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1. INTRODUCTION
Adaptive computing systems (ACS) combine software-programmable processors (SPPs)
and reconfigurable compute units (RCU) to efficiently provide computing performance.
The time-critical parts of a computation, so-called kernels, are realized as hardware
accelerators on the RCU, while the SPP handles the noncritical application and system
management tasks. Considerable research effort has been invested in making ACSs
more accessible, specifically on automatic compilers [Callahan 2002; Li et al. 2000;
Kasprzyk and Koch 2005] aiming to translate high-level language description into RCU
implementations. With the improving quality of these compile flows, classical computer
architecture bottlenecks such as memory latency also become more pronounced in
an ACS architecture. According to Kaeli and Yew [2005], 20% of a typical program’s
instructions are memory accesses, but they require up to 100x of the execution time of
the nonmemory (scalar) operations.

Among the solutions that have already been proposed are increasing the memory
bandwidth by parallel localized memories [Gädke-Lütjens et al. 2010], or by using
coherent distributed caches in a shared memory system [Lange et al. 2011].

As an orthogonal alternative to these techniques, we propose the use of load value
speculation to hide the latency of memory reads. Reads thus become fixed-latency
operations that always supply a result within a single clock cycle.This capability re-
quires special support in the RCU microarchitecture, since misspeculated values must
be recognized at some point in time and the affected earlier computations must be
reexecuted (replayed) with the correct input values. When performing a replay, it is
desirable to limit the extent of the reexecuted operations. Ideally, only the specific
operations “poisoned” by the misspeculated values need to be replayed. However, since
this is equivalent to a dynamically scheduled execution model, implementing such a fine
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replay granularity requires complex hardware [Gädke-Lütjens 2011; Gädke-Lütjens
et al. 2010].

Our PreCoRe framework Predicts, Commits, and Replays at the granularity of data-
path stages, similar to the clock cycles used in a statically scheduled microarchitecture,
and aims to never slow down the execution of the datapath over the nonspeculative
version.

This article first gives an overview over three of PreCoRe’s main concepts: The replay
(reexecution) control mechanisms (Section 3.1), the associated speculation queues (that
resupply the appropriate data items, Section 3.2), and the actual data value predictors
themselves (Section 3.3). These topics have been individually presented in greater detail
in Thielmann et al. [2011b] and Thielmann et al. [2011a], but will be discussed here in a
common context. Beyond this prior work, we show new results on the energy-efficiency
of the PreCoRe architecture and examine how PreCoRe complements compile-time
scalarization techniques for memory access optimization. Furthermore, we introduce a
number of techniques to reduce the cost of replays on misspeculated values (Section 5
and 7.3) and consider their impact on the interaction between the memory system and
the speculation mechanisms. All of the techniques presented have been implemented in
our hardware/software cocompiler Nymble as extensions to simple statically-scheduled
datapaths, and all of the benchmarks have been mapped to and executed on a current
ACS hardware platform.

2. RELATED WORK
Even assuming support for unlimited instruction-level parallelism (ILP) in reconfig-
urable hardware, memory read data dependencies severely limit the degree of ILP
achievable in practice to between tens to (at most) hundreds of instructions [Hennessy
and Patterson 2003].

Lipasti et al. [1996] proposed load value speculation to resolve these read data
dependencies speculatively, allowing computations to continue using the speculated
values without waiting for the memory system to return the actual (possibly cached)
memory contents.

Load value and control speculation cannot be considered completely independently:
Value-speculated data may be evaluated in a control condition, while control-speculated
parallel read operations may lead to a greater presence of speculated load values
in the system (since the shared main memory cannot supply the actual values for
all alternative branches simultaneously). Thus, the large body of prior research that
considered data and control speculation methods and their accuracy separately is
insufficient to fully gauge the effects on the memory system, on which only few works
have focused at all [González and González 1998; 1999].

Due to the associated hardware overhead for general-purpose solutions, value specu-
lation has only been used to a limited extent in actual processors. Mock et al. [2005]
modified a compiler to force value speculation where possible on the Intel Itanium 2
CPU architecture. Their scheme relied on hardware support in the form of the Itanium’s
Advanced Load Address Table (ALAT) [McNairy and Soltis 2003]. However, the ALAT
does not operate autonomously, but has to be explicitly controlled by software code. At
best, they achieved speedups of 10% for read value speculation using this approach.
However, they also observed slowdowns of up to 5% under adverse conditions.

