
A Dynamically Reconfigured Multi-FPGA Network Platform for High-Speed
Malware Collection

Sascha Mühlbach
Secure Things Group

Center for Advanced Security
Research Darmstadt (CASED)
sascha.muehlbach@cased.de

Andreas Koch
Embedded Systems and Applications Group

Dept. of Computer Science
Technische Universität Darmstadt

koch@esa.cs.tu-darmstadt.de

Abstract—Malicious software has become a major threat to
computer users on the Internet today. Security researchers
need to gather and analyze large sample sets to develop
effective countermeasures. The setting of honeypots, which
emulate vulnerable applications, is one method to collect attack
code. We have proposed a dedicated hardware architecture
for honeypots which allows both high-speed operation at 10
Gb/s and beyond, as well as offers a high resilience against
attacks on the honeypot infrastructure itself. In this work, we
refine the base NetStage architecture for better management
and scalability: Using dynamic partial reconfiguration, we can
now update the functionality of the honeypot during operation.
To allow the operation of a larger number of vulnerability
emulation handlers, the initial single-device architecture is ex-
tended to scalable multi-chip systems. We describe the technical
aspects of these modifications and show results evaluating
an implementation on a current quad-FPGA reconfigurable
computing platform.

I. INTRODUCTION

The significant increase of malicious software (malware)
in recent years (see [1]) requires security researchers to
analyze an ever increasing amount of samples for developing
effective prevention mechanisms. One method for collecting
a large number of samples is the use of low-interaction
honeypots (e.g., [2]). Such dedicated computer systems
emulate vulnerabilities in applications and are connected
directly to the Internet, spanning large IP address spaces
to attract many different attackers. A number of software
applications are available helping in building up honeypot
systems. But in addition to having performance limitations in
high-speed environments (10+ Gb/s), such software systems
also suffer from being compromisable themselves (they can
be subverted to attack even more hosts).

In this context, we have proposed MalCoBox, a low-
interaction malware-collection honeypot realized entirely in
reconfigurable hardware without any software components
in [3]. The core of the MalCoBox system is NetStage, a
high-speed implementation of the basic Internet communi-
cation protocols, attached to several independent vulnera-
bility emulation handlers (VEH), each emulating a specific
security flaw of an application (see Fig. 1). We have demon-

Subnet 1

Subnet 2

Malware Collection

Honeypot System

Attacker

Honeypot

Management

Internal

Network

Network

Interface

and

Core

Protocol

VEH

VEH

VEH

FPGA

MGMT

Figure 1. Hardware-Based Malware Collection

strated the feasibility of that approach by implementing a
prototype on a FPGA platform, fully employing the power of
dedicated hardware resources to support 10+ Gb/s network
traffic.

Beyond the performance aspects, in context of the network
security domain, a purely hardware-based approach such as
ours has the additional advantage, that no general-purpose
software programmable processor is present that could be
subverted if the honeypot itself is being attacked.

An important issue for potential MalCoBox users is how
the platform can be updated during operation with new
or improved Vulnerability Emulation Handlers (VEH) to
react to the changing threat landscape. For an FPGA-based
system, the hardware functionality can be altered during op-
eration by using partial reconfiguration (PR). This approach
has already been used for network routers in [4]. We now
employ the technique in a larger scope to flexibly swap-in
new VEHs while the rest of the system stays in operation.
The initial discussion presented in [5] is expanded in this
work.

Another aspect of great practical interest is the number of
different vulnerabilities that can be emulated in parallel. The
original MalCoBox relied on a single-device implementation
of NetStage, and was limited to ca. 20 VEHs active in
the system. This is a gap to software honeypots, where

Legend

A: Arbitration S: Slot Selection

D: Data R: Reconfiguration Handshake Port

VEH

Application

State RAM

Management

Interface

VEH

Slot 1

VEH

Slot 2

VEH

Slot 3

ICMPARP

Network Frame

Receiver
IP

Implementation

TCP

Implementation

UDP

Implementation

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

0

1

2

0

1

2

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

R

Bitstream

Memory

VEH

Slot n-2

VEH

Slot n-1

VEH

Slot n

0

1

2

0

1

2

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

0

1

2

n-3

n-2

n-1

S

A

D

D

S

A

D

D

ICAP

PR

Controller

Partial Reconfiguration

Controller

R

R

R

R

R

Reconfiguration Handshake

DST PROTOCOL / PORT / IP

TCP : 25 : 0.0.0.0 / 0

UDP : 23 : 1.2.3.4 / 32

TCP : 80 : 1.2.0.0 / 16

...

SLOT

1

2

3

...

Packet Matching Rules

for Slot Selection

=>

Updates

first match gets precedence

Separation for multi-

FPGA scenario

a

c

b

d

Figure 2. Core Architecture of the Partially Reconfigurable Malware Collection System

even the low-interaction variants often support 50 . . . 100
different vulnerabilities implemented as scripts in languages
such as Perl and Python. While it could be argued that the
capacities of individual FPGA chips does increase from each
generation to the next (which they do), the larger high-end
devices are significantly more expensive per logic cell than
the mid-range versions. Thus, it is worthwhile to examine
how the MalCoBox capacity can be extended using a multi-
device NetStage implementation. This approach has been
introduced in [6] and is described in greater detail here.

The paper is organized as follows: Section II briefly
describes the core architecture components. The next Section
III covers details of the ring implementation and elaborates
the differences between single-chip and multi-chip solution.
Section IV continues with a description on the required
modifications of the partial reconfiguration strategy. The
implementation of the complete system on the BEEcube
BEE3 quad-FPGA reconfigurable computing platform [7] is
described in Section V, followed by experimental results
given in Section VI. We close with a conclusion and an
outlook towards further research in the last Section.

A. Related Work

To our knowledge, this is the first implementation of
such a honeypot system using pure dedicated hardware
blocks. In 2007 Pejovik et. al. [8] presented an initial
concept for a hardware honeypot with RAM-based state
machines for the emulations. Unfortunately, they did not give
any detailed results on the achievable performance and the
possible parallelism. It is likely, however, that the RAM-

based state machines could become a bottleneck in high-
speed environments due to limited bandwidth. Thus, our
architecture contains only dedicated hardware blocks.

