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ABSTRACT

The PreCoRe approach allows the automatic generation of
application-specific microarchitectures from C, thus sup-
porting complex speculative execution on reconfigurable
computers. In this work, we present the PreCoRe capability
of using data-value speculation to reduce the latency of
memory reads, as well as the lightweight extension of static
datapath controllers to the dynamic replay of misspeculated
operations. The experimental evaluation considers the per-
formance / area impact of the approach and also discusses
the individual effects of combining different speculation
mechanisms.

I. INTRODUCTION

The combination of a software-programmable processor
(SPP) and a reconfigurable compute unit (RCU) in an
adaptive computing system (ACS) can provide computing
performance at high efficiency: Computing kernels are real-
ized as dedicated microarchitectures on the RCU, while the
SPP implements just non-timing critical control operations.

However, in practical use, ACS architectures still occupy
a niche. This is often due to the specialized expertise
expected from the developer: Programming an ACS com-
monly requires experience in digital hardware design, com-
puter architecture, and specialized programming languages
and tool flows (Verilog/VHDL, place and route, simulation,

o).

To make the potential of ACSs available to more users,
considerable research effort (e.g., [2], [15], [10]) has been
expended on automatic compilers for such heterogeneous
computers. These systems attempt to optimally distribute
a high-level language program among the two different
processing elements, synthesize the custom microarchitec-
ture on the RCU, and generate the SPP/RCU interface in
software and in hardware.

Traditionally, ACS compilers have concentrated on ex-
tracting instruction level parallelism (ILP) from their input
programs to generate computing hardware on the RCU.
However, with the improvements of the compiler technol-
ogy, the classic memory latency bottleneck that has plagued
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SPPs for many years also materializes for the RCU: Ac-
cording to [9], 20% of a typical program’s instructions
are memory accesses, but they require up to 100x of the
execution time of the non-memory (scalar) operations.

With this outlook, appropriate countermeasures should
also be considered for the RCU when targeting an ACS.
One of the most efficient solutions to increase the available
memory bandwidth involves the switch from a single off-
chip main memory to many local on-chip memories, all
of which can be accessed in parallel [3]. However, the
technique is not applicable to all algorithms and its use is as
yet not fully automated. Less efficient, but more generally
applicable, is the use of multi-port coherently cached
memory systems, possibly backed by multiple parallel
channels to main memory [13]. On the other hand, such
systems perform best only if many independent memory
accesses are present in the program. Otherwise, the inter-
port coherency traffic will become the new bottleneck.

As an orthogonal approach, we propose the use of value
speculation to hide the latency of memory reads. Reads
thus become fixed-latency operations that always supply
a result within a single clock cycle (even in case of
cache-misses or DRAM refreshes in the actual memory
system). This capability requires special support in the
RCU microarchitecture, since misspeculated values must
be recognized at some point in time and the affected earlier
computations must be re-executed (replayed) with the cor-
rect input values. When performing a replay, it is desirable
limit the extent of the re-executed operations. Ideally, only
the specific operations “poisoned” by the misspeculated
values need to be replayed. However, implementing such a
fine replay granularity requires complex hardware.

Our PreCoRe framework aims to add lightweight support
for value speculation to custom-compiled microarchitec-
tures. Instead of requiring dynamic scheduling at the level
of individual operators (as discussed in [10]), PreCoRe
predicts, commits, and replays at the granularity of datapath
stages similar to those used in a statically scheduled
microarchitecture.

While previous work [19] focused on the microarchitec-



tural realization of the commit/fail and replay mechanisms,
this text presents as new contributions the actual data
value speculation techniques, the extension of statically
scheduled datapath controllers to stage-based speculation,
and a discussion of the interaction of different speculation
effects. The latter include the degree of memory prefetching
enabled by value speculation (in the specific form of
address speculation). All of the presented mechanisms have
been implemented in the hardware/software Co-Compiler
Nymble, which is also used for the experimental evaluation
in actual FPGA hardware.

II. RELATED WORK

Even assuming support for unlimited ILP in hardware,
memory read data dependencies severely limit the degree
of ILP achievable in practice to between tens to (at most)
hundreds of instructions [8].

Lipasti et al. proposed load value speculation to resolve
these read data dependencies speculatively [16], allowing
computations to continue using the speculated values with-
out waiting for the memory system to return the actual
(possibly cached) memory contents.

