unanticipated major damage
leads to high repair costs and downtime of the machinery. Since the monitoring
algorithms observe long-term trends in the acquired data, this application is
latency insensitive. Note that the sensor nodes are located on heavily vibrating
parts of the machine, which would quickly wear out fixed cable connections, thus
making low-power wireless communication preferable.

The raw data streams are gathered from a three channel MEMS sensor sam-
pled at 1 kHz with a resolution of 16 bit per channel. Table 2 shows some sta-
tistical characteristics of the captured signals1.

The compression algorithms described in Section 3.1 were applied to each
channel separately. The resulting overall compression ratios are shown in Figure
3. Again, the predictive audio codecs are most appropriate. At a block size of
2048 samples, flac produces results 6 % smaller than dpcm. As in Section 3.2,
this improvement comes at the cost of double the execution time for flac.

The adpcm scheme is examined separately. Figure 4 quantifies the impact of
the prediction order. For small blocks, the size of the stored prediction parame-
ters exceeds the benefit of improved compression ratios due to the reduced pre-
diction error variance. For blocks of 2048 samples, the compression ratio strictly
decreases with the prediction order and a break even point for best energy effi-
ciency can be derived from the platform specific power draw for computation and
transmission. Thus, adaptive prediction should be used for condition monitoring
1 Actual waveforms cannot be shown here for confidentiality reasons.

32 64 128 256 512 1024 2048
70

80

90

100

co
m
pr
es
si
on

ra
ti
o
(%

)

encodersbzip2 rar zp mp4als alac flac dpcm

Fig. 3. Reduction of condition monitoring data achieved by various compression algo-
rithms

Hardware-Accelerated Data Compression in Low-Power WSN 7

32 64 128 256 512 1024 2048
70

80

90

100

Block Size

co
m
pr
es
si
on

ra
ti
o
(%

)

prediction order 1 2 3 4 5 6 7 8 9

Fig. 4. Impact of prediction order on adpcm compression rate

if the target platform supports storing a sufficient amount of samples (recall that
there are three data channels, and double-buffering may be necessary for parallel
sampling and encoding).

In conclusion, the flac scheme reached the best compression ratios for larger
sample blocks, while dpcm proved superior on small blocks. Thus, for delay-
sensitive applications or memory-constrained platforms, the simple dpcm scheme
should be applied. In all other cases, flac can improve the compression rate of
dpcm by about 5 %. Note that flac is just a combination of adpcm with an
extensive search for the optimal prediction order. For data sources with known
characteristics, a static selection of the prediction order may be sufficient. The
adaptation of prediction coefficients in adpcm only becomes worthwhile, if the
further data size reduction of 5 % over dpcm can be achieved with less energy
than required to transmit the just dpcm-compressed data. For this reason, we
also examine the energy efficiency of a hardware implementation of the adpcm
algorithm.

4 Hardware-Accelerated Data Compression

In Section 3, (adaptive) differential pulse code modulation combined with Rice
coding was identified as a balanced trade-off between compression quality and
run-time effort for the investigated data streams. However, the low-power micro-
controllers typically used in wireless sensor nodes may be overburdened even by
these simpler algorithms, particularly by the adaptive compression scheme.

In [4], the HaLoMote architecture was proposed to energy-efficiently per-
form more compute-intensive distributed tasks even on low-power wireless sen-
sor nodes. This heterogeneous architecture combines a micro-controller-based
radio system-on-chip (MCU), responsible for handling wireless protocols and sys-
tem management, with a reconfigurable compute unit (RCU) for the hardware-
acceleration of complex computations. The current implementation, called Ha-
LOEWEn, employs a TI CC2531 RF-SoC as MCU and a Microsemi AGL1000
FPGA as RCU. This section describes the hardware implementation of the
(a)dpcm algorithms on the HaLoMote reconfigurable architecture.