In terms of FPGA-based networking, a popular generic
platform for research is the Stanford NetFPGA [9], contain-
ing an FPGA, four 1G interfaces, and various memories. The
platform is the vehicle for a wide spectrum of research, e.g.,
on accelerated switches, routers and network monitoring
devices. Internally, NetFPGA provides a flexible data-path
structure into which custom processing modules can be
easily inserted. With the widespread use of NetFPGA, a new
version supporting 10G networks is currently being released.

Another related research project is DynaCORE [10]. It
consists of a Network-on-Chip (NoC) oriented architecture
for a generic reconfigurable network co-processor, combin-
ing general network processing in software with accelerated
functions (e.g., encryption) in hardware units. By using cur-
rent techniques such as partial reconfiguration, the platform
can be adapted to different communication situations.

In contrast to these often packet-oriented approaches,
our own research has always been aiming at higher-level
Internet (e.g., TCP, UDP) and application protocols. We thus
have created NetStage [3] as a novel base architecture for
our honeypot appliance. NetStage is built around an all-
hardware Internet protocol stack implementation (including
TCP operation). We have chosen to follow some of the
approaches proven useful with NetFPGA, e.g., the capability
to insert “plug-in” hardware modules at various points in
the processing flow. In contrast to DynaCORE, however,

we generate a light-weight application specific interconnect
between these modules, instead of using a general-purpose,
but larger NoC scheme.

II. KEY ARCHITECTURE COMPONENTS

Figure 2 shows the base NetStage Architecture (discussed
in greater detail in [3]), including extensions to support
dynamic partial reconfiguration (DPR). The architecture
provides module slots (Fig. 2-a) into which the partial VEH
bitstreams can be loaded. These VEH slots are loosely
interconnected with the core system by buffers, allowing
all VEHs to have the same external interface (important for
DPR). Thus, any VEH may be configured into any of the
slots of the same size, with the buffers limiting the impact
of brief VEH-level stalls on the system-level throughput.

VEHs share the underlying implementations of the core
protocols (IP, TCP, UDP) in NetStage. These have been very
carefully optimized to achieve a throughput of at least 10
Gb/s by using pipeline- and task-level parallelism to keep up
with the line-rate of the 10 Gb/s external network interface.

In some cases, VEHs have to track session state to gen-
erate an appropriate response. NetStage provides a central
facility for storing per-connection state (Fig. 2-b): When a
packet is passing the IP implementation, the globally main-
tained state information is attached to the packet in a custom
control header which accompanies every packet through the
system. The VEH can read this information, act on it, and
update the value if necessary. The modified header is written
back to the state memory when a response packet (or an
empty state write packet) passes the IP implementation on
the transmit path. Such a centralized storage is more efficient
than attempting to store state in each VEH (which would
fragment the capacity of the on-chip memories).

The global VEH application state memory can also
be used to save/restore VEH state during reconfiguration
to allow the seamless swapping-in of newer (but state-
compatible) versions of a VEH.

A. Vulnerability Emulation Handler

When a packet has passed through the NetStage core,
it will be forwarded to the responsible slot where the
VEH performs the actual malware detection and extraction.
Packets are routed to the appropriate slots by means of
a routing table (Fig. 2-c) that holds matching rules for
the different vulnerability emulations currently active in the
system. The table is writable to allow dynamic modification
of the actual VEHs used. A basic set of matching rules
includes the destination port, destination IP and netmask.
The latter allows us to set-up separate IP address ranges
which use VEHs for different vulnerabilities on the same
port (e.g., many handlers will listen on the HTTP port 80).

With the processing speed achievable using reconfigurable
hardware, these basic rules could also be extended to directly

match payload contents. However, this would require dy-
namic reconfiguration of the actual matching units, instead
of just writing new values into registers (as in the basic
matcher). Since all our current VEHs are selected just based
on protocol and port (independently of the payload), we can
continue to use the simpler basic approach.

B. Management Section

The partial dynamic reconfiguration of VEHs is managed
by the Partial Reconfiguration Controller (PRC, Fig. 2-d)),
which is connected to the FPGAs internal configuration
access port (ICAP). On the application side, the PRC is
connected to the MalCoBox management interface (either
by a PCI Express endpoint or a dedicated network link,
depending on the selected deployment mode of the system).
The PRC is also connected to the individual VEH slots by a
number of handshake signals to inform the VEHs about their
impending reconfiguration (for a clean shutdown etc.) and
to check whether the VEH is idle. An attached bitstream
memory can hold several partial bitstreams to allow the
system to be reconfigured independently of the management
station in future implementations.

C. Reconfigurable VEHs

To support independent partial reconfiguration of any of
the VEH slots, a wrapper encapsulates the actual VEH
implementation module (see Fig. 3). This wrapper includes
glue logic controlled by the partial reconfiguration controller
to disconnect/reconnect all inputs and outputs of the VEH
module. This clean separation is essential to avoid introduc-
ing errors in the rest of the system when reconfiguring.

The wrapper also contains the send and receive buffers
for each module as well as the corresponding buffer man-
agement logic. As all the handlers share the same buffer
structure, it is more efficient to keep it static than configure
it with each VEH. The inputs and outputs of the wrapper
are directly connected to the MalCoBox core (see Fig. 2).

III. MULTI-DEVICE ARCHITECTURE

To extend our system to multiple FPGAs, we will draw the
boundaries between the static NetStage core (basic Ethernet
and Internet protocol functions) and the dynamically ex-
changeable VEH slots (see the dotted line in Figure 2). One
FPGA acting as Master node holds the network core and the
network interfaces, the remaining other FPGAs, called VEH
nodes contain the individual emulation blocks. The BEE3
platform supports a number of inter-device interconnection
schemes. For future scalability independently of the BEE3
architecture, we decided to implement a ring structure.
Such rings have already proven useful in multi-chip systems
internally using NoCs [11].

