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Abstract

With the growing diversity of malware, researchers must
be able to quickly collect many representative samples for
study. This can be done, e.g., by using honeypots. As an al-
ternative to software-based honeypots, we propose a single-
chip honeypot appliance that is entirely hardware-based
and thus significantly more resilient against compromising
attacks. Additionally, it can easily keep up with network
speeds of 10+ Gb/s and emulate thousands of vulnerable
hosts. As base technology, we employ reconfigurable hard-
ware devices whose functionality is not fixed by the manu-
facturing process. We present improvements to the platform,
aiming to simplify management and updates. To this end,
we introduce the domain-specific language VEDL, which
can be used to describe the honeypot behavior in a high-
level manner by security experts not proficient in hardware
design.

1. Introduction

Malicious software, short “malware”, is doubtlessly one
of the main threats to computer users on the Internet today.
It is spread by security flaws in regular software applica-
tions, which can, e.g., be exploited via network commu-
nications through the Internet. To defend against malware
attacks, security researchers continuously collect as many
malware samples as possible for analysis. But malware is
evolving very quickly. Timely malware capture and analy-
sis has become essential to establish adequate defenses, e.g.,
creating new signature files for anti-virus programs.

The setting of honeypots, which emulate vulnerable ap-
plications, is one method of gathering large amounts of at-
tack code automatically. To present a large attack surface,
honeypots are connected directly to the Internet and often
respond to entire ranges of IP addresses.

Software packages such as Nepenthes [1] or Honeyd [2]
exist for setting-up such honeypot systems. However, soft-
ware running on general-purpose processors always runs
the risk of being compromised beyond the purpose of the
honeypot and used, instead, as a launch-pad for further
attacks against the Internet or the researcher’s own inter-
nal network. Often, careful manual monitoring is required
to detect and shut down a rogue honeypot. Furthermore,
software-based solutions are severely taxed by current net-
working speeds of 10+ Gb/s.

2. Research Rationale

Against this background, we introduced the idea of a
malware collection honeypot, composed entirely of dedi-
cated hardware blocks instead of software components [3].
As dedicated hardware is built to perform a “specific” task,
it cannot be abused by an attacker to perform arbitrary op-
erations. Thus, the entire system is significantly more resis-
tant to compromising attacks than a system based on general
purpose CPUs that can run any code. Additionally, with the
high level of parallel processing achievable in hardware de-
vices, the system can handle frequent connections to many
endpoints, making it ideal for use in 10+ Gb/s networking
environments.

As honeypot systems need to be continuously updated
with upcoming exploits, the hardware blocks have to be
changed on a regular basis. We achieve this by using Field-
Programmable Gate Arrays (FPGAs), which offer a func-
tionality similar to hard-wired chips, but can be altered after
fabrication.

Actually implementing functionality on FPGAs is more
complex than performing software updates. It requires ex-
pertise in digital logic design, computer architecture, and
using languages (e.g., VHDL, Verilog) and tool flows unfa-
miliar to most software developers. As an alternative, this
work introduces the new domain-specific Vulnerability Em-
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Figure 1. Hardware-based malware collection
scenario

ulation Description Language (VEDL), which allows secu-
rity experts to concisely describe vulnerabilities, but is suit-
able for automatic compilation to hardware emulation mod-
ules to be used in the honeypot system.

The paper is organized as follows: Section 3 gives an
overview of the core platform architecture and its major
characteristics, while Section 4 concentrates on the net-
working aspects. Section 5 explains the concept of the so-
called vulnerability emulation handlers (VEH), which ac-
tually realize the honeypot behavior, followed by details
of the new high-level description language. In Section 6,
we will briefly present results of our prototype system, im-
plemented on an actual FPGA networking platform, before
closing with a conclusion and an outlook towards further
research in Section 7.

3. Platform Architecture

Figure 1 shows the application scenario. The hardware-
based honeypot will act just as any software honeypot
would do. The FPGA contains all functionality for the hon-
eypot and the network connectivity on a single chip. The
core of the system is a high-speed hardware implementa-
tion of the basic Internet communication protocols and sup-
porting services. Currently, the core contains functions to
handle the IP, UDP and TCP protocol as well as ARP and
ICMP messages.

Attached to the core are several independent Vulnera-
bility Emulation Handlers (the VEHs, see Section 5), each
dedicated to emulate a specific security flaw of an applica-
tion. If a request exploiting any of these flaws is detected by
the emulation engines, the pertinent data received is stored

and forwarded to a management station, where the potential
malware can be extracted and analyzed further using spe-
cial tools (e.g., CWSandbox [4]). While the core provides
base functionality, the vulnerability emulations contain the
actual honeypot functionality and need to be updated when
new vulnerabilities are discovered. For seamless operation,
we have improved our initial platform to support run-time
updates of these VEH hardware blocks without stopping
the system by using Partial Reconfiguration [5], a technique
that alters the functionality of only part of the FPGA while
the rest continues to operate.