Given the current concern of computer architects with energy efficiency, the power
impact of speculation has to be carefully considered. Sam and Burtscher [2005] in-
troduced a metric to compare the energy-efficiency of speculative architectures. They
state that the added complexity of an intricate prediction scheme often increases the
energy consumption of the processor at a higher rate than it increases performance.
In such architectures, when energy consumption is taken into consideration, complex
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Fig. 1. Datapath and speculation token processing.

predictors do not provide a good energy-performance trade-off. We will consider the
energy characteristics of our approach in Section 6.

3. SPECULATION FRAMEWORK
PreCoRe uses two key mechanisms for speculative execution: The first is a token model
used for tracking the effects of speculative execution as well as a means to commit and
revert individual speculation effects. As a second component, specialized queues buffer
both tokens and their associated data values, allowing the replay of failed speculation
and the deletion of misspeculated data.

On top of these foundations, different kinds of speculation can be realized, for instance,
the system supports control, data value, and data dependency speculation. For purposes
of this work, we will concentrate on the use of load value speculation to hide memory
access latencies.

3.1. Token-Based Speculation Control
PreCoRe extends a simple statically scheduled datapath by creating application-specific
speculation control logic. Using this logic, the execution of variable latency operators
such as cached reads and writes, no longer halts the datapath on violated latency
expectations (here: due to a cache miss instead of the expected single-cycle cache hit),
but allows execution to proceed using speculated values. This gives the appearance of
read and write being fixed-latency operators that always produce/accept data after a
single cycle.

However, the propagation of these speculated values in the datapath must be limited
to always allow reversal of incorrect operations and their associated sideeffects. For this
reason, the irreversible write operations form a speculation boundary in the current
approach. Here, the speculated data must have been confirmed as correct for the write
to proceed. Otherwise, the execution leading up to the write has to be replayed with the
correct data, which now has been delivered from the memory system.

Successful Value Speculation. Consider the example in Figure 1(a). Before executing
the WRITE, the system has to ensure that the data to be written is confirmed as being
correct. This is done by its originating node, here the READ node, which is the sole
source of speculated data in the current PreCoRe prototype. For the confirmation, the
READ node internally retains its speculatively output values, while the WRITE node
buffers incoming values dependent on the speculated read value in an input queue.
If the oldest speculative value retained in the READ node matches the value actually
returned from memory, the WRITE nodes holding data dependent on that value in their
input queues are allowed to proceed. Due to their input queues, the WRITE nodes also
give the appearance of being single-cycle operations.
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PreCoRe uses a token-based mechanism to actually implement this behavior. The
underlying Token Logic is generated in an application-specific manner and can thus
be more efficient than a general-purpose speculation management unit. An example is
shown in Figure 1(b). Additional edges show the flow of tokens and validation signals.
The latter indicate that all of the operators in a stage (initially equivalent to a statically
scheduled clock cycle) have output correct values and no longer need to retain old data
for eventual replays in speculation queues (described in greater detail in Section 3.2).

When the speculated and actual data values have been determined to match, the
READ node indicates the successful speculation by sending out a Commit-Token (shown
as C in the Figure) to the Token Logic. In contrast to operator-level speculation, the
token is not directly forwarded to the WRITE node. Instead, the speculation status is
computed per stage: The speculation status signals of all operators in a stage (even
the nonspeculative ones, since they might have operated on speculated values) are
combined: Only if all operators in a stage indicate the presence of correctly speculated
data, is a corresponding C-Token forwarded to the operator at the speculation boundary
(the WRITE). There, it confirms the correctness of the last datum with undetermined
speculation status. Note that speculated values and their corresponding tokens are
associated only by their sequential order. While this prevents out-of-order processing
of memory requests, it also avoids the need for additional administrative information
such as Transaction IDs.

However, a token is allowed to temporarily overtake its corresponding datum up
to the next synchronization point (see Section 3.2), since the speculation status of
an entire stage is only affected if it actually contains a speculative operator (in our
approach, a READ node). Otherwise, the speculation status will just depend on the stage
inputs (nonspeculative, if no speculative values were input; speculative, if even a single
input to the stage was speculative). Since the stages 2 and 3 do not contain READs, an
incoming token can be directly forwarded to the WRITE in stage 4, where it will wait in a
token queue for the correctly speculated value to arrive and allow the WRITE to proceed.
Fast token forwarding is crucial for benefitting from successful speculation. Note that,
simultaneously with this process, pipelining might have lead to the generation of more
speculative values in the READ, which continue to flow into the succeeding stages.