For extending the NetStage-based MalCoBox to multiple
devices, a unidirectional ring suffices. (Figure 4). The unidi-
rectional ring needs fewer I/O pins on the FPGAs and avoids

rd_en

wr_en

din dout

empty

ringbuf_fifo

addra

wr_en

dina doutb

ringbuf_bram

addrb

ringbuf_fifo

addra

wr_en

dina doutb

ringbuf_bram

addrb

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

data_available send_buffer full

data in

write bytes

get next packet

VEH Handler

ctrl word in

read finished

amount of bytes read write finished

read address

write enable

data out

write address

ENB

ENB

ENB

veh reset
0

1

1

ENB

ENB

ENB

ENB

ENB

ENB ++

write byte count

write done

Buffer Management

read byte count

read done

param: buf_size

full

offset

reset

reset

rd_en

wr_en

din dout

emptyreset

write byte_count

write done

Buffer Management

read byte_count

read done

param: buf_size

full

offset

reset

0

1

0

ENB

0

1

0

ENB

0

1

0

ENB

0

1

0

ENB

ENB

reset

reset reset

reset reset

read address

en
ab

le m
o

d
u

le

ENB

get next packet

control word out

packet available

read done

read bytes

data out

active

m
o

d
u

le active

p
r req

u
est

combined
control word combined

control
word

Receive Buffer Send BufferPR Handshake Port

receive buffer full

write done

write bytes

write enable

write address

data in

reset

Figure 3. Wrapper encapsulating a Vulnerability Emulation Handler Slot

the increased latency of the bus-turnaround cycles that would
be required when running a bidirectional bus over the same
pins. Also note that, in contrast to the implementations in
discussed in prior work, the one described here is using
the external SDRAM instead of the internal BlockRAM to
temporarily store bitstreams, conserving FPGA resources to
allow more VEHs.

A. Ring Communication
For the communication on the ring we use 66 of the 72

available inter-FPGA data lines on the BEE3 which are run
in DDR mode, resulting in 132 bits of data per clock cycle
[6]. Four bits are reserved for status bits, the remaining
128 form the data transmission word. As data words are
sent continuously on the ring for synchronization purposes
(even if not actual data needs to be transmitted), a valid
flag is used to indicate words holding actual message data.
For the separation of individual messages, we use two flags
to signal the first and the last word of a message. As the
actual byte size of the message is already stored within
the Internal Control Header (ICH, see Figure 8) used by
NetStage (prefixed to the message body), no special-case
processing is required for unused bytes in the last data word
of a message. A final flag is used to denote special ring
control messages used, e.g., to control the DPR process
(see next Section). In a future extension, this could also
be used, e.g., to enumerate the ring nodes automatically
during initialization. Currently, the destination addresses of
the available FPGAs inside the ring are set during compile
time.

The ICH-prefixed message is prefixed yet again with a
128b Ring Control Header (RCH) when it is transmitted

SDRAMSDRAM

SDRAM

10G

CX4

NODE 2

MASTER

NODE 3

NODE 1

Ring

Direction

VEH

VEH

VEH

NetStage

Core

MGMT PR

VEH

VEH

VEH

PRVEH

VEH

VEH

PR

Figure 4. Multi-FPGA network processor in ring topology

between devices. The RCH carries the type information of
the message and the destination FPGA. The remaining bits
are reserved to implement further control functions in the
future.

Since we want to maintain a high bandwidth and low
latency even when distributing the architecture across mul-

Ring Sync In

Ring Ready In

Ring Sync Out

Ring Ready Out

Ring Data In
Ring

Data Out

Master

Ring

Control
1

0
Ring Online

Figure 5. Schematic overview of the master

Ring Sync In

Ring Ready In

Ring Sync Out

Ring Ready Out

Ring Data In
Ring

Data Out

VEH Node

Ring

Control
1

0

Ring Online

Ready

Previous FPGA Next FPGA

Figure 6. Schematic overview of the nodes

tiple devices, we want to operate the inter-device links at
maximum speed. To this end, we use the BEE3-provided
global clock to all FPGAs as the ring clock. However, due to
different trace lengths and other board-level signal integrity
effects, reliable operation at our target frequency of 250
MHz requires a training of the individual FPGAs to the link
characteristics. This is done using the technique proposed
in [12]: A known training sequence is transmitted between
adjacent FPGAs, and the receiver adjusts its delay until it
receives a stable pattern from the transmitter.

Two additional signals are required to realize training
procedure (see Figures 5 and 6): The Master starts the
process by asserting a Sync signal, which is routed around
the entire ring. It is used to both initiate training between
neighboring FPGAs, as well as to test whether the nodes did
configure correctly on start-up (an error is indicated if the
Sync sent out by the Master does not match the incoming
Sync passed around the ring). One the receiving FPGA of a
synchronization pair has locked-on to the training pattern, it
asserts its internal Ready signal, which is ANDed with the
Ready incoming from its transmitting partner before being
output to its receiving partner (the next device on the ring).
Once the Master has received an asserted Ready signal
passed around the entire ring, it stops training and releases
the ring into normal operation.

The ring thus achieves a transfer rate of 32 Gb/s be-
tween nodes, more than sufficient for our current 10 Gb/s
network environment. For simplicity, and since we did not
experience any data integrity issues in our practical exper-
iments once training completed, we do not perform error

NetStage Core

Ring Send

Module

Ring Receive

Module

B

U

F

B

U

F

Connection to

Management

Network

MATCHING DATA

TCP:0.0.0.0/0:80

TCP:1.2.3.4/32:25

...

TARGET

1 - 1

2 - 5

...

Destination FPGA and Slot Routing Table

=>

Rule

Updates

Destination

FPGA / Slot

Lookup FIFO

Destination

Lookup Process

add destination

to control header

IP, Protocol and

Port information for

current packet

to next

FPGA

from

previous

FPGA

a

a

b

B

U

F

Bitstream

Data

c

Connection

to Internet

Management

Interface

B

U

F

Figure 7. Master node architecture

detection/correction on the ring communications. However,
for long-term production use, CRC/ECC facilities could be
added here. As there are still data lines available on the
BEE3, this could be easily implemented without affecting
the base architecture.