8 Hardware-Accelerated Data Compression in Low-Power WSN

MCU

RCU

WRITE

(A)DPCM

COMPRESS

HW‐Kernel API

HW‐Kernel Controller

READ

(A)DPCM (A)DPCM

ROM Radio

(a) System overview

Block‐Buffer

MAC

Prediction Error Rice

Linear Equation
System Solver

Bit‐buffer

Sample FIFO

s0 ... sM

a1 ... aM

xi ... xi‐M

(b) Compression Module

Fig. 5. Hardware-software interaction of the heterogeneous sensor node (a) and
hardware-accelerated data compression (b)

Figure 5a gives an overview of the proposed implementation. The RCU can
hold multiple hardware (HW) kernels performing different algorithmic functions.
A communications API allows the MCU to interact with individual kernels [5].
The HW-Kernel controller starts the execution of HW-Kernels, manages data
input and output, and reports execution completion. It is driven by the MCU via
a bit-parallel interface through the application-independent API. For the data
compression application, three HW-Kernels were implemented. TheWRITE ker-
nel distributes a sample stream to the compression modules, each processing one
data channel. In practice, this sample stream will be generated by sensors at-
tached to the RCU. For better reproducibility of results, our experiments below
will process a prerecorded sample stream, read from the MCU code memory.

The compressed data stream generated by the compression modules is then
sequentialized by the READ kernel and passed back to the MCU, which trans-
mits it wirelessly. The HaLOEWEn radio stack allows parallelizing the radio
transmission with the data transfer from the RCU to the MCU. Thus, the MCU
duty cycle is not stretched by the communication task. This is important for the
energy efficiency of the system (shorter duty cycles allow longer ultra-low-power
sleep phases). Finally, the COMPRESS kernel controls the compression modules
and tracks the number of generated output bytes.

Figure 5b shows the implementation of the compression module, instantiated
once for each data channel. It contains a block buffer using on-chip RAM to hold
the sample stream and compressed data stream. This in-place compression ar-
chitecture allows to compress larger data blocks in memory-constrained systems
(the on-chip RAM of the low-power FPGA used is limited to just 144 kbit).
However, it requires a compression ratio smaller than 100 % (i.e., compression
actually reduces the data size) for each prefix of each sample block in the sample
stream. This constraint is achievable for both the primate neural activity as well

Hardware-Accelerated Data Compression in Low-Power WSN 9

condition monitoring scenarios, where the spikiness of data is limited by the
inertia of the underlying biochemical and mechanical systems.

The shaded modules of Figure 5b are used only in the adaptive prediction.
For the simple static first-order dpcm compression, the block buffer is read once
(retrieving uncompressed data), with the last sample xi−1 also being retained in
a sample FIFO to calculate the prediction error as required by Equation 1. This
prediction error is passed to the Rice coder to produce the bit sequence described
by Equations 3 and 4. This bit sequence is sliced into bytes and written back to
the block-buffer (now in compressed form) by a bit-buffer module.

For the adaptive adpcm compression scheme, an additional coefficient op-
timization pass precedes the compression pass. During this pass through the
block-buffer, the autocorrelation sums sk of Equation 2 are accumulated. To
this end, a time-multiplexed multiply-accumulate unit (MAC) is supplied with
the appropriate operands from the sample FIFO (xi, . . . ,xi−M) and the accu-
mulator set (s0, . . . , sM). At the end of the pass, the autocorrelation sums sk
computed in the accumulators are used generate the linear equation system that
has to be solved to retrieve the prediction coefficients (a1, . . . , aM). As a trade-
off between prediction accuracy and the time and energy spent to calculate the
coefficients and the prediction values, fixed point arithmetic was chosen. The
resulting coefficients are stored in Q4.12 format. To conserve FPGA area and
energy, we chose M = 1 for our experiment, which simplifies the linear equation
system solver to just

a1 = r1
r0

= s1 ·N
s0 ·N−s0

(5)

By restricting the block size N to a power of two, the remaining integer
division can be performed sequentially in 16 clock cycles. In each step of the
subsequent compression pass, the prediction coefficients have to be multiplied
with the corresponding prior value(s) from the sample FIFO to accumulate the
prediction of the next sample (Equation 1). The MAC unit and one of the
autocorrelation sums is reused for these calculations, which are performed in
parallel with the bit-buffering of the Rice code of the previous prediction error.

5 Experimental Evaluation

The hardware-accelerated data compression design described in Section 4 was
synthesized for the Microsemi IGLOO AGL1000V2 FPGA using Synplify Pro H-
2013.03M-1 with retiming. The block buffer size of the compression modules was
fixed at 2048 samples. As shown in Table 3, the design is primarily limited by the
available memory, some area remains for implementing higher order predictors
(see Section 6).

