
FPGA-Accelerated Color Edge Detection Using a
Geometric-Algebra-To-Verilog Compiler

Florian Stock
and Andreas Koch

Embedded Systems and Applications Group
TU Darmstadt

Darmstadt, Germany
email: stock|koch@esa.informatik.tu-darmstadt.de

Dietmar Hildenbrand
LOEWE Priority Program Cocoon

TU Darmstadt
Darmstadt, Germany

email: hildenbrand@cocoon.tu-darmstadt.de

Abstract— Geometric Algebra (GA) is a branch of mathematics
that generalizes complex numbers and quaternions. One of the
advantages of the framework is, that it allows intuitive description
and manipulation of geometric objects. While even complex
operations can be described concisely, the actual evaluation of
these GA expressions is extremely compute intensive. However,
it has significant fine-grained parallelism, which makes it a
profitable target for hardware implementation. In this paper,
we present the automatic acceleration of a color edge-detection
algorithm from a GA description. Using our Gaalop GA compiler
with its Verilog back-end, we can show speed-ups of over 1000x
even compared to a recent GA processor ASIC.

I. INTRODUCTION

Geometric Algebra (GA) is a powerful mathematical frame-
work that generalizes projective geometry, imaginary num-
bers, and quaternions. As complex geometric relationships
and transformations can be intuitively expressed, GA allows
very concise formulation of many engineering and scientific
problems. In many cases, these descriptions require only a
fraction of the space of conventional formulations.

The roots of GA go back to the work of Grassmann [1] and
Clifford [2] from the 19th century. Similar to the development
of other mathematical frameworks, its usefulness and wide
practical applicability was not immediately recognized and
was only later rediscovered.

Initially, GA became popular in physics to concisely express
complex geometrical relationships [3], [4], [5]. Later, with
the invention of conformal geometric algebra [6] by David
Hestenes, the use of GA has also been extended to engineering
application domains such as robotics, computer graphics, and
computer vision.

Conformal geometric algebra not only allow the flexible
modeling of geometric objects and transformations, but also
describe intuitively applicable concepts such as points, lines,
planes and spheres, as well as operations on them (e.g.,
intersection and rotations). However, the evaluation of the
multi-dimensional GA expressions requires significant com-
putational effort. This drawback has slowed its adoption as a
practical algorithmic tool. While this situation has improved
with faster processors, the core computations do not profit
from many-core architectures due to the very fine-grained
(operator-level) nature of their parallelism. On the other hand,

they are highly amenable to acceleration by specialized archi-
tectures.

Today, this idea is often associated with computation on
Graphics Processing Units (GPUs). This is not the best choice
for GA calculations, however, since the expressions generally
do not have much SIMD (Single Instruction Multiple Data)
parallelism. For this reason, other approaches, such as pro-
cessors with ISAs (Instruction Set Accelerator) specialized
for GA, or the use of reconfigurable computing have been
considered by the research community. As we will demon-
strate, especially the use of the latter is highly effective, even
compared to dedicated GA processor ASICs. But as usual,
there exists a large gap between the highly abstract GA oper-
ations and the actual hardware architecture of a reconfigurable
accelerator. To close this gap, we have developed a tool-flow
capable of translating a Domain-Specific Language (DSL)
for GA to highly optimized FPGA implementations. Here,
the high abstraction level of GA data and operators actually
works to our advantage, since attempts to translate less abstract
languages such as C into hardware [7], [8], [9], [10] are
often inefficient or fraught with multiple limitations (e.g., no
dynamic pointers, only unrollable loops etc.).

The key contributions of this work over prior publications
[11], [12] are optimizations in our compile flow and the exam-
ination of color edge-detection as an application for concise
GA description. We will show performance improvements of
over 1000x over a recent specialized GA processor ASIC for
the same algorithm.

II. RELATED WORK

To actually make use of GA as a tools to solve practical
problems, appropriate software tools are required. Roughly
half a dozen of specialized GA tools are currently in wider
use.