B. Master Node

Beyond the the network core and the management section
that was already present in the single-chip NetStage imple-
mentation, the Master node (see Figure 7) now contains ad-
ditional logic (Fig. 7-a) to handle the ring communication. In
particular, this includes send and receive interface modules,
as well as the FPGA addressing logic. Note that we do not
place any VEHs in the Master node, the currently unused
space is intended to be used for future extensions of the
NetStage core (e.g., to IPv6). Thus, the Master itself will
not be dynamically reconfigured and does not require an
internal ICAP controller. However, the Master is responsible
for initiating the reconfiguration of the VEH nodes. Thus,
the management section in the Master and the configuration
controllers in the VEH nodes interact, which is achieved by
specialized ring control messages.

The payload data traffic around the ring is organized
on two levels: The 32B ICH (see Figure 8) replaces the
original protocol headers for a packet with a more compact
representation. It also carries the carries the packet-to-
handler routing information of a message on the ring in the
form of a destination VEH node ID and the VEH slot on
that node. Since the destination node ID is already specified
in the RCH, this might be seen as redundant. However, the
RCH is present only while a packet is transmitted between

Application State Data from Global State Memory (up to 3 x 16 Bytes)

SRC MAC

RAW Packet Data

SRC IPDST IP

IP PROTOCOL

Internal Control Header (32 Bytes)

644

1

TCP Control Information
8

INTERNAL

FLAGS

SRC

PORT 2

DST

PORT 22
DATA

LENGTH2

Size of Application State

Data Region (0 - 3)

2

FPGA /

SLOT 2

Figure 8. Structure of the internal control header

nodes, and stripped from it for node-internal processing.
Since we want to give VEHs the ability to transparently
forward packets to other VEHs which might also reside on
other nodes, they can read/write that destination data in the
ICH instead (which, due to alignment reasons, is not efficient
for performing ring-level routing).

As we now have multiple destination FPGAs, the Mas-
ter routing table, which associated packets just with the
responsible VEH slot in the single-chip version, needs be
extended to hold the destination node ID as well (Fig. 7-b).
This is used to build the RCH when the packet is sent out
over the ring. To reduce the latency, the process to lookup
the destination address (Fig. 7-c) is pipelined between the
core and the Ring Send module. This can be easily done as
packets are not reordered between the two modules.

The Master will silently discard packets not matching
any rule in its routing table to conserve bandwidth on the
ring links. Furthermore, core IP protocols such as ARP and
ICMP are usually handled with low-latency entirely inside
the Master, and do not cause ring traffic, either.

C. VEH Node

The individual VEHs are housed in the VEH nodes (see
Figure 9). For communication with the rest of the system,
the VEH nodes need the same ring interface modules (Fig.
9-a) as the Master node. Furthermore, a node-local packet
distributor and aggregator (Fig. 9-b) emulate the single-
chip NetStage core interface so that VEHs can be attached
directly connected to the network core of the single-chip
implementation. VEHs are thus portable between the single-
and multi-chip versions.

In contrast to the Master node, the VEH are actually
dynamically reconfigured to exchange VEHs. Thus, they do
need a PR controller and access to the ICAP. The details of
this are described in greater detail in the next section.

The ring receive module in each VEH node checks the
type of an incoming ring message and its destination address
field and either forwards the packet to the local distributor
module, a reconfiguration message to the local PR controller,
or immediately inserts the message into the forwarding
queue if is intended for another node. VEH response network

data not targeted for this

FPGA is directly forwarded

Ring Send

Module

Ring Receive

Module

B

U

F

B

U

FTo Next

FPGA

VEH

Slot 1

B

U

F

B

U

F

VEH

Slot 2

VEH

Slot n

Local

Packet

Aggregator

BUF

Receive and Send

Packet Data Bus

From

previous

FPGA

Handler Section

B

U

F

B

U

F

B

U

F

B

U

F

SDRAM

Interface

ICAP

PR

Controller

B U F

Reconfiguration Handshake

BUF

Local

Packet

Distributor

c

a

a b

b

Figure 9. VEH node architecture

packets are picked up by the packet aggregator and inserted
into an output queue, passing it on around the ring until it
reaches the external network connection at the Master node.

IV. PARTIAL RECONFIGURATION

Partial bitstream data is transferred from the management
station (usually an external PC) to the MalCoBox via the
management interface. As the MalCoBox should be able
to run as an appliance under remote management, we
implemented a stand-alone on-chip reconfiguration interface
instead of using the JTAG port together with a software
programmer on a host PC.

The underlying protocol used to transmit the bitstream to
the MalCoBox consists of the raw bitstream prefixed by a
reconfiguration header (see Figure 10). The header contains
the bitstream size, the FPGA slot location information, and
the rules for the Master node routing table to direct packets
to the newly configure VEH.

In contrast to the single-chip implementation [5], in the
multi-device scenario, the management interface housed in
the Master does not have a direct connection to the Partial
Reconfiguration Controller (PRC). Instead, the bitstream
is transferred over the ring to the destination VEH node
FPGA, but the routing rules table still remains inside the
Master node. The management interface therefore extracts
the header information from incoming reconfiguration data
requests and updates the routing table, while the raw bit-
stream data is forwarded to the FPGA specified in the
reconfiguration header (see also Figure 7). As the partial
reconfiguration process is now distributed across multiple
devices, the time between the Master-local routing rule
update and the activation of new VEH in a remote node

is longer than on the single-chip system. Thus, to avoid
misrouting of packets, the new routing rule is explicitly
disabled until the VEH is actually ready to accept traffic.

In a VEH node, an incoming bitstream is stored in
node-local external DDR-SDRAM memory. One an actual
reconfiguration is requested, a fast DMA unit retrieves the
bitstream data from memory and transfers it at maximum
speed to the ICAP configuration interface. This two-step
approach could also be used in a later extension to, e.g.,
integrity-check the bitstream for communication errors, or
to accept only signed bitstreams [13], [14]. Since the ring
communication has proven reliable in our tests, and the
management console is trusted, the current prototype does
not implement these facilities.