Failed Value Speculation. In the case of a failed speculation, two actions have to be
taken: All data values depending on the misspeculated value have to be deleted (their
lack also prevents the WRITE from executing), and the affected computations have to be
restarted (replayed), this time with the correct nonspeculative result of the READ.

To this end, the token logic first determines that the misspeculated READ in Figure
1(b) leads to the entire stage 1 failing in its speculation. In contrast to the C-Token
discussed before, which had an immediate effect, the Fail token (F-Token) is delayed
by the number of stages between the source of the speculated value and the WRITE
marking the speculation boundary (in this case, two stages, leading to a delay of two
clock cycles). To be more precise, the token is delayed by two clock cycles when the
datapath is actually computing. If it were stalled (e.g., all speculative values have
reached speculation boundaries, but could not be confirmed yet by memory accesses
because the memory system was busy), these stall cycles would not count towards the
required F-Token delay cycles. This ensures that all intermediate values computed
based on the misspeculated value in stages 2 and 3 have now ended up in the input
queues of the WRITE operation in stage 4, and will be held there since no corresponding
C- or F-Token for them has been received earlier. The appropriately delayed F-Token
then arrives to resolve this situation, deleting the two sets of incorrectly computed
intermediate results from the operator input queues and prevents the WRITE from
executing.
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Fig. 2. Attributed regions in speculative queues.

The replay starts immediately after the misspeculation has been discovered. READ
outputs the correct data, all other nodes in stage 1 reoutput their last set of results
(which may still be speculative themselves!) from their output queues, and perform the
computations in stages 2 and 3 again.

3.2. Speculation Queue Management
As described in the prior section, speculation queues at operator outputs play a signifi-
cant role in the speculation mechanism. They are responsible for providing succeeding
stages with data (speculated or accurate), holding data until the need for a later replay
has been ruled out, and to discard misspeculated values. Furthermore, they synchronize
the asynchronously flowing value and token sequences, as tokens cannot overtake
values through an output queue. The internal operation of a speculation queue is thus
somewhat more complicated than that of simple conventional queues, as shown in
Figure 2.

The speculative output queue consists of two circular buffers (one for values, one for
tokens) organized as two queues:

In the value queue, each entry between the Read and Write pointers has various
attributes, which determine how the data is processed. At the incoming side, values are
either speculative (a), or were confirmed by incoming tokens (b). Since all data values
are committed sequentially, and no additional committed data may arrive once the
first speculative data entered the queue, these regions are contiguous. At the outgoing
side, values have either been passed on to a succeeding operator (d), or are awaiting
transmission (c). Again, these regions are contiguous.

Two additional pointers are required to implement the extra regions: The region start-
ing with and extending beyond the OverwriteIndex are those positions holding speculated
values (a), they will need to be overwritten with new values, if they were misspeculated
(these may again be speculative values). To let speculative values flow to succeeding
operators, the SpecRead pointer is used. All values below that pointer (d) have been
passed to succeeding operators, but they might be misspeculated values. Thus, they are
still included in the replay region (e). The basic queue behavior is realized using the
Write pointer to insert newly incoming speculative data at the head of region (a), and the
Read pointer to remove a confirmed and forwarded value at the tail of region (d) after
the entire stage has been confirmed.

Values and tokens are synchronized strictly by their sequential order, not by being
in the same position of the queues. The token queue must have twice the length of
the value queue to handle the corner case of an incoming sequence of alternating C-
and F-Tokens. Incoming fail tokens are inserted/removed as in a conventional queue,
but also need to be forwarded to the subsequent stage if a misspeculated value has
previously been provided to the subsequent stage (f).
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Input queues behave similarly to output queues, with one exception: they do not
require validation of committed data. Instead, values are removed from the queues as
soon as their C-Tokens arrive. A complete example for both token handling and queue
management is given in Thielmann et al. [2011a].