They include libraries for existing computer algebra systems
(e.g., CLIFFORD [13] for Maple, MSTA for Mathematica,
or GABLE [14] for Matlab), as well as for high-level program-
ming languages (e.g., Gaalet [15], a C++ template library).

Other software tools directly operate on DSLs specialized
for GA. A common one is CLUCalc [16], which presents an



interactive environment for developing GA algorithms in the
CLUScript DSL.

While allowing highly productive algorithm development
with its powerful visualization features, the fact that CLUCalc
relies on an interpreter for execution limits performance.

Higher performance can be achieved by generating native
code from the GA descriptions. Gaigen [17] compiles GA
algorithms expressed in XML to a number of high-level
languages such as C/C++ and Java. Our own Gaalop 2.0 [18]
system supports a number of front-ends, including CLUScript
as well as an embedded DSL for GA operations inserted in
C++ source code. Its multiple compiled-code back-ends cover
C++, OpenCL, and CUDA to support a number of software-
programmable target processors.

Due to the inefficiency of even compiled-code algorithms
executing on CPUs and GPUs (as sketched in Section I),
significant research effort has been expended on GA-optimized
hardware architectures. Initial attempts include Cliffosor [19]
and its successor S-Cliffosor ([20]. However, these systems
suffered from a number of architectural bottlenecks or only
supporting limited GA operations (e.g., low dimensionality,
restricted operator subset).

A more powerful architecture that supports higher-dimen-
sional algebras is described by Mishra and Wilson in [21].
They realized a processor with an ISA supporting a full set
of GA operations, which are then executed on a Geometrics
Algebra Micro Architecture (GAMA) unit. The ASIC imple-
mentation in an ST 120 nm process has a maximum clock
frequency of 130 MHz (though the authors only clock it at
125 MHz for their benchmarks).

All of these previous hardware solutions had hardwired,
internally parallel operators for the GA primitives, but im-
plemented the actual GA algorithm as a sequential instruction
sequence of these primitives.

The approach we use in Gaalop 2.0 [18] is different:
For each specific GA input program, our hardware back-
end synthesizes a custom micro-architecture that embodies the
entire computation. The architecture has a finely parallel, pure
dataflow structure, completely avoiding the sequentiality of a
serial instruction stream.

Our initial experiments (described in [11], [12]) concen-
trated on inverse kinematics computations for high-frame rate
computer animation. In this work, we will address the same
problem tackled by Mishra and Wilson, namely a rotor-
based edge detector following the scheme proposed by Bayro-
Corrochano and Flores [22]. This will allow a comparison
between the ISA- and direct hardware synthesis-based accel-
eration approaches for GA algorithms.

III. GEOMETRIC ALGEBRA

A. Basics

For space reasons, this section can present just a very basic
introduction to GA. A more comprehensive description is
given, e.g., in [23].

Primitive GA operations are performed on elements called
multivectors. These multivectors are linear combinations of

TABLE I: The 8 blades of a 3-dimensional GA.

index blade grade name
1 1 0 scalar, 0-blade
2 e1 1 vector, 1-blade
3 e2 1 vector, 1-blade
4 e3 1 vector, 1-blade
5 e1 ∧ e2 2 bivector, 2-blade
6 e1 ∧ e3 2 bivector, 2-blade
7 e2 ∧ e3 2 bivector, 2-blade
8 e1 ∧ e2 ∧ e3 3 trivector (I),

pseudoscalar, 3-blade

a limited number of so-called blades. The number of blades
depends on the dimensionality of the GA: An n-dimensional
GA has n basis vectors (usually called e1, . . . en), with the
outer products across multiple basis vectors being the the
blades. The number of basis vectors in each blade are defined
as the blade’s grade. Including the extreme cases (no basis
vectors, grade=0, and all basis vectors, grade=n, entering into
the outer product), 2n possible combinations of basis vectors
are possible. Table I shows the blades of a 3-dimensional GA.
We will limit our discussion to such a 3-D GA, since that
dimensionality is sufficient for the GA-based edge-detection
algorithm. For comparison, in the model of Hamilton quater-
nions, the equivalent of 2-blades would be the commonly used
basis vectors i, j, and k.