The limits of value speculation to improve ILP have
been discussed, e.g., in [5], [4]. A number of different
approaches to speculatively determine the read value have
been examined: History-based predictors such as as last-
value prediction attempt to predict the next value by
selecting it from a limited set of the previously read values.
Stride-based predictors attempt to determine a new value by
assuming a constant offset from the previously read value.
Context value predictors look beyond individual values and
attempt to supply entire sequences of values following
a regular pattern (beyond just a single constant offset).
Multiple schemes can be combined into hybrid predictors.

Due to the associated hardware overhead for general-
purpose solutions, value speculation has only been used to
a limited extent in actual processors. Mock et al. modified
a compiler to force value speculation where possible on the
Intel Itanium 2 CPU architecture [18]. Their scheme relied
on hardware support in the form of the Itanium’s Advanced
Load Address Table (ALAT) [17]. However, the ALAT
does not operate autonomously, but has to be explicitly
controlled by software code. At best, they achieved speed-
ups of 10% for read value speculation using this approach.
However, they also observed slow-downs of up to 5% under
adverse conditions.

III. DATA SPECULATION INFRASTRUCTURE
III-A. Integration with Memory System

The read value speculation capabilities of PreCoRe are
implemented as transparent extensions to the MARC2
multi-port coherently-cached memory system [13], shown
in Figure 1. The actual data prediction unit is inserted be-
tween the datapath-side read port and the MARC2-internal

per-port cache. The remainder of MARC?2 (intra- and inter-
cache management, access to one or more physical memory
channels) remains unmodified.
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Fig. 1. MARC2 memory system extended with read value
speculation

With this modification, read requests issued by the data-
path on the RCU are simultaneously passed to the per-port
cache and to the data prediction unit. Thus, the datapath
will always receive a reply with just a single cycle of
latency: Either the actual data will have been present in the
cache (cache hit) and can be returned, or the data prediction
unit supplies a speculated value for the read request on a
cache miss.

III-B. Load Value Speculation

The efficiency of the scheme is highly dependent on
the accuracy of the data prediction unit. Fortunately, data
speculation techniques have been well explored in context
of conventional processors [20], [1].

A key difference of these processor-centric approaches
and our technique is due to the spatial-computing paradigm
used in the custom-compiled accelerators. Processors gen-
erally have very few Load-Store Units (LSU), often only
a single one. Thus, it is very simple to realize a predictor
with a global view of the execution context: All loads pass
through the single LSU where the predictor is located. This
allows the predictor to make decisions similar to “with
Load1 having returned 23, and Load2 having returned 42,
I predict that Load3 will now return 2011”. While this can
be advantageous for some applications, in others an irregu-
lar value pattern for one of the load instructions can lead to
an overall loss of prediction accuracy, since all predictions
are made based on the global view. To alleviate this, the use
of the Program Counter to differentiate between the value
streams of different individual load instructions has been
proposed, restricting the prediction context to a local view.
Here, the reasoning would be similar to “Load1 did return
42 the last time, I predict it will return 23 this time; Load2
did return 8 the last time, I predict it will return 12 this
time”. With its separate cache ports for each individual read
operation in the datapath, MARC?2 also follows the spatial
computing paradigm. Thus, the value predictors also have
a purely local (per-port) view of the load value streams.
In practice, the restricted local view will lead to longer



training times before a predictor becomes accurate (it does
not see the global context), but the predictor will be more
resilient against irregular data patterns incoming via just
some of the read operations.

Another aspect of using value speculation is how to train
the predictors, specifically, when the underlying pattern
database (on which future predictions are based) should
be updated: Only once a speculation has been determined
as correct/incorrect (which might take considerable time,
since it could involve actually waiting for a read of main
memory)? Or should the speculated values be assumed
to be correct (and entered into the pattern database) until
proven incorrect later? In PreCoRe, we have opted for the
second choice, since a single inaccurate prediction will
always lead to the re-execution of all subsequent read
operations (and their internal predictions), then with pattern
databases updated with the correct values. In contrast to the
first approach, this will require the predictor hardware to
be able to rollback the entire pattern database to the last
completely correct state once a speculation has proven to
be incorrect. Note that, even with the risk of re-execution,
PreCoRe aims to never slow down the execution of the
datapath over the non-speculative version (see Section VI
for further discussion).