3.3. Load Value Predictor Architecture
Figure 3 shows the basic architecture of our value predictor. It follows a two-level
finite-context scheme building on concepts initially used in branch prediction. Value
predictions are based on exploiting a correlation of a stored history of prior data values
and future values [Wang and Franklin 1997]. The actual nature of the correlation is
flexible and highly parametrized: We use the same basic architecture to realize both last
value prediction (which predicts a future value by selecting it from a set of previously
observed values, for instance, 23-7-42-23-7-42) and stride prediction (which extrapolates
a new value from a sequence of previously known strides, for instance, from the strides
4-4-8-4, the sequence 0-4-8-16-20-24-28-36-40 is predicted). The complete PreCoRe
value prediction unit consists of separate last-value and stride-predictors, operated
in tournament mode. For brevity, we discuss only value speculation here, last-value
prediction is performed analogously.

To improve prediction accuracy, the predictor is trained speculatively with the data it
provided as being likely, but that was not yet confirmed correct. Thus, the prediction
strategy can only be switched to the other predictor once an actual misprediction has
been discovered. Note that the speculator itself is only parametrized at compile time, it
is not dynamically reconfigured.

For the pattern database, the predictor not only keeps track of the last m different
values D1, . . . , Dm in a least-recently-used fashion, but also of the n-element sequence
I1, . . . , In in which these values occurred (the Value History Pattern, VHP). An element
of I is an index reference to an actual value in D. The entire sequence I, which consists
of n subfields of log2 m bits each, is used to index the Value History Table (VHT) to
determine which of the known values is the most likely result of the prediction. An entry
of the VHT expresses the likelihood for each of the known values Di as a c-bit unsigned
value Ci, with the highest value indicating the most likely value (on ties, the smallest
i wins). Thus, the VHT is accessed by a n log2 m-bit wide address and stores words of
width mc bits. On reset, each VHT counter is initialized to the value 2c−1, indicating a
probability of ≈ 50%. The stored state for VHT and VHP (and thus the time required
for learning to make accurate predictions) grows linearly with n and logarithmically
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with m. In a future refinement, the predictor could be configured automatically for each
application, with the compiler selecting n and m.

The actual prediction process has to take mispredictions into account. Thus, we keep
two copies of the VHP: The master VHP I (shown in blue in Figure 3) holds only values
that were confirmed as being correct by the memory system, but may be outdated with
respect to the actual execution (since it might take a while for the memory system to
confirm/refute the correctness of a value). The shadow VHP’ I ′ (shown in red in the
Figure) also includes speculated values of unknown correctness, but accurately reflects
the current progress of the execution. All predictions are based on the shadow VHP’
until a misprediction occurs. In the datapath, this would lead to a replay using the
last values not already proven incorrect. In the predictor, the same effect is achieved
by copying the master VHP (holding correct values) to the shadow VHP’ (to base the
next predictions on the new values). Please see Thielmann et al. [2011a] for detailed
descriptions and a complete example of the predictor operation.

4. MEMORY SYSTEM INTERACTION
Load value-prediction relies on a high-performance memory system to confirm/refute
the speculated values as quickly as possible. We employ MARC II [Lange et al. 2011], a
highly parametrized framework supplying parallel memory ports to the datapath. Each
port can be individually configured for streaming (regular) and caching (irregular) oper-
ation. The more general case of irregular accesses is supported by distributed per-port
caches, which are kept coherent using configurable application-specific synchronization
mechanisms.

As shown in Figure 4, for use with PreCoRe, the actual data prediction units are
inserted between the datapath-side read ports and the MARC II-internal per-port
caches, leaving the rest of the MARC II architecture untouched. With this modification,
read requests issued by the datapath on the RCU are simultaneously passed both to the
per-port cache and to the data prediction unit. Thus, the datapath will always receive a
reply within just a single cycle of latency: Either the actual data will have been present
in the cache (cache hit) and can be returned, or the data prediction unit supplies a
speculated value for the read request on a cache miss.

Among the many configurable MARC II parameters is the presence and organization
of a Victim Cache. We will examine its interactions with the speculation cost in the next
section.

5. REDUCING THE COST OF MISPREDICTIONS
The minimization of the penalty of mispredictions is crucial for the overall performance
of a system relying on speculative execution. A key aspect of reducing this penalty is
attempting to serve replayed memory accesses from cache and avoiding main memory
accesses.