GA relies on the addition of multivectors and various kinds
of multiplications as primitive operations. From a purely math-
ematical perspective, not all of the multiplication operations
need to be defined separately, since some can be expressed in
terms of the others, but more concise and intuitive forms of
algorithmic descriptions are often enabled by explicitly pro-
viding all of them. Thus, the three multiplications operations
on two multivectors a and b are the inner, outer, and geometric
products:

Inner Product:
For 3-D Euclidean space, the inner product of two
vectors a ·b is the same as the Euclidean scalar prod-
uct of two vectors (the actual GA definition is more
general). This implies, e.g., that for perpendicular
vectors, the inner product will be 0, a relation that
also applies in higher dimensional algebras.

Outer Product:
For parallel vectors, the outer product a ∧ b is
always 0, making it very useful to express parallelity
relations even in higher dimensionality.

Geometric Product:
The geometric product ab is GA-specific and defined
for vectors as ab := a·b+a∧b. In GA, it is a powerful
tool for expressing transformations. Subsection III-B
describes its use in the edge detection algorithm.The
relationship

eiej =

{
−ejei if i 6= j

1 if i = j
(1)

holds between all of our basis vectors.



(Maxima)

Fig. 1: Gaalop 2.0 compile flow.

B. Rotation

A rotor R is defined as the operator

R = e
φ
2 L = cos(

φ

2
)− L sin(

φ

2
) (2)

Geometrically, it describes a rotation around axis L (repre-
sented by a normalized bivector), with the rotation angle given
by φ.

The rotation of a geometric object o is performed by the
applying the rotor R as

orot = RoR̃ (3)

where R̃ is the conjugate of R.

IV. EDGE DETECTION ALGORITHM IN 3-D GA
Similar to the operation of the human eye, a holistic edge-

detection algorithm does not process separate RGB planes,
but considers the entire image as a single entity. This multi-
dimensionality is easily described in GA using multivectors.

Color information can be expressed as bivectors. Let
rm,n,gm,n, and bm,n be the separate RGB color channels for
an image of the dimension M × N at row m and column
n. We can then define a single multivector encompassing all
image color information cm,n as:

cm,n = rm,ne2e3 + gm,ne3e1 + bm,ne1e2 (4)

Bayro-Corrochano and Flores [22] developed their GA edge
detection algorithm as a convolution, using two masks mL

and mR (for left and right, given below). The convolution is
applied as a rotor, formulated by the geometric product (for
masks of the size 2X + 1 and 2Y + 1):

ĉ(m,n) =

X∑
x=−X

Y∑
y=−Y

mL(x, y)· (5)

c(m−x mod M),(n−y mod N)mR(x, y)

For color edge detection, the two masks used are described
by

mL =

R R R
0 0 0

R̃ R̃ R̃

 (6)

mR =

R̃ R̃ R̃
0 0 0
R R R

 , (7)

with the individual rotors being

R = se
Lπ
4 = s(cos(

π

4
) + L sin(

π

4
)) = s(

√
2

2
+ L

√
2

2
). (8)

Here, L is the unit vector given by

L =
(e2e3 + e3e1 + e1e2)√

3
(9)

and s is the scale factor s = 1√
6

. For brevity, we give only
the masks mL and mR for the convolution in the horizontal
direction. The vertical computation proceeds analogously, but
uses instead of the masks mL and mR their transposed.

Applying these masks to the color pixels described by c
yields this expression:

ĉ(m,n) =R̃(cm−1,n−1 + cm+1,ncm−1,n+1)R

+R(cm+1,n−1 + cm+1,n + cm+1,n+1)R̃

=R̃cuR+RclR̃ (10)

, where cu and cl are the upper and lower row of the
convolution mask.