III-C. Predictor Architecture
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Fig. 2. Local history-based load value predictor

Figure 2 shows the basic architecture for our value
predictor. It follows a two-level finite-context scheme build-
ing on concepts initially used in branch prediction. Value
predictions are based on exploiting a correlation of a
stored history of prior data values and future values [20].
The actual nature of the correlation is flexible and highly
parametrized: We use the same basic architecture to realize
both last value prediction (which predicts a future value by

selecting it from a set of previously observed values, e.g.,
23-7-42-23-7-42) and stride prediction (which extrapolates
a new value from a sequence of previously known strides,
e.g., from the strides 4-4-8-4, the sequence 0-4-8-16-20-
24-28-36-40 is predicted). The complete PreCoRe value
prediction unit consists of separate last-value and stride-
predictors, operated in tournament mode (a predictor is
trusted until it makes an incorrect prediction, then trust
is switched to the other predictor). For simplicity, the
following discussion will just refer to value prediction.

As the pattern database, the predictor not only keeps
track of the last m different values D4, ..., D,, in a least-
recently-used fashion, but also of the n-element sequence
I, ...,I, in which these values occurred (the Value His-
tory Pattern, VHP). An element of [ is an index reference
to an actual value in D. The entire sequence I, which
consists of n subfields of log, m bits each, is used to index
the Value History Table (VHT) to determine which of the
known values is the most likely result of the prediction.
An entry of the VHT expresses the likelihood for each of
the known values D; as a c-bit unsigned value C;, with
the highest value indicating the most likely value. Thus,
the VHT is accessed by a nlog, m-bit wide address and
stores words of width mc bits.

The actual prediction process has to take mispredictions
into account. Thus, we keep two copies of the VHP: The
master VHP [ (shown in blue in Figure. 3) holds only
values that were confirmed as being correct by the memory
system, but may be outdated with respect to the actual
execution (since it might take a while for the memory
system to confirm/refute the correctness of a value). The
shadow VHP I’ (shown in red in the figure) also includes
speculated values of unknown correctness, but accurately
reflects the current progress of the execution. All predic-
tions are based on the shadow VHP until a misprediction
occurs. In the datapath, this would lead to a replay using the
last values not already proven incorrect. In the predictor,
the same effect is achieved by copying the master VHP
(holding correct values) to the shadow VHP (to base the
next predictions on the new values).

The operation of the resulting local history-based load
value predictor is shown in Fig. 3 as an example. As
parameters, we chose m = 4, n = 6, ¢ = 2 (the default
parameters for our current hardware implementation). In
Figure 3.a, D stores 47,13,24,11 as the last m = 4 different
values encountered. At the start of the execution, we
assume here I = I’ (all values have been confirmed), with
both master and shadow VHPs of (1,2,3,4,4,3) indicating
that the sequence of the last n = 6 values was 47-13-24-
11-11-24.

At this point in time, a new prediction request arrives.
The shadow VHP is then used to access the VHT (Figure
3.a.]) to retrieve the likelihood of the current values in
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Fig. 3. Value predictor example

D (.a.ll), expressed as the counter vector (1,3,1,1). Since
Cy = 3, the highest value (for a ¢ = 2-bit counter),
Dy = 13 is predicted as the most likely value (.a.IIl) and
output. Since the prediction always selects from a known
value, the VHT does not need to be updated on a prediction
request. However, the stored value patterns now have to
be updated. Since the new value 13 is as-yet unconfirmed
by the memory system, we update the shadow VHP I’
to (2,3,4,4,3,2), adding the index of new value to the end
of the sequence, but losing the oldest element. The next
incoming prediction request (Figure 3.b.IV) then performs
the next look-up using the updated shadow VHP (.b.V),
retrieves the appropriate VHT entry (.b.VI), which then
indicates by the highest value in C'5 that D3 = 24 is the
next most likely value (.b.VII).

Assume, however, that before that second request comes
in, the memory system has provided the actual value for
the first request (which lead to the prediction of 13). If
that value was mispredicted (Figure 3.c), the correct value
(here 34) is entered in the least-recently-used position of
D, here Dy. (.c.VIII). Since the speculation was incorrect,
the shadow VHP is reset by being overwritten with the
master VHP (.c.IX), which is then used to access the
appropriate VHT entry. That entry erroneously lead to the
prediction of 13 and is now corrected from its old value
(1,3,1,1) as follows: The counter for the index matching
the correct value is increased (Cy for D; = 34), all other
counters are decreased using saturating arithmetic. The
resulting counter vector (2,2,0,0) is then written back into
the VHT (.c.X). Finally, both the shadow and master VHPs
will be updated to (2,3,4,4,3,1), reflecting the sequence of
confirmed values (not shown in the Figure). Had 13 be
a correct prediction (.d.VIII), the shadow VHP would be

copied to the master VHP (.d.IX), and (' in the appropriate
VHT entry increased because Dy = 13 was a correct
prediction again (clipped by saturation at 3), with all other
choices becoming more unlikely (and thus decreased). The
resulting entry (0,3,0,0) is then written back into the VHT
for the given shadow VHP (.d.X).