This can be achieved in a number of different ways: An obvious approach are larger
caches. However, this will eventually lead to scaling problems due to increased area and
delay (the latter especially for fully associative caches). The multiport caches in MARC
II would suffer even more from such scaling, as all size increases would be multiplied
by the number of ports.

Looking at the replay cost problem more closely, we want to ensure that data that has
already been fetched from main memory to confirm/refute the initial speculative access,
remains present for a later replay. A classical way to achieve this in a scalable fashion is
a victim cache (VC, Jouppi [1990]). This is a relatively small, but fully associative cache
that buffers blocks displaced from upstream caches. One of the configurable features of
MARC II is the presence and size of such a VC per cluster, shared among the per-port
distributed coherent L1 caches. Enabling the VC has minimal area overhead, since it
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Table I. Hardware Area and Maximum Clock Frequency without/with Data Speculation (n.spec/spec)

Kernel FPGA Area Max. Clock Freq. Comparison
#LUTs #Registers (MHz) Slices Power

n. spec spec n. spec spec n. spec spec overhead overhead
array add 10141 14717 1246 2948 106.90 96.30 1.45x 1.20x
array sum 11159 22363 1579 6402 105.10 94.60 2.00x 1.12x
bintree search 11129 19782 1570 5795 105.70 100.10 1.78x 1.30x
gf multiply 11918 22790 1702 6459 102.80 101.30 1.91x 1.29x
median filter row 12895 28333 2458 9909 106.40 102.20 2.20x 1.32x
median filter col 12998 28391 2529 10325 106.00 100.30 2.19x 1.33x
pointer chase 11979 20637 1478 10208 106.40 98.90 1.72x 1.27x
simple read 10241 14703 1484 3639 105.80 103.20 1.45x 1.31x
versatility quant. 12351 39716 5390 18495 105.70 97.40 3.22x 1.30x
versatility fcdf22 12055 32284 1889 9863 105.20 93.80 2.68x 1.31x

Table II. Runtime without/with Data Speculation (n.spec/spec)

Kernel Runtime Comparison
#Cycles µs at max. freq. Speedup Energy

n. spec spec n. spec spec efficiency
array add 6194 3923 57.94 40.74 1.42x 1.18x
array sum 1786 946 16.99 10.00 1.69x 1.35x
bintree search 3497 3359 33.08 33.56 0.99x 0.76x
gf multiply 2510 2482 24.50 24.42 1.00x 0.78x
median filter row 296409 114650 2785.80 1121.82 2.48x 1.88x
median filter col 1054736 666554 9950.34 6665.24 1.50x 1.13x
pointer chase 4087 3650 38.41 36.91 1.04x 0.82x
simple read 19615 14150 185.40 135.41 1.37x 1.05x
versatility quant. 96771 50746 915.53 521.01 1.76x 1.35x
versatility fcdf22 43633 20573 414.76 219.33 1.89x 1.44x

attaches to MARC II’s existing intra-cluster coherency network. By sizing the VC to the
current speculation depth (how many unconfirmed values can remain in flight, typically
8 or 16), all potentially displaced cache blocks can be caught and will be available very
quickly for the replays.

Interestingly, in certain cases, another even lighter-weight approach suffices to ensure
quick replays. It relies on the static (compile-time) memory operation prioritization
supported by both Nymble and MARC II. While the individual memory ports supplied
by a MARC II instance can all be accessed in parallel, they ports share some buses and
access to the single main memory itself. These resources are time-multiplexed between
ports, using the MARC II port number as the static priority when arbitrating parallel
accesses (lower port numbers have higher priority). As will be shown in Section 7.3),
for datapaths without loop-carried dependencies an appropriate assignment of memory
operators to ports can achieve fast replays without the need for a VC. If loop-carried
dependencies are present, though, even a small VC can be very beneficial.

6. EXPERIMENTAL RESULTS
In this section we show the raw characteristics (including performance, area, and power)
of a number of benchmark applications. In all cases we compare implementations using
PreCoRe to purely statically scheduled versions.