Equation 10 concisely describes the entire holistic edge
detection algorithm. It operates as follows: A color vector c is
split into two components, ~c⊥ and ~c‖. These two components
represent the vector components perpendicular and parallel to
the rotation axis. Intuitively, in a 3-D color cube, the unit
vector (which is used as the rotation axis L) describes the
gray colors.

If the colors in the upper and lower row are homogeneous
(do not contain an edge), the rotation of Rc⊥R̃ would rotate
the color vector by the same amount as the rotation R̃c⊥R,
with the rotations canceling out. The pixel thus computed
would fall on the gray axis in the result image (indicating
that no edge is present).

On the other hand, if the two colors in the upper and
lower row are not homogeneous (do contain an edge), the
rotations will not cancel each other out. Thus, the result will lie
somewhere else in the color cube, off the gray axis, indicating
the presence of an edge.

This kind of convolution belongs to a class of linear vector
filters, and could be also applied to signals different from
images, e.g., speech signals.

V. GAALOP COMPILER ARCHITECTURE

Gaalop, the Geometric Algebra Algorithms Optimizer, is
our plugin-based source-to-source GA compiler framework. It
accepts the CLUCalc-script DSL [16], and supports a number
of different output formats (see Fig. 1). Compared to the initial
version of the Verilog back-end presented in [11], [12], the
current GA optimization engine was completely replaced. The
rewritten engine has the following changes:

First, the dependency on the Cliffordlib library was removed.
In the first version the library, which was running on top of



// r,g,b are arrays with indices for
// the conv mask as follows
// 1,2,3 = upper left, middle, right
// 4,5,6 = left, self/center, right
// 7,8,9 = lower left, middle, right

// converting rgb into bivector
c1 = r1*e2ˆe3 + g1*e3ˆe1 + b1*e1ˆe2;
c2 = r2*e2ˆe3 + g2*e3ˆe1 + b2*e1ˆe2;
c3 = r3*e2ˆe3 + g3*e3ˆe1 + b3*e1ˆe2;
c7 = r7*e2ˆe3 + g7*e3ˆe1 + b7*e1ˆe2;
c8 = r8*e2ˆe3 + g8*e3ˆe1 + b8*e1ˆe2;
c9 = r9*e2ˆe3 + g9*e3ˆe1 + b9*e1ˆe2;

s = 1/sqrt(6);
n = (e2 * e3 + e3*e1 + e1*e2)/sqrt(3);
R = s * ((sqrt(2)/2) + n * (sqrt(2)/2));
?p = ˜R*(c1+c2+c3)*R + R*(c7+c8+c9)*˜R;

Fig. 2: CluCalc code for the GA-based edge detection.

the commercial Maple Computer Algebra System (CAS), took
the GA expression, optimized them, and transformed them
into scalar operations. The new version uses a table driven
approach to map the GA operations itself to scalar operations.
Further optimization of the expression be optionally be done
using the open-source Maxima [24] CAS. This not only
removes the dependency from an commercial tool, but also
removes a limitation imposed by Cliffordlib: The new engine
can not only handle conformal 3D algebras, but also higher
dimensional algebras.

Second, the new hardware-synthesis back-end can now
flexibly handle multiple floating- and fixed-point numerical
representations. The latter can be determined automatically
using developer-provided precision and value range constraints
on input and result values, which are then bi-directionally
propagated across the dataflow graph (DFG) using Monte
Carlo analysis. Hereby random data from input range is send
through the DFG, to analyze the impact on the value ranges
of the inputs and outputs at the operators within the graph.

Internally, Gaalop first parses the DSL, then transforms
it to a DFG-based intermediate form. This graph is then
subjected to multiple optimizations, which include the fixed-
point transformation as well as algebraic simplifications and
reductions of the scalar computations underlying the GA
primitives. More details about some of these steps are given
in [12].