3.1. Hardware Implementation

Figure 2 shows the block diagram of the major hardware
components. The structure follows our flexible NetStage
Architecture [3], which is a hierarchical design of dedi-
cated processing elements (called “handlers”), that perform
their specific tasks in-line with the data flow to support high
transmission rates. These handlers employ many accelera-
tion technologies available on dedicated hardware, such as
pipelining and parallel processing (e.g., for fast regular ex-
pression matching). Buffers assure proper inter-stage de-
coupling and limit the impact of data rate variations.

NetStage can be divided into three major parts: the net-
work core (operating at 20 Gb/s), the management section
(e.g., for system updates) and the vulnerability emulation
section (operating at least at 10 Gb/s). The latter contains
slots that can be filled (programmed) with specific VEH
hardware engines. The communication between the core
and the VEHs is based on messages. These messages con-
tain the network packet data and a custom internal header
that contains control data. Packets can be routed through
the architecture based on certain criteria (port, IP address
etc.). With the performance of the dedicated hardware, very
flexible routing rules are supported. The NetStage-internal
routing is also updated during the reconfiguration process,
e.g., when new VEHs should be inserted in the data flow.

The core also contains a global application memory sup-
porting stateful operation for all VEHs that need it. As
the VEHs can be reprogrammed in-system, they should not
have internal state (e.g., session information). Thus, VEH
state is stored centrally in the global memory and attached
to every message that passes the core (state thus accompa-
nies packets on its flow through Net Stage). In that fashion,
VEHs can be updated without any impact on the connec-
tions currently active.

4. Networking Features

The system contains all required protocols to support au-
tonomous Internet communication. As we want to present
the illusion of large networks of vulnerable hosts (possibly
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Figure 2. Core architecture of the malware collection network platform

tens of thousands), we need to actively deal with incoming
ARP requests and send replies for all the IP addresses man-
aged by the honeypot. To ease the configuration, we imple-
mented an ARP responder that replies to every request for
an IP address by denoting the network interface of the hon-
eypot as responsible device (simply swapping source and
destination addresses). To prevent the honeypot from taking
over IP addresses already used in the network, the admin-
istrator can specify certain IP addresses or ranges to which
the honeypot will not respond (e.g., one of the routers). Us-
ing this approach, the hardware honeypot appliance can be
simply put into a network behind a router and will respond
to any IP addresses that are forwarded by the router to that
network.

As an example, Figure 3 shows the hardware imple-
mentation diagram of the ARP response generation process
according to the simple swap technique described above.
Packet data is arriving continuously with a word size of 8
byte per clock cycle. With pipelining and parallel pattern
matching, we can generate the ARP response in the same
number of clock cycles as the request is received. This zero
cycle overhead allows the module to run at full line speeds,
while the small pipeline latency of only one clock cycle
keeps the buffer requirements low. This is a good example
of the advantages we can enjoy when building a networking
system on dedicated hardware. Other hardware blocks of
our system all follow a similar approach.

For IP and UDP packets, address and port information
accompanies the packets through NetStage in the internal
control header. Thus, reply packets can be sent without re-
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ferring to extra state storage.
TCP requires more complex handling. A straight-

forward approach would require too much state storage for
the number of connections we want to handle (hundreds
of thousands). While it is possible to integrate full TCP
functionality into NetStage (such as [6]) we decided to fol-
low a different approach. As an alternative, we created a



lightweight hardware-based TCP stack [7] highly optimized
for our application scenario, which has significantly lower
resource demands than the general solution.

Our approach relies on a stateless server approach: In-
stead of storing session information, the sequence (SEQ)
and acknowledgment (ACK) numbers contained within the
TCP header of the client’s request packet are used to re-
construct the current state, allowing appropriate response
packets to be sent back. Specifically, the ACK and SEQ
numbers are stored within the internal control header to-
gether together with further TCP data (e.g., window size).
The TCP handler can now perform header processing simi-
lar to that of the UDP and IP handlers, only for TCP control
messages is a dedicated handler required. As we do not
store the sequence numbers, we use a technique similar to
SYN cookies [8] to detect the third packet of the three-way-
handshake. If a new connection is established, a dummy
message is created and routed to the responsible VEH. This
is required for application emulations where the client waits
for a greeting of the server directly after connection estab-
lishment.