6.1. Performance
Tables I and II show the results of executing a number of benchmark programs using
our PreCoRe-enhanced Nymble compiler. The RTL Verilog created by Nymble was then
synthesized for a Xilinx Virtex-5 FX device using Synopsys Synplify Premier DP 9.6.2
and Xilinx ISE 11.1. Our target ACS is based on the Xilinx ML507 development board
enhanced with the FastPath, FastLane, and AISLE [Lange and Koch 2010] features.
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As a baseline for our comparison (both for performance and area), we used MARC II to
provide cached accesses to the FPGA-external DDR2-SDRAM, with the memory ports
being organized as a single coherency cluster. In the nonspeculative case (using only
static scheduling), we halt the entire datapath if a memory access cannot be resolved
within a single cycle.

array add increments each element of an array, without loop-carried dependencies.
array sum sums up all elements of an array, with loop-carried dependencies. bintree search
searches a binary tree. gf multiply is part of the Pegwit elliptic curve cryptography
application in MediaBench [Lee et al. 1997]. median filter row and col realize a lumi-
nance median filter. Blocks of 9 pixels are read row/column-wise and the median of
luminance is written to the center pixel. The column-based processing shows the effec-
tiveness of data speculation when cache efficiency decreases due to unsuitable access
patterns. pointer chase processes a randomly linked list, writing to every second element.
simple read sums all values of an array, and thus has a loop-carried dependency. versatil-
ity quantization and versatility fcdf22 are the quantization and Wavelet steps of an image
compression benchmark [Kumar et al. 2000].

As can be seen in Table I, enabling PreCoRe during hardware compilation carries
an area overhead of 1.45x. . . 3.22x (counting slices). This is due mostly to the current
Nymble hardware back-end not exploiting the sharing of queues across multiple op-
erators in a stage, and the pipeline balancing registers automatically inserted by the
compiler not being recognized as mappable to FPGA shift-register primitives by the
logic synthesis tool. Both of these issues can be resolved by adding the appropriate
low-level optimization passes to Nymble. For some kernels, the added logic also leads
to a drop in clock-rate of up to 11% over the nonspeculative versions. However, since
the system clock frequency of the ML507 board is limited to 100 MHz by the other SoC
components, the worst clock slowdown observed amounts to just 6.2% in practice. Since
most of the critical path lies inside of the MARC II memory system, the achievable max-
imum clock frequency is almost independent of whether a speculative or nonspeculative
execution model is chosen. Consequently, adding the single-cycle load speculation leads
only to the observed limited drops in frequency.

Despite the area increase of up to 3.2x, we observed an increase in power consumption
of only 1.12x. . . 1.32x for the speculative over the nonspeculative versions. This is due
to most of the power being drawn by the multiport MARC II memory system, with only
a small fraction of the power actually consumed in the speculative datapaths.

When looking at the energy required, the performance gains (shorter runtimes) due
to successful speculation can actually lead to an improved energy efficiency over the
nonspeculative versions (by up to 1.44x for versatility fcdf22) despite the higher power
draw. On the other hand, applications with more misspeculations (not achieving shorter
runtimes) pay a price in energy efficiency, which has been observed to drop down to
0.76 for bintree search compared to the nonspeculative version.

Despite the current area and clock inefficiencies, enabling PreCoRe can achieve
speedups for our benchmark applications of up to 2.48x (Table II). Compared to its
non-speculative version at maximum theoretical clock frequency, only bintree search
would be slowed down (by less than 1%). When considering the actual 100 MHz system
clock, the wall-clock improvements go up to 2.59x, and no slowdowns occur at all. These
results show significant improvements over prior work (cf. Mock, see Section 2).

7. RESULT ANALYSIS
Here, we interpret the raw performance data presented in Section 6. We discuss the
impact of both first and second order effects and compare PreCoRe with a compile-time
optimization technique for entirely avoiding memory accesses.
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Fig. 5. Interaction of speculation with prefetching.

Table III. Execution Time vs. Predictor Accuracy
Runtime Hit Rate Speed

-up
#Cycles Total Total % %

#Commits #Fails Acc.
33612 991 12 99 23
33733 969 34 97 22
34025 933 70 93 21
34331 877 126 87 20
35127 790 213 79 17
35550 734 269 73 16
35880 692 311 69 15
36361 628 375 63 13
36841 541 462 54 12
38138 398 605 40 8
39447 182 821 18 4
41201 0 1003 0 0

7.1. Effects of Prefetching
In the original, purely statically scheduled RCU shown in Section 3, a single cache miss
would stall the entire datapath, halting even operations not actually dependent on the
result of the cache-missing read. With PreCoRe, the datapath is not stalled, since a
read always returns data within a single clock cycle. This enables memory prefetching,
even if the speculated read value turns out to be wrong.