The optimized DFG is then mapped to a datapath and fitted
with a simple controller that provides ASAP scheduling. For
debugging and testing, the system also generates an automated
testbench for the hardware accelerator, testing user supplied
input and result values. The generated hardware is fully spatial
and pipelined, both of which result in a very high degree of
fine-grained parallelism.

VI. EXPERIMENTAL RESULTS

The entire edge detection was abstractly formulated in
CluCalc, requiring very few lines of code (Listing 2). For

(a) (b)

Fig. 3: Example pictures with color blocks before (a) and
after (b) edge detection transformation (non-edge gray pixels
removed).

Clock Runtime [ms] for image size
Implementation [MHz] 128× 128 256× 256 512× 512

ASIC [21] 125 46 184 735
Fixed Point 125 0.131 0.524 2.097
Float, Single 125 0.132 0.525 2.098
Float, Double 125 0.132 0.525 2.098
Float, Single 400 0.041 0.165 0.656
C Back-End on i7 3200 0.472 5.857 7.764

TABLE II: Comparison with previous results.

comparison with [21], we followed Mishra and Wilson’s lead
and implemented just the horizontal pass. We also used the
same pictures as input (Lena and color blocks) with sizes
of 128 × 128, 256 × 256, and 512 × 512. Fig. 3a shows
an input picture before the color edge detection, Fig. 3b
shows the result after applying the convolution. For clarity in
monochrome printing, we have manually erased all non-edge
pixels, which would normally show up as gray points in the
result image (see Section IV for the underlying explanation).

The generated Verilog HDL code was synthesized, placed,
and routed with Xilinx Vivado 2012.3, targeting a Xilinx
Virtex 7 XC7VX690T-2, power values are estimated post-route
with Vivado Power Analysis. Table IV shows the required
FPGA resources when directing Gaalop to use floating-
point (single/double precision) and automatically optimized
fixed-point computations. For a fair comparison with Mishra
and Wilson’s work, and disregarding any performance gains
due to chip-fabrication technology-induced, the clock speed
increases. So we present an initial set of performance mea-
surements the FPGA also executes just at the 125 MHz used
in their GA ASIC. Furthermore, we disregard communication
costs between the CPU and the accelerator (as was also done
by Mishra and Wilson). For the FPGA, this is actually jus-
tified: We assume an adaptive computing system architecture
combining a software-programmable main processor with the
reconfigurable computing unit using shared (virtual) memory,
supporting high bandwidth and low signaling latency. We
have already demonstrated the practical feasibility of such a
machine in [25].

Note that, due to the highly pipelined nature of the generated



Precision LUTs FFs DSPs BRAMs Power [mW]

Fixed-Point, 32b 3618 0.83 % 6602 0.76 % 132 3.66 % 0 0 % 574
Float, Single 66529 15.35 % 79211 9.14 % 88 2.44 % 0 0 % 1656
Float, Double 152268 35.15 % 176210 20.34 % 480 13.33 % 0 0 % 3371

TABLE IV: Used resources and utilization on an Virtex 7 XC7VX690T-2 for different number formats (Total / % of Device).

Implementation Op. Image size
128× 128 256× 256 512× 512

ASIC [21] + 901120 3604480 14417920
∗ 917504 3670016 14680064

Verilog Back-End + 1507328 6029312 24117248
∗ 786432 3145728 12582912

C Back-End + 884736 3538944 14155776
∗ 884736 3538944 14155776

TABLE III: Comparison with previous results. The table gives
the number of additions and multiplications for different image
sizes.

datapath (between 12 and 96 stages for the fixed- and floating-
point designs), the throughput for all of the generated nu-
merical representations is identical (one result pixel per clock
cycle), with the latency differences due to varying pipeline
lengths being almost negligible relative to the total number of
pixels to process. At the same clock frequency, we achieve
a performance improvement of roughly 350x across all of
the image sizes relative to Mishra and Wilson’s GA processor
ASIC. When running the FPGA at 400 MHz, the highest clock
speed achievable for the synthesized designs on the target
FPGA, the performance gain increases to over 1120x.