To demonstrate the energy efficiency of the hardware-accelerated data com-
pression, the measurement setup shown in Figure 6 was used. The HaLOEWEn
sensor node is supplied by an external 3 V voltage source to power its internal
components. The MCU drives the RCU into its low power flash freeze mode
as long as no hardware-accelerated computations are required. For precise time

10 Hardware-Accelerated Data Compression in Low-Power WSN

channels scheme BRAM Core Cells max Frequency

1 dpcm 8 (25 %) 1681 (7 %) 19.2 MHz
1 adpcm 8 (25 %) 6728 (27 %) 10.5 MHz
3 dpcm 24 (75 %) 4419 (18 %) 22.4 MHz
3 adpcm 24 (75 %) 14088 (57 %) 10.7 MHz

Table 3. Synthesis results for the Microsemi IGLOO AGL1000V2 device

measurements, an external trigger is asserted by the MCU when a compute tasks
starts and is recorded by an oscilloscope. The average current drawn by the sys-
tem during the task execution is measured by an Agilent 34411A multimeter,
which provides a resolution of 3 µA at a sampling frequency of 50 kHz.

For comparison with the hardware-accelerated encoders described in Sec-
tion 4, the dpcm and adpcm compression schemes were also implemented on
the TI CC2530 MCU of the HaLOEWEn sensor node to estimate the energy
consumption of a conventional microcontroller-based sensor node. The software
was compiled by the Small Device C-Compiler (SDCC) v3.3 with speed opti-
mizations enabled. The energy required for transmitting the uncompressed data
stream is used as the baseline measurement. Each transmitted packet carries a
maximum of 116 payload bytes.

As indicated in Figure 5a, a block of 2048 prerecorded sensor samples per
channel, stored in the MCUs code memory, is used as the data source. The
software implementations of the compression schemes operate directly on this
data block. For the hardware-accelerated compressors, the process of moving
the samples from the MCU to the RCU is included in the measurements, as we
assume that in practice, the sensors would be directly attached to the RCU.

Table 4 shows the results for processing the neural data described in Section
3.2. Both dpcm and adpcm compression reduce the data size down to 38.5 %,
making the simpler dpcm algorithm a better choice for this application. The
dpcm execution on the MCU takes more than double the 61.2 ms required for
transmitting the compressed data stream. The MCU thus has to be kept ac-
tive beyond the pure transmission time of the prior packet in order to perform
the compression of the current packet, leading to longer duty cycles and a loss

HaLOEWEn
MCU

DC/DC

Oscilloscope

DC/DC DC/DC

RCU 20 MHZ
Oscillator

3.3 V 1.2 V 2.5 V
Voltage
Source

Multimeter
3 V

Flash Freeze Trigger

Fig. 6. Measurement setup

Hardware-Accelerated Data Compression in Low-Power WSN 11

compression compression + transmission

duration current energy duration current energy
scheme on [ms] [mA] [µJ] bytes packets [ms] [mA] [mJ] [%]

none 4096 36 158.8 41.5 19.77 100.0
dpcm MCU 132.2 11.8 4680 1577 14 184.6 21.6 11.96 60.5
adpcm MCU 249.4 11.8 8829 1577 14 310.4 17.5 16.30 82.4
dpcm RCU 1.4 10.7 45 1577 14 62.6 41.9 7.87 39.8
adpcm RCU 2.6 10.7 83 1577 14 63.8 41.3 7.90 40.0

Table 4. Energy to compress/transmit 2048 samples of neural data (Sec. 3.2)

compression compression + transmission

duration current energy duration current energy
scheme on [ms] [mA] [µJ] bytes packets [ms] [mA] [mJ] [%]

none 12288 106 474.4 41.6 59.21 100.0
dpcm MCU 531.0 11.9 18957 9836 85 912.0 24.3 66.48 112.3
adpcm MCU 906.0 11.9 32344 9732 84 1281.0 20.6 79.17 133.7
dpcm RCU 1.6 10.7 51 9836 85 381.6 42.5 48.62 82.1
adpcm RCU 2.9 10.7 93 9732 84 378.9 42.4 48.15 81.3

Table 5. Energy to compress/transmit 3×2048 samples of condition data (Sec. 3.3)

of energy efficiency. In contrast, for the hardware-accelerated implementations,
RCU→MCU data movement occurs in parallel to the ongoing data transmission.
The very short execution time of the compression stretches the duty cycle before
going back to sleep only marginally, leading to an almost complete translation
of compression ratio into system-level energy savings (38.5 % ratio vs. 39.8 %
energy for dpcm).