A. Partial Reconfiguration Process

The distributed reconfiguration process is performed in
the following order:

1) The rule header of incoming bitstream data is extracted
and the rule table is updated with the new rule (even-
tually replacing an existing one), having the active flag
set to zero.

2) Incoming bitstream data is forwarded to the corre-
sponding VEH node.

3) After complete reception of bitstream data, the PRC
in the VEH node starts the reconfiguration process.

4) After completion of reconfiguration, the PRC sends a
DONE status to the Master as a ring control message.

5) The Master management interface receives the mes-
sage and activates the routing rule so that packets will
actually be forwarded.

Network packets and reconfiguration messages (including
the bitstream data) share the ring. However, since reconfig-
uration management is crucial for the reliable operation of
the system, these ring control messages receive priority over
regular packet transmissions.

Internally, the reconfiguration process in the VEH nodes
follows the approach implemented for the single-chip solu-
tion [5]: When the node-local PRC receives a reconfiguration
request, it initially informs the wrapper of the target slot that
the slot is about to be reconfigured. This will stop the receive
buffer of the VEH from accepting new packets. The VEH
is allowed to process all of the packets held in the buffer
at this time, asserting a signal to the PRC on completion.
The PRC then deactivates the VEH, and the now inactive
VEH is disconnected from the slot wrapper. The actual
bitstream data is then read from the DDR-SDRAM and fed
into the ICAP. Once reconfiguration is completed, the PRC
re-enables the VEH-wrapper connections and allows the new
VEH to wake up in its reset state.

V. IMPLEMENTATION

The MalCoBox running on the multi-device NetStage
architecture has been implemented on the BEEcube BEE3

Slot Number

Matching Rules Bitfile Size Header Size

Optional: Matching Rules Partial Bitstream Data

VEH Bitfile Size

Rule GroupDestination Port

Destination IP Address 4

Destination IP Netmask

VEH Partial Bitstream Data

Reconfiguration Header

>= 24 Bytes

4

22

4

2 2

Protocol 21 FPGA ID 1

Figure 10. Custom PR header and bitstream data

FPGA-based reconfigurable computing platform, which is
equipped with eight 10 Gb/s network interfaces and four
Xilinx Virtex 5 FPGAs (2x LX155T, 2x LX95T). The Master
node is realized as one of the smaller SX95Ts to have both
of the larger LX155T devices available for VEHs.

Network connectivity is provided by the Xilinx XAUI and
10G MAC IPs. The network core in the Master runs at the
speed of the 156.25 MHz clock of the 10G network interface.
Together with the internal bus width of 128 bit, this leads to a
maximum core throughput of 20 Gb/s. This overprovisioning
allows us to react to brief stalls in the data flow: Affected
handlers in the Master are able to “catch-up” with the normal
10 Gb/s traffic by burst-processing the data accumulated in
the buffers at 20 Gb/s. In order to allow more complex
VEHs (having longer combinational paths), the VEH nodes
currently run at 125 MHz (however, if desired, other clock
speeds would be possible). Since they also use 128 bit buses
to the VEH slots, the VEHs achieve a peak processing rate
of 16 Gb/s, thus still having burst-processing headroom over
the 10 Gb/s network line rate.

The ICAP is operated at 32b data width and driven by
a separate clock to support variable reconfiguration speeds
(and thus support experiments with overclocking the ICAP).
Management access is implemented as dedicated network
interface with a unique MAC address, directly connected to
a standard PC. The management interface receives bitstream
data and control operations over the network using a custom
protocol. Perl scripts are used to assemble the appropriate
network packets. The DDR2-SDRAM interface in the VEH
nodes is realized by a Xilinx MIG core and fully uses the
DDR2-SDRAM bandwidth.

The size of all inter-module and slot buffers is set to 4 kB
(to hold 2 packets with a maximum size of 1500 B), which
is sufficient to assure stall-free operation as the modules
regularly consume the data at a minimum rate of 10 Gb/s.
The only exception are the ring receive buffers, which are set
to 16 kB to provide sufficient headroom to receive bursts of
packets on the ring. The size of the global application state
memory in the Master node is set to 1 Mb of BRAM, which

Rule BRAM

Process: Rule

Management

Port B

READ

CAM Out

Port A
Process:

Destination

Lookup
READ

WRITE

Rule Data from

Management Interface

PORT CAM

WRITE Match Data = Port

ADDRESS ADDRESS

Routing

Information

Protocol, Port, IP

of current packet

Figure 12. Implementation of the destination lookup process

is sufficient to manage the short running sessions we expect
in the honeypot use-case. In further refinements, some of this
state could be also placed in the Master node-local DDR2-
SDRAM available on the BEE3 platform (incurring longer
access latencies, though).

A. Destination Lookup

The rules that control the message routing to VEHs in
different nodes are stored in the destination routing table (see
Fig. 11) inside the Master node. This table is implemented as
BRAM (currently with a size of 1024 rules), to achieve high
lookup speeds and flexible scaling. In addition to the routing
information, each rule entry contains a rule ID that is used
for management purposes, and an active flag used during the
reconfiguration process. The table supports multiple rules for
the same destination VEH (e.g., to let it respond to different
IP addresses).

As the destination routing decision is on the critical path
with regard to latency, we use a hierarchical approach for
lookups: Rules with the same destination port are repre-
sented as a linked list, and a CAM is used to retrieve the
BRAM address of the list head for a given port (see Fig.
12). Then, the individual rules for this port are searched
in list order by following the rules’ next pointers. Beyond
quick lookups, this also ensure that rules with the longest
IP address prefix will be matched first. The management
process ensures that rules are inserted in the correct order.

For efficiency, we have restricted the CAM size to 256
entries, reasoning that 256 different active ports should be
sufficient for most cases. Since the CAM has an 8b wide
output, the heads of the per-port rule lists always start in
the bottom 256 addresses of the routing table BRAM.

B. Example VEHs

To test the system, we have created a number of VEHs
emulating different vulnerabilities and applications. In addi-
tion to controlling FSMs, the VEHs contain additional logic
to perform tasks such as fast parallel pattern matching.