This alternative implementation is able to handle hun-
dreds of thousands of concurrent connections at line speeds
of 10 Gb/s. However, while it is compatible with regular
TCP clients, it has some limitations. E.g., packets arriv-
ing out-of-order are not detected. We try to anticipate this
by setting the maximum sequence size equal to the window
size. Thus, for consecutive transmission of segments, only a
single packet should be on the line at once. While this does
reduce the performance achievable for a single connection,
it does not affect our main use-case, as it is very unlikely
that we will receive requests from a single attacker at the
line speed of 10 Gb/s. Finally, there will be a small number
of clients that will fail to establish a connection given our
protocol design choices. Since, at worst, we will not receive
malware from them, this is also an acceptable trade-off.

5. Vulnerability Emulation Handler (VEH)

As described above, the actual honeypot functionality is
implemented in independent dedicated hardware modules:
the VEHs. To assure security and performance, the VEH
functions are hard-wired and only changed by reconfigura-
tion. Each VEH handles a single vulnerability (or a class of
related ones) and implements only the minimum function-
ality required to trigger an exploit. Our VEHs react only to
incoming packets and never initiate outgoing connections
on their own.

VEHs share the common structure shown in Figure 4.
The external interface consists of connections to the input
and output buffers holding the packets for this VEH. A
central state machine manages reading and writing from/to
these buffers and implements the behavior to emulate the

Predefined
Packet Templates

Matching Rules
(can return true, false 
and/or byte sequence)

Read Packet Write Packet

Interface to Malware 
Storage Subsystem

Activity Control

HTTP/1.1 200 OK\n
\dServer: Apache/
...

HTTP/1.1 404 NOT
FOUND\n\dServer: 
...

/^GET \/login?(.*)/
/^GET \/index.php/

/username=([^&]+)/

Figure 4. Schematic overview of the VEH com-
ponents

vulnerable application. A set of parallel string matching
units supports the state machine by extracting information
from incoming packets to initiate state transitions, and to
detect malicious requests. Outgoing packets are composed
by filling-in the appropriate fields in stored packet tem-
plates.

Figure 5 shows the implementation of a simple web
server emulation. It consists of a ROM holding the pre-
defined HTML pages to be served as well as the HTTP
header information that will be added to each response (e.g.,
the server version). The VEH is not implementing the full
HTTP protocol, instead it composes response messages ac-
cording to predefined rules out of the fragments stored in
the ROM. As part of the main state machine, a string match-
ing section determines the correct response to incoming re-
quests. This VEH could, e.g., be used to emulate a web
mail service and look for brute-force login attacks, or re-
quests that try to exploit a vulnerability of either the web
server software or the web application.

Instead of sending predefined HTTP response headers,
the hardware is also capable of generating replies dynami-
cally on the fly. However, such dynamic assignments con-
sume more hardware resources than static assignments and
should only be used in moderation.

5.1. VEH Description Language (VEDL)

Despite the performance of VEHs realized in dedicated
hardware, the large effort to implement new VEHs is not
suitable for the quickly changing security landscape. With
VEDL, we propose a domain-specific language both suited
for concise vulnerability description by non-hardware ex-
perts, as well as automatic compilation to NetStage VEH
blocks. In contrast to compiling general purpose languages
such as C to hardware, the VEDL-to-VEH translation pro-
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cess is much easier. This is both due to limiting the input
language to a specific problem domain, as well as the in-
ternal structure of VEHs, which follows a similar pattern
across all VEHs (FSM, pattern matchers, actions).

For our initial VEDL release, we chose the Mealy finite
state machine as the underlying compute paradigm. While
more complex schemes are of course possible, none of the
VEHs we have examined so far would have required them.
The outputs of the FSM correspond to actions and state
transitions. Both can depend on conditions (e.g., pattern
matches) and are initiated only as reactions to incoming
packets. The following actions are currently supported:

• send: Send a predefined response packet. Optionally,
dynamic custom data extracted from the current re-
quest could be added

• close/reset: Send a TCP close or reset notification.

• log: Copy the current request to the malware memory,
in which data can be accumulated.

• notify: Notify management station that a potentially
malicious request has been detected and can be re-
trieved from malware memory.

• state: Set state for the next state transition.

Actions can be arbitrarily combined (e.g., also occur
more than once). Conditions can check both packet con-

tents (deep packet inspection) as well as explicitly stored
state:

• Matching a byte pattern (can also be an ASCII string)
within the data of the request.

• Matching a field of the internal control header (which
also contains per-connection state from the global state
memory).