Processing of the condition monitoring data discussed in Section 3.3 is eval-
uated in Table 5. Here, the adaptive predictor improves the compression ratio
over dpcm such that a complete radio packet is saved. On the MCU, however,
compressing the three data channels takes so much time, that the energy re-
quired cannot be amortized over the transmission savings, instead leading to
an efficiency deterioration. The hardware-accelerated encoders fare much better:
Since all channels can be compressed in parallel, the total execution time only
slightly increases over that of the single channel encoder used in Table 4. As be-
fore, the encoders using the RCU convert nearly all of the data volume savings
into actual energy savings.

6 Conclusion and Future Work

In this work, lossless data compression was used to aggregate collected sensor
data before transmitting it wirelessly to a data sink (central node). The trade-

12 Hardware-Accelerated Data Compression in Low-Power WSN

off between compression quality and encoder complexity was analyzed for two
different types of real-world sensor data. To this end, differential compression
with a linear predictor and a downstream Rice encoder has been implemented
on a Microsemi IGLOO FPGA and a TI CC2530 microcontroller. While the
software compressor did reduce the overall energy consumption of compression
and transmission for data compression ratios of 40 %, it did not succeed for
compression ratios of only 80 %. The hardware-accelerated encoder, however,
achieved almost perfect efficiency converting space savings due to compression
into actual energy savings. Since for some data streams, such as the condition
monitoring application, adaptive encoding yields improved efficiency, future work
will evaluate the gains possible using higher-order adaptive predictors having
M > 1.

References

1. Boonyakitmaitree, C., Nandhasri, K., Ngarmnil, J.: A low computational predictor
coefficient algorithm for adpcm implementation of portable recording devices. In:
Circuits and Systems, 2004. MWSCAS ’04. The 2004 47th Midwest Symposium
on. vol. 3, pp. iii – 187–90 vol.3 (2004)

2. Deng, X., Yang, Y.: Online adaptive compression in delay sensitive wireless sensor
networks. Computers, IEEE Transactions on 61(10), 1429 –1442 (2012)

3. Donoho, D.: Compressed sensing. Information Theory, IEEE Transactions on 52(4),
1289–1306 (2006)

4. Engel, A., Liebig, B., Koch, A.: Feasibility analysis of reconfigurable computing
in low-power wireless sensor applications. In: Koch, A., Krishnamurthy, R., McAl-
lister, J., Woods, R., El-Ghazawi, T. (eds.) Reconfigurable Computing: Architec-
tures, Tools and Applications, Lecture Notes in Computer Science, vol. 6578, pp.
261–268. Springer Berlin / Heidelberg (2011)

5. Engel, A., Liebig, L., Koch, A.: Energy-efficient heterogeneous reconfigurable sen-
sor node for distributed structural health monitoring. In: Morawiec, D.A., Hin-
derscheit, J. (eds.) Conference on Design and Architectures for Signal and Image
Processing (DASIP). Electronic Chips & Systems design Initiative (2012)

6. Kasirajan, P., Larsen, C., Jagannathan, S.: A new data aggregation scheme via
adaptive compression for wireless sensor networks. ACM Trans. Sen. Netw. 9(1),
5:1–5:26 (2012)

7. Kimura, N., Latifi, S.: A survey on data compression in wireless sensor networks.
In: Proc. Int. Conf. Information Technology: Coding and Computing ITCC 2005.
vol. 2, pp. 8–13 (2005)

8. Ngau, C., Ang, L.M., Seng, K.: Low memory visual saliency architecture for data
reduction in wireless sensor networks. Wireless Sensor Systems, IET 2(2) (2012)

9. Reinhardt, A., Christin, D., Hollick, M., Steinmetz, R.: On the energy efficiency of
lossless data compression in wireless sensor networks. In: Proc. IEEE 34th Conf.
Local Computer Networks LCN 2009. pp. 873–880 (2009)

10. Sayood, K.: Introduction to Data Compression. Morgan Kaufmann (2005)
11. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw.

52, 2292–2330 (August 2008)
12. Zhiyong, C., Pan, L., Zeng, Z., Meng, M.: A novel fpga-based wireless vision sensor

node. In: Proc. IEEE Int. Conf. Automation and Logistics ICAL’09 (2009)

	Hardware-Accelerated Data Compression in Low-Power Wireless Sensor Networks
	Introduction
	Related Work
	Characteristics of Monitoring Applications
	Evaluation of Compression Algorithms
	Neural Activity in Primates
	Condition Monitoring of Heavy Industrial Machinery

	Hardware-Accelerated Data Compression
	Experimental Evaluation
	Conclusion and Future Work