1) SIP: The SIP VEH looks for packets exploiting a
vulnerability of the software SIP SDK sipXtapi [15]. The
exploit uses a buffer overflow occurring if a SIP INVITE
packet contains a CSeq field value exceeding 24 bytes in
length. This VEH is based on the UDP protocol.

2) MSSQL: Another UDP-based VEH has a similar struc-
ture and is emulating a vulnerable MSSQL 2000 server
looking for exploits targeting the resolution service [16].
This exploit was used in the past by, e.g., the Slammer worm.

3) Web Server: As a VEH for a further popular applica-
tion, we implemented a simple web server emulation, that
contains a ROM with predefined HTML pages to be served
to clients. The HTTP headers needed for response generation
are also stored inside the ROM. A FSM checks the URL of
incoming requests and fetches the corresponding output data
to be sent from the ROM. This VEH can be flexibly used,
e.g., to emulate a login page for a company intranet and
monitor attack attempts (e.g., brute force logins), or attacks
to the web server itself.

4) Mail Server: As spam is amongst the widespread
distribution techniques for malware, we implemented a mail
server VEH that accepts incoming mails and pretends to be
an open relay server. It contains a FSM that implements the
basic SMTP dialog for the reception of mails.

VI. RESULTS

The design was synthesized and mapped using Xilinx
ISE 12.4, targeting a SX95T for the Master node and both
SX95T and the LX155T devices as VEH nodes. Partial
reconfiguration was implemented using the latest partial
reconfiguration flow available in PlanAhead 12.4 [17]. Each
VEH node was configured to include 24 slots. The VEH
module slots were placed manually on the FPGA and sized
based on the resource usage trends shown by the sample
VEH synthesis results. The resulting layout can be seen in
Figure 13. To support VEHs with different resource needs
(BRAM vs. LUTs), four kinds of slots, differing in the
number and types of contained ressources (see Table V),
are provided.

As techniques to dynamically relocate bitstreams on the
FPGA matrix are not yet production ready, and even research
versions have significant limitations (e.g., only support for
outdated device families), we have to create separate bit-
streams for the all of the different slots a VEH can be placed.
In addition to requiring more storage, this also necessitates to
run the place-and-route tools multiple times with different
area constraints. Each run produces the partial bitfile for
a specific VEH-Slot combination. However, due to using
partial reconfiguration, bitfile sets for different VEHs can
be created and used independently, e.g., exploiting a multi-
core server by executing many tool runs in parallel.

System tests were performed by simulation as well as on
an actual BEE3 machine connected to a quad-XEON Linux

Next

Rule

(10b)

0

256

…

257

0

...

Protocol

(8b)

0x06

0x06

…

0x11

0x06

...

Addr.

(10b)

0

1

…

256

257

...

Target

FPGA

(8b)

1

1

…

2

1

...

Port

(16b)

80

25

…

25

25

...

Netmask

(32b)

0x00000000

0xFFFFFFFF

…

0xFFFFFF00

0xFFFFFF00

...

IP Addr.

(32b)

0x00000000

0x53251021

…

0x10102500

0x32122500

...

Rule ID

(16b)

13

25

…

47

69

...

Target

Slot

(8b)

0

1

…

3

1

...

Rule

Act.

(1b)

0

1

…

1

1

...

Linked list to speed up lookups and to maintain IP/Netmask prefix order for matching

TARGET FPGA AND SLOT SELECTION TABLE (BRAM)

Figure 11. Layout of the destination lookup table

VEH Slots

Figure 13. FPGA Layout for 24 VEH Slots

Table I
SYNTHESIS RESULTS FOR MASTER NODE COMPONENTS

Module LUT Reg. Bits BRAM

Network Core
incl. Management 12,297 8,884 93
Ring Interface 788 1,489 16

Mapped incl. MAC,
XAUI and Clocks 16,532 13,526 117
in % of SX95T 28 22 47

server, sending data to the VEHs at 10 Gb/s. Partial recon-
figuration was performed under operator control, loading in
new bitstreams via network from the management station.

A. Synthesis Results

The synthesis results for all components are given in Table
I and II. For the VEH nodes, we show results only for the
LX155T, as the results for the SX95T are very similar (in
terms of resource requirements).

The NetStage core on the SX95T Master node requires
around 20% of the LUTs and 38% of the BRAMs. The high

Table II
SYNTHESIS RESULTS FOR VEH NODE COMPONENTS

Module LUT Reg. Bits BRAM

Ring Interface 976 2,048 20
PR Controller 722 544 4
VEH Section with
24 Slots (w/o VEHs) 15,494 6,426 120

Total incl. MIG,
without VEHs 19,540 12,428 150
in % of LX155T 20 12 70

number of BRAMs is due to several buffers and the global
application state memory. The mapped design including IP
blocks occupies around 28% of the LUT and 47% of the
BRAM resources, distributed amongst 50% of the slices.
This still leaves sufficient area unoccupied on the SX95T to
allow for further extension of the Master node functionality.

The number of available BRAMs is crucial for our plat-
form (due to the multiple buffers). As the SX95T and the
LX155T have nearly the same number of BRAMs, these
mapping results confirm our decision to put the Master node
into the SX95T and leave the large number of LUTs inside
the LX155T available for VEHs.

In the VEH node, the ring interface, the partial reconfigu-
ration controller, and the VEH slot interfaces occupy around
20 % of the FPGA. This leaves nearly 80% of the the LUT
ressources available for the actual VEH implementations. In
practice, the total number of slots per FPGA is limited by the
number of BRAMs available to implement the slot buffers
(five BRAMs are needed per slot). From these results, we
conclude that we could theoretically support up to 36 VEH
slots per FPGA on both the LX155T and SX95T.