Figure 5(a) shows an example for this situation: Assume that READ1 suffers a cache
miss and returns speculative data. By not stalling the datapath, READ2 is allowed to
proceed, prefetching data from a nonspeculated address. Even if READ1 speculated
incorrectly and a replay would be required, READ2 will have prefetched the correct line
into its own cache by then (assuming it had a cache miss at all). This would not have
been possible in the static datapath, since READ2 would only be started after READ1 had
completed processing its own cache miss.

The scope of prefetching can be widened even further when considering prefetching
from a speculative address, which is also supported in PreCoRe. Figure 5(b) shows an
indirect READ, with the address being a value-speculated, loop-carried dependency from
a prior loop iteration. Prefetching can be performed here, too, if the address sequence
has a form predictable by the stride predictor of Section 3.3. In practice, this could occur,
for instance, if an array of pointers into an array of structures is being processed.

Despite being only a secondary effect of the actual read value speculation, the im-
pact of prefetching should not be underestimated. As an experiment, we disabled the
value-predictor, forcing it to always predict incorrect values, in median filter col. Even in
this crippled form, PreCoRe still executes reads as single cycle operations and avoids
datapath-wide stalls (the scenario shown in Figure 5(a)). Prefetching can still be per-
formed under these conditions. The static version of the kernel requires 1,054,736 cycles
to execute, while the prefetching-only version using PreCoRe is accelerated to 738,607
cycles, yielding a speedup of 1.43x. Additionally enabling the value-predictor reduces
the execution time further to 666,554 cycles, a total speedup of 1.58x over the original
static version. For this example, the prefetching enabled by the fixed-latency speculated
reads, not the speculated values themselves, is actually responsible for most of the
performance gain.

7.2. Effects of Successful Load Value Speculation
While the previous section concentrated on using PreCoRe to enable prefetching, this
section discusses the effects of the accuracy of the value-prediction on execution. To
this end, we parametrize pointer chase to generate a range of predictor accuracies. The
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Table IV. Reducing misprediction costs by static port
priority and victim cache

Static Priority Mapping
victim [Normalized Clock Cycles]
cache Fig 5.a Fig 5.b
entries In- Re- In- Re-

Order verse Order verse
0 0.57 1.00 1.00 0.40
4 0.57 1.00 1.00 0.40
8 0.57 1.00 0.98 0.40

16 0.57 1.00 0.93 0.40
24 0.57 1.00 0.83 0.32
32 0.57 0.57 0.32 0.32

non- 0.59 0.59 0.33 0.33spec.

application has a basic structure similar to that shown for Figure 5(b), with the address
in the current iteration being a loop-carried data dependency of the prior iteration (that
list element’s next pointer).

Without value speculation, a new iteration can only be started once a prior iteration
has completed retrieving the next pointer. Using PreCoRe, the READ in the current
iteration can be started immediately using the speculative value returned from the
prior iteration as address for a prefetch.

Table III shows the impact of predictor accuracy for such a scenario. The extreme
cases (completely accurate and inaccurate predictions) are shown in the first and last
rows, respectively. Depending on the regularity of the input data (in this case, the
regularity of the linked elements in memory), performance gains of up to 23% are
possible. The effect is magnified if an even longer backwards edge implies a longer
initiation interval (II) of the loop: The successful use of speculated addresses for indirect
accesses can reduce the II, and increase throughput correspondingly.

7.3. Misprediction Costs and Prefetching
Despite the advantages of prefetching, it can interfere with misprediction replays by
competing for cache entries. In the worst case, the prefetched lines have replaced those
that would be required for a rapid replay, drastically increasing misprediction costs.
As suggested in Section 5, this situation can be avoided by making use of static port
priority assignments and the presence of a small victim cache (VC). For the following
experiment, we have set up the prefetch address sequences to induce conflict misses
within each read operator’s direct-mapped MARC II cache. Furthermore, we force the
speculation to fail continuously, stressing the replay mechanism. This allows us to
evaluate the different schemes for reducing replay costs.