Regular expression matching is based on a subset of the
Perl regular expression syntax. The special variable “$ ”
contains the data of the current request. The data of the
control header is accessible through special keywords for
each field. Individual conditions can be composed using
logical operators to form more complex expressions. If no
conditional matches, the FSM will remain in its current state
(but it can generate different outputs).

SMTP VEH {
# c o n f i g u r a t i o n s e c t i o n f o r t h e r o u t i n g t a b l e
c o n f i g {

p r o t o c o l TCP ;
port 2 5 ;
ip any ;

}
# a c t i v i t y d e f i n i t i o n o f t h e s t a t e machine t h a t

r e p r e s e n t s t h e v u l n e r a b i l i t y e m u l a t i o n
fsm {

# t h i s s t a t e i s a lways e v a l u a t e d
∗ : i f ( newConnect ion ) {

send ( ” 220 : bee3 SMTP” ) ;
s t a t e = WELCOME;

}
. . .

DATA: i f ( $ =˜ / ˆDATA/ ) {
send ( ” 354 GO ON” ) ;
s t a t e = MAIL ;

}
MAIL : l o g ;

i f ( $ =˜ /\ r\n .\ r\n$ / ) {
n o t i f y ;
send ( ” 250 OK queued ” ) ;
s t a t e = NEXT;

}
. . .

Listing 1. Sample VEDL description of a mail
server emulation

Listing 1 shows an excerpt of a simple SMTP mail re-
ceiver in VEDL that copies the mail data to the malware
memory. Note that the description starts with the informa-
tion to configure the VEH routing table.

6. Experimental Results

Our prototype implements the NetStage Architecture on
the BEE3 [9] reconfigurable computing platform, currently
on a mid-size FPGA chip. Table 1 provides a brief overview



Table 1. Hardware honeypot specifications

FPGA Type Virtex 5 LX155T
Connectivity 10G CX4 Ethernet

Core Frequency 156.25 MHz
Data Path Width 128 Bit

Core Processing Speed 20 Gbit/s
Max. simultaneous VEHs ca. 40

VEH Reconfiguration Time ca. 155 µs
Sample VEH Sizes SIP VEH: 1.15%

(in % of Chip) MSSQL VEH: 0.81%
WEB VEH: 0.95%

MAIL VEH: 0.78%

of the technical characteristics. A 10 Gb/s point-to-point
CX4 Ethernet link connects the BEE3 to a dedicated eight-
core Xeon Linux server for traffic generation.

We have developed a number of VEHs for evaluating the
system: The first one emulated a vulnerability [10] present
in a number of SIP applications. Other VEHs emulate vul-
nerable MS SQL servers [11] and simple mail and web
servers. Our initial concerns that the dedicated hardware
approach would require too much FPGA areas were un-
founded. As an example, the MSSQL VEH requires less
than 1% of the FPGA area. Since the other VEHs do have
similar sizes, even our current single chip solution can han-
dle ca. 40 VEHs running in parallel (assuming a chip uti-
lization of 80% and a average VEH size of 1.5%), as the
NetStage core and the management interface require just
20% of the entire FPGA. Given that the release of much
larger FPGA devices (e.g., Xilinx Virtex-7 series) is immi-
nent, we are convinced that our approach will scale even to
significantly more complex VEHs.

The latency of a packet processed by the system depends
on the occupation of the data paths. In the best case scenario
(all paths have empty buffers), the latency for an ICMP
PING packet is around 0.8 µs. For a web server request this
optimal latency is 2.4 µs. Even when the system is fully
loaded (buffers filled to 90%), latency reaches just 17 µs.

To give an example of the performance of the system,
we used the ApacheBench 2 testing tool to submit a million
requests to the web server VEH. The hardware honeypot
consistently replied in 22 µs (measured on the Linux server)
with no packet loss, while a software Apache running on the
Linux server required 100 µs.

7. Conclusion and Future Work

Our proposed platform demonstrates the potential of
hardware-accelerated networking operations, even for such
complex scenarios as honeypot operation. It combines both
raw performance (internally 20 Gb/s) as well as increased

security: Since the system does not have a general-purpose
processor executing software, it cannot be subverted in this
fashion.

With our current work on VEDL, one of the major hur-
dles to actually employ the hardware honeypot in a produc-
tion environment for capturing malware samples is signifi-
cantly lowered. By using the partial reconfiguration capa-
bility of today’s FPGAs, individual VEHs can be swapped
in and out of the system without having to take it offline.

Our next research steps will improve the current state of
the prototype and perform more complete evaluations. For
the latter, we will attach the hardware honeypot to a true up-
link for stress testing. Other work will deal with advancing
the state of VEDL and the VEH compiler.
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