In comparison to our single-chip implementation, which
could hold 20 VEHs together with the NetStage core on
a single LX155T device, the multi-FPGA approach is a
significant improvement of the total processing power of
our platform. When using all three VEH node FPGAs to

Table III
SYNTHESIS RESULTS FOR THE VEHS

Module LUT Reg. Bits

SIP VEH 1082 358
MSSQL VEH 875 562

Web Server VEH 1026 586
Mail Server VEH 741 362

Table IV
RTT FOR A 1000 B PACKET: OVERALL AND PER SYSTEM COMPONENT

Buffer Fill RTT Core Ring VEH
Level

empty 5.5µs 3.6µs 1.4µs 0.5µs
half 28.7µs 9.8µs 17.4µs 1.5µs
full 51.9µs 16µs 33.4µs 2.5µs

their full extent, the system supports the parallel operation
of 100 VEHs (depending on module size), which should
suffice even for very complex honeypot use-cases.

B. VEHs

Table III summarizes the area requirements for the various
VEH modules. They are only showing little variation, which
is advantageous for putting them into different slots on
the FPGA. Amongst them, the SIP VEH requires the most
LUTs, as it contains the most complex pattern matching
algorithm. Overall, the VEHs are relatively small compared
to the device capacity, thus we are confident that our slot
numbers are realistic.

C. Performance

The actual response time depends on the latency of the
platform and the speed of the VEHs. As these numbers
are, in turn, highly dependent on the implemented func-
tionality, and the distribution of incoming network traffic,
we show numbers for the upper and lower limits. For these
experiments, we consider different fill levels of the buffers
inside the NetStage core and the ring: All buffers empty
(the best case), nearly half full (average case), and nearly
full (worst case). For simplicity, we assume that all buffers
in the system have the same fill level, and that the VEHs are
able to actually sustain a speed of 10 Gb/s (possible using
the sample VEHs described above).

Table IV lists the total round-trip-times (RTT) for a 1000
byte request packet that generates a 1000 byte response
packet. As the packets have the same size, the time is
independent of the ring location of the device holding the
measured VEH.

Obviously, the fill level of the buffers inside the ring
nodes has a severe impact on the latency, inducing a 10x
increase in latency between empty and nearly full buffers.
However, as we are currently feeding the system with only

Table V
SLOT SIZE DISTRIBUTION AND RECONFIGURATION TIME

Qty. LUT / Bitfile Reconfiguration Time
BRAM Size Raw Total

w/o SD w/ SD 10 Gb/s 1 Gb/s

14 1440 / 0 59KB 151µs 154µs 218µs 749µs
4 2304 / 0 119KB 305µs 308µs 432µs 1503µs
4 2304 / 2 128KB 328µs 332µs 465µs 1617µs
2 4864 / 0 237KB 607µs 610µs 852µs 2985µs

one 10G interface, and the VEHs are all designed for high-
speed operation, the buffers should not fill up in practice.
We thus expect the average latency of the current system to
be between 10-20µs.

D. Partial Reconfiguration Results

Table V lists the raw reconfiguration time and the total
time needed to update a VEH. The raw reconfiguration time
is measured from the beginning of the DMA transfer be-
tween SDRAM and ICAP and the end of the reconfiguration
process. The total update time is measured from the first
reception of an bitstream packet request at the management
interface until the DONE message sent by the node PRC
has been received at the Master. This time includes all data
transfers of bitstream data from the management PC to the
system using the dedicated management network interface,
sending bitstream messages on the ring from Master to
the VEH node, and the actual raw configuration time. The
measurements were made both for using a a 1G and a
10G interface at 80% utilization for management). As the
bitstream data has priority on the ring, we assume empty
buffers here. Furthermore, we assume that the target FPGA
is the middle one of the three nodes in the ring.

We also distinguish two cases for when looking at the
raw reconfiguration times: On a clean shutdown (labeled
“w/ SD”), an outgoing VEH is allowed to fully process the
packets already present in its input queue. Without a clean
shutdown (“w/o SD”), the enqueued packets are discarded
when the slot is reconfigured. For the clean shutdown
measurement, we assume that the receive buffer of the VEH
to be replaced is half full and that the VEH is able to process
data at 10 Gb/s (being conservative, since all of our current
VEHs can actually handle more).

The time required for cleanly shutting down the outgoing
VEH is negligible: Most of the reconfiguration time is
actually taken by feeding the bitstream into the ICAP, which
limits the overall reconfiguration speed. Thus, a small size
of the VEHs is important for fast reconfiguration (see also
Section VI-E) and justifies our approach of heterogeneously
sized VEH slots (we can configure the 14 smaller VEH slots
much faster than the 4+4+2 larger ones).

When looking at the total reconfiguration time including
transfer of the bitstreams from the management PC, using

a 10 Gb/s management link adds only roughly 40% of
overhead while still achieving numbers below 1 ms. Thus,
even when accessing bitstreams not already stored in the
node-local DDR2-SDRAM, the MalCoBox can quickly be
adapted to changing attack behavior. For conventional use
(update of VEHs once in a while), even a 1 Gb/s manage-
ment link would suffice, as even the largest VEHs require
less than 3 ms to transfer and configure.

E. Impact of data path width

To evaluate the impact of the 128b data path on the
VEH size, we created 64b versions of the SIP and the
Web Server VEHs, and compared them to the original 128b
implementation (Table VI). Data path conversion between
the NetStage core and the VEHs can be easily performed
by the wrappers at the cost of a reduced throughput for the
attached VEH.

The area overhead of the 128b version is roughly 75%
for the SIP VEH and 65% for the Web Server VEH. This
was to be expected, since these VEHs mostly read data
from the input buffer and write data to the output buffer.
The area required is thus strongly related to the bus width.
Together with the data path area, the BlockRAM usage
is also reduced: With 64b operation, we can now narrow
the buffers and only require three BlockRAMs per wrapper
instead of five for 128b VEHs.

Given these results, the number of parallel VEHs in the
system could be increased even further by using the smaller
datapath width, but only at a loss of per-VEH throughput
(8 Gb/s with 64b width and 125 MHz VEH node clocks).
Assuming a heterogeneous traffic distribution across all
VEHs, this would not actually lead to a slow-down, since
the NetStage core would keep its 20 Gb/s-capable 128b
data path width and distribute the traffic across multiple of
the smaller-but-slower VEHs. The bottleneck would only
become apparent if all traffic was to be directed at a single
VEH, which then would not be able to keep up with the 10
Gb/s line rate.