Figure 6(a) shows a simple datapath without loop-carried dependencies. A misspec-
ulation of READ1 will also lead to the replay of READ2 and READ3 (due to the replays
occurring at Stage-granularity). When assigning the read operators in program order to
the cache ports (earlier reads get a higher priority), even the continuously failing RCU
executes still faster than the nonspeculative version (Table IV, 0.57 vs. 0.59 normalized
clock cycles). Replay costs are kept low here purely by the choice of port priorities,
adding a VC does not increase performance. As a counterexample, assigning the opera-
tors in a Reverse (bottom-up) order to the ports would lead to a significant slowdown
(almost by 1.75x), which could only be corrected by enabling a VC large enough to hold
all of the displaced lines for fast replays. The size of the required VC is due to READ2 and
READ3 both needing to be replayed once READ1 misspeculated. Thus, for the speculation
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for ( i =0; i<n ; i ++) {

sum += a [ i ] + a [ i +1] ;

}

Fig. 7. array sum before
scalarization.
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for ( i =0; i<n ; i ++) {
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Fig. 8. array sum after
scalarization.
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depth of 16 used here, a VC of 32 entries would be required to enable rapid replays for
a poor choice of port priorities.

The situation becomes more complex when considering RCUs with loop-carried
dependencies (Figure 6(b)). Here, a misspeculated READ3 in iteration i will lead to the
replay of READ1 and READ2 already started for iteration i+ 1. Even though the latter
are not directly data-dependent on READ3, the misspeculated value of READ3 propagates
to the computation in Stage 1, which will then replay the succeeding Stage 2. With
such an inter-iteration dependency, the Reverse operator to port priority assignment
actually leads to a faster execution time over the In-Order scheme (by 2.5x). However,
even when using the more suitable scheme, the replays have become so expensive
that the speculative version is 1.2x slower than the nonspeculative one. Resolving this
discrepancy does require the use of a VC: With the Reverse priority assignment, the
remaining displaced lines can be caught with 24 VC entries, enabling a small speedup
of the continuously failing speculative version over the nonspeculative one.

7.4. Comparison with Scalarization
Scalarization is a compile-time optimization technique which transforms array op-
erations to avoid unnecessary memory traffic by buffering and reusing fetched data
[Callahan et al. 1990] in registers. However, due to the limited number of registers
of conventional CPUs, aggressive application of the scalarization technique may also
reduce performance due to increased pressure on the register allocator. With the abun-
dance of registers on modern RCUs, they form a much more promising target for
aggressive scalarization [Budiu and Goldstein 2005].

While both PreCoRe and scalarization attempt to widen the memory bottleneck, they
are orthogonal in their use: Scalarization is able to completely avoid some accesses
under specific circumstances (suitable static code structure), but incurs the full memory
access latency for the remaining accesses in case of a cache miss. PreCoRe always
accesses memory, but can potentially hide the access latency by exploiting dynamic
data value correlations and prefetching (Section 7.1).

For a comparison of the techniques, consider the program array sum described in
Figure 7. Using scalarization, the memory access a[i] inside the loop can be removed,
the value of the memory access a[i+1] can be reused from the previous iteration by
buffering it in a local register. Only for the first iteration, an initial memory access
for pre-loading a[0] into the register a0, needs to be performed outside the loop. The
reordered code and data path, resulting from scalarization, is shown in Figure 8.

A simulation of a scalarized version of array sum shows a speedup of 1.25x. The
execution time is reduced by the time previously required for the retrieval of data,
which is now kept in a local register. Using PreCoRe, the achievable speedup is highly
dependent on the predictability of the load values and lies between 1.15x. . . 1.47x. The
lower bound corresponds to a totally unpredictable sequence of values (but still allowing
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prefetching of a[i+1]), the upper one corresponds to an accurately predictable sequence.
In contrast to scalarization, PreCoRe does not rely on a specific code structure and
is thus also applicable to speedup benchmarks such as bintree search and pointer chase,
where scalarization is not possible. In practice, both techniques can often be combined
synergistically to improve the execution time even further.

8. CONCLUSION AND FUTURE WORK
The automatic generation of application-specific microarchitectures for load value
speculation can significantly improve the performance of memory-intensive programs.
Future work will concentrate on reducing the area overhead of the required logic by
packing storage and delay elements in a manner more amenable to efficient logic
synthesis.
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