One can argue, that Mishra and Wilson’s ASIC accelerator
is more versatile - which is correct to a certain degree:
When algorithms change, the GA ASIC only needs rapid
reprogramming instead of full hardware synthesis, place, and
route. But GA-based applications will generally run a fixed
set of GA compute kernels, which can easily be mapped to
the FPGA in advance. During execution, the hardware kernels
can be rapidly loaded onto the FPGA using techniques such
as dynamic partial reconfiguration, which requires time only
on the order of milliseconds for smaller designs (such as our
fixed-point implementation).

On the other hand, a commonly used measure for quantify-
ing the performance of GA systems (both hard- and software),
namely the number of Geometric Algebra Operations Per
Second (GOPS), is not applicable to our approach: Since we
deconstruct the GA primitives down to their scalar components
and optimize (e.g., merge, transform, move, eliminate, etc.)
those, we can no longer determine the number of individual
GA operators actually present in the generated hardware
datapath.

Finally, for completeness, we compare the performance of
our automatically compiled edge-detector accelerator with an
optimized C implementation, also generated by Gaalop from
the same input program. Since the C back-end also takes full
advantage of the high-level transformations enabled by using
a CAS in the compile flow, as well as the deconstruction
and optimization of GA operations down to the scalar level,

this is a fair comparison. When executing the gcc-compiled C
output with the options -ftree-vectorizer, -fwhole-program,
-O3, and executing it on a recent Intel Core i7 i7-3930K
CPU clocked at 3.20 GHz, the performance lead of the FPGA
solution drops, but is still greater than 10x. Note that for
embedded applications, the advantage of the FPGA-based
solution would be even greater due to the significantly better
energy efficiency compared to the CPU (which has a maximum
power draw of 130W).

VII. CONCLUSION

After introducing the fundamentals of GA and sketching
the color edge-detection algorithm using rotors, we gave on
overview over our multi-target GA compiler system Gaalop.

Using the hardware back-end, Gaalop synthesizes an al-
gorithm specific accelerator architecture from the CLUScript
DSL. It easily allows experimentation with different number
formats, including support for the automated optimization of
fixed-point representations.

From a very concise GA description of the color edge-
detection algorithm, the synthesized accelerator achieved not
only a speed-up of 11.8x against highly optimized software
running on a current-generation processor, but also beat a
programmable GA accelerator ASIC by a speed-up of 350x
even when constraining the FPGA to run at the same clock
rate.

Our research shows the great potential of combining ap-
plication-specific microarchitectures, implemented on recon-
figurable devices, with automated compile flows accepting
expressive domain-specific languages.

Future work will focus on further internal optimizations
of the intermediate representation of the GA (specifically,
inducing the CAS to optimize for fewer operators than for
better readability of expressions), and better support for control
flow in the input DSL.

REFERENCES

[1] W. K. Clifford, “Applications of grassmann’s extensive algebra,” in
Mathematical Papers, R. Tucker, Ed. Macmillian, London, 1882, pp.
266–276.

[2] ——, “On the classification of geometric algebras,” in Mathematical
Papers, R. Tucker, Ed. Macmillian, London, 1882, pp. 397–401.

[3] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus:
A Unified Language for Mathematics and Physics. Dordrecht, 1984.

[4] D. Hestenes, New Foundations for Classical Mechanics. Dordrecht,
1986.

[5] D. Hestenes and R. Ziegler, “Projective Geometry with Clifford Alge-
bra,” Acta Applicandae Mathematicae, vol. 23, pp. 25–63, 1991.

[6] D. Hestenes, “Old wine in new bottles : A new algebraic framework for
computational geometry,” in Geometric Algebra with Applications in
Science and Engineering, E. Bayro-Corrochano and G. Sobczyk, Eds.
Birkhäuser, 2001.