VII. CONCLUSION AND NEXT STEPS

With this refinement of our MalCoBox system, we have
presented a scalable architecture to build a high-speed
hardware-accelerated malware collection solution that of-
fers great flexibility through partial reconfiguration and the

Table VI
SYNTHESIS RESULTS FOR 128B AND 64B VEHS

VEH LUT Reg. Bits

SIP 128 Bit 1082 358
SIP 64 Bit 619 278

Web Server 128 Bit 1026 586
Web Server 64 Bit 663 244

distribution of VEHs over multiple FPGAs. In the multi-
device scenario, the total amount of VEH processing power
is significantly improved in contrast to the single-chip im-
plementation, allowing us to implement even large-scale
honeynets with a single appliance. A dedicated management
interface allows quick updates or replacements of single
vulnerability emulation handlers by loading new partial
bitstreams, without interrupting the operation of the rest of
the system.

Enabled by the high performance of the dedicated hard-
ware, the VEHs actually performing the malware detection
and extraction can contain a wide range of functionality:
They can embed complex regular expression logic as well
as simple request-response patterns, while still reaching the
required throughput of 10 Gb/s. Furthermore, our hard-
ware approach is resilient against compromising attacks and
significantly reduces the risk of operating honeypots in a
production environment.

The presented implementation of the multi-FPGA system
on the BEEcube BEE3 quad-FPGA reconfigurable comput-
ing platform demonstrated the feasibility of the approach.
Operators have a great flexibility to adapt the system to their
needs: A trade-off can easily be made between individual
VEH complexity and total vulnerability coverage using
many different VEHs just by altering the distribution of
VEH slots sizes; throughput and area can be traded-off
by selecting between VEH implementations with 64b and
128b processing widths, and the overall system size can be
scaled by selecting either the single-chip or the multi-FPGA
approach.

We will continue our work in this area. MalCoBox is
planned to be stress-tested in a real production environment
connected to the Internet (e.g., university or ISP). From this,
we expect to gain valuable insights on how to improve the
architecture and its parameters in the future. Furthermore,
we will combine the multi-FPGA system with our recent
work on self-adapting by dynamic partial reconfiguration
based on the observed traffic characteristics. We expect to
achieve a platform that exploits many of today’s cutting edge
technologies in reconfigurable computing to enable a system
presenting maximal flexibility, performance and security to
the user.

ACKNOWLEDGMENT

This work was supported by CASED and Xilinx, Inc.

REFERENCES

[1] “Internet security threat report, volume xv,” Symantec, 2010.
[Online]. Available: http://www.symantec.com

[2] “Honeyd.” [Online]. Available: http://www.honeyd.org

[3] S. Mühlbach, M. Brunner, C. Roblee, and A. Koch, “Mal-
cobox: Designing a 10 gb/s malware collection honeypot
using reconfigurable technology,” in FPL ’10: Proceedings
of the 20th International Conference on Field Programmable
Logic and Applications. IEEE Computer Society, 2010, pp.
592–595.

[4] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor,
“Reprogrammable network packet processing on the field pro-
grammable port extender (fpx),” in FPGA ’01: Proceedings
of the 2001 ACM/SIGDA ninth international symposium on
Field programmable gate arrays. ACM, 2001, pp. 87–93.

[5] S. Mühlbach and A. Koch, “A dynamically reconfigured
network platform for high-speed malware collection,” in
ReConFig ’10: Proc. of the Intl. Conf. on ReConFigurable
Computing and FPGAs, 2010.

[6] ——, “A scalable multi-fpga platform for complex network-
ing applications,” in FCCM ’11: Proc. of the 19th Annual
IEEE International Symposium on Field-Programmable Cus-
tom Computing Machines, 2011.

[7] “Bee3 hardware user manual,” BEEcube Inc., 2008.

[8] V. Pejovic, I. Kovacevic, S. Bojanic, C. Leita, J. Popovic, and
O. Nieto-Taladriz, “Migrating a honeypot to hardware,” in
SECUREWARE ’07: Proc. Intl. Conf. on Emerging Security
Information, Systems, and Technologies. IEEE Computer
Society, 2007, pp. 151–156.

[9] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo, “NetFPGA–
An Open Platform for Gigabit-Rate Network Switching and
Routing,” in Proc. of the 2007 IEEE International Conference
on Microelectronic Systems Education, ser. MSE ’07. IEEE
Computer Society, 2007, pp. 160–161.

[10] C. Albrecht, R. Koch, and E. Maehle, “DynaCORE: A
Dynamically Reconfigurable Coprocessor Architecture for
Network Processors,” in Proc. of the 14th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-
Based Processing. IEEE Computer Society, 2006, pp. 101–
108.

[11] S. Bourduas and Z. Zilic, “A hybrid ring/mesh interconnect
for network-on-chip using hierarchical rings for global
routing,” in Proceedings of the First International Symposium
on Networks-on-Chip, ser. NOCS ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 195–204. [Online].
Available: http://dx.doi.org/10.1109/NOCS.2007.3

[12] C. Thacker, “DDR2 SDRAM Controller for BEE3,” Microsoft
Research, 2008.

[13] K. v. d. Bok, R. Chaves, G. Kuzmanov, L. Sousa, and
A. v. Genderen, “Fpga reconfigurations with run-time region
delimitation,” in Proceedings of the 18th Annual Workshop
on Circuits, Systems and Signal Processing (ProRISC), 2007,
pp. 201–207.

[14] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream
encryption and authentication using aes-gcm in dynamically
reconfigurable systems,” in IWSEC ’08: Proceedings of the
3rd International Workshop on Security. Springer-Verlag,
2008, pp. 261–278.

[15] M. Thumann, “Buffer overflow in sip foundry’s sipxtapi,”
2006. [Online]. Available: http://www.securityfocus.com/
archive/1/439617

[16] D. Litchfield, “Microsoft sql server 2000 unauthenticated
system compromise.” [Online]. Available: http://marc.info/
?l=bugtraq\&m=102760196931518\&w=2

[17] “Partial reconfiguration user guide,” Xilinx, 2010.