[7] L. Séméria, K. Sato, and G. D. Micheli, “Synthesis of hardware models
in c with pointers and complex data structures,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 9, no. 6, pp. 743–756, 2001.

[8] N. Kasprzyk and A. Koch, “High-level-language compilation for
reconfigurable computers,” in Proc. Intl. Conf. on Reconfigurable
Communication-centric SoCs (ReCoSoC), 2005.

[9] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Optimized generation
of data-path from c codes for fpgas,” in Design Automation Conference,
2005.

[10] M. Budiu, “Spatial computation,” Ph.D. dissertation, Carnegie Mellon
University, Computer Science Department, December 2003, technical
report CMU-CS-03-217.

[11] J. Huthmann, P. Muller, F. Stock, D. Hildenbrand, and A. Koch, “Accel-
erating high-level engineering computations by automatic compilation of
geometric algebra to hardware accelerators,” in ICSAMOS, F. J. Kurdahi
and J. Takala, Eds. IEEE, 2010, pp. 216–222.

[12] J. Huthmann, P. Müller, F. Stock, D. Hildenbrand, and A. Koch,
“Compiling Geometric Algebra Computations into Reconfigurable Hard-
ware Accelerators,” in Dynamically Reconfigurable Architectures, P. M.
Athanas, J. Becker, J. Teich, and I. Verbauwhede, Eds., Dagstuhl,
Germany, 2010.

[13] R. Ablamowicz and B. Fauser, “Mathematics of clifford - a maple
package for clifford and graßmann algebras,” in Advances in Applied
Clifford Algebras. Birkhäuser, 2005.

[14] L. Dorst, S. Mann, and T. Bouma, “Gable: A geometric
algebra learning environment,” 2002. [Online]. Available:
http://www.science.uva.nl/leo/GABLE

[15] F. Seybold and U. Wössner, “Gaalet - a c++ expression template library
for implementing geometric algebra,” in 6th High-End Visualization
Workshop, 2010.

[16] C. Perwass, Geometric Algebra with Applications in Engineering.
Springer, 2009.

[17] D. Fontijne, “Efficient implementation of geometric algebra,” Ph.D.
dissertation, University of Amsterdam, 2007.

[18] C. Schwinn, D. Hildenbrand, F. Stock, and A. Koch, “Gaalop 2.0 - a
geometric algebra algorithm compiler,” in GraVisMa 2010 Proceedings,
V. Skala and E. M., Eds., 2010.

[19] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile, and V. Vullo,
“Cliffosor, an innovative fpga-based architecture for geometric algebra,”
in International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), 2005, pp. 211–217.

[20] S. Franchini, A. Gentile, M. Grimaudo, C. Hung, S. Impastato, F. Sor-
bello, G. Vassallo, and S. Vitabile, “A sliced coprocessor for native
clifford algebra operations,” in Euromico Conference on Digital System
Design, Architectures, Methods and Tools (DSD), 2007.

[21] B. Mishra and P. Wilson, “Color edge detection hardware based on
geometric algebra,” in Visual Media Production, 2006. CVMP 2006.
3rd European Conference on. IET, 2006, pp. 115–121.

[22] E. Bayro-Corrochano and S. Flores, “Color edge detection using rotors,”
in Applications of Geometric Algebra in Computer Science and Engi-
neering, L. Dorst, C. Doran, and J. Lasenby, Eds. Birkhäuser Boston,
2002, pp. 333–339.

[23] D. Hildenbrand, Foundations of Geometric Algebra Computing.
Springer, 2013.

[24] Maxima. (2011) Maxima, a computer algebra system.
version 5.25.1. http://maxima.sourceforge.net/. [Online]. Available:
http://maxima.sourceforge.net/

[25] H. Lange and A. Koch, “Architectures and execution models for
hardware/software compilation and their system-level realization,” IEEE
Transactions on Computers, vol. 59, no. 10, pp. 1363–1377, 2010.