IV. STATICALLY SCHEDULED SPECULATION
IV-A. Nymble Compiler

Since we aim to automatically generate application-
specific speculation mechanisms, we also have to con-
sider the effects of the approach on the compiler. For
this purpose, we have extended our hardware/software
co-compiler Nymble, which itself is based on the Scale
framework [7] [6]. The framework is used to perform front-
end lexing/parsing and machine-independent optimizations,
resulting in an intermediate representation (IR) of control-
flow graphs (CFG) in Static Single Assignment (SSA)
form.

For hardware synthesis, this SSA-CFG is then trans-
lated into a control data-flow graph (CDFG), from which
both the controller and the datapath can be generated as
synthesizable Verilog HDL. The results of some of the
analysis passes are used to optimize the micro-architecture.
E.g., Alias/Points-To analysis is used to assign memory
accesses proven to be independent to separate coherency
clusters in MARC?2, thus reducing the pressure on the
cache-coherency network [13].

Initially, Nymble generated pure statically scheduled
hardware using a lightweight control sequencing scheme.
The next section examines how this scheme can be ex-
tended with limited dynamic scheduling to support Pre-
CoRe.

IV-B. Data Path Controller
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Figure 4 shows the basic structure of the non-speculative
datapath and controller. The datapath shown on the right
consists of the actual hardware operators. Each has a
Start control input signal which lets an operator evaluate



C Stage Il | Stage | | Stage 0 )
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its current input values and begin computing. As usual, all
operators started in the same clock cycle are organized into
a stage.

In the initial pure statically scheduled model, the execu-
tion of the stages is sequenced by a controller implemented
as simple shift register: An external RCU-global start
command (generally sent by the SPP) inserts the first ’1°
as Start token through the INIT block, leading to the
activation of the first stage. The following stages are then
activated in order when the ’1° advances in subsequent
clock cycles. The structure can express pipelined execution
in loops by a back-edge going from stage II-1 to stage
0, where II is the initiation interval of the loop (in the
figure, I1=2). For variable-latency operators such as cached
reads, we schedule for the expected latency of one cycle
(cache hit). On a cache miss, the entire datapath is halted
by stopping the datapath (deasserting clock enable) until
the data is actually available on the outputs of the READ
node.

In some regards, adding value speculation to the datapath
actually simplifies the controller: Now, even memory reads
become fixed-latency operations, since they will always
output a result within a single cycle (either data available
from a cache-hit or a speculated value). However, the need
to replay operations executed using incorrectly speculated
values complicates the speculation-supporting controller,
shown in Figure 5.

To this end, the simple registers in the controller are
replaced by so-called Flow Control nodes. In normal
operation, they act identically to the simple shift register
and delay their stage’s Start token for a clock cycle
before passing it on to the next stage. Two new capabilities
are required by PreCoRe: First, since some operators in the
datapath (among them memory reads and writes) are now
fitted with input queues (described in detail in [19]), the
Start token advances to the next Flow Control node(s)
only if all the datapath stages controlled by the successor
controller nodes have indicated that all of their contained

operators have input queue space available by asserting
Ready-for-Data (RFD). This operation is implemented by
connecting the per-datapath stage RED to the lower AND
node in the controller part of Fig. 5. If even a single
datapath operator lacks queue space, the Start token
remains in the predecessor controller node, and execution
pauses. The distribution of the RFD signal also has to take
the loop-closing back-edge into account, which leads to
a stage having two successor stages. In the figure, this is
the case for Stage 1, which has Stage 0 and Stage 2 as
successors. Thus, the RFD signals for both of these stages
enter in the AND expression determining when a Start
token may leave Stage 1.

Second, the Start tokens themselves are now also
queued within the Flow Control nodes that control datapath
stages affected by value speculation. These include the
speculative read operations themselves, but also the write
operations marking speculation boundaries; see [19] for
details. The Flow Control node token queues are used
in PreCoRe to replay operations that were performed
on misspeculated values. In that case, the Flow Control
node responsible for the datapath stage which emitted the
incorrect data is advised to re-issue the Start token from
its queue, causing the re-execution of subsequent operators
with new values. A Start token is actually removed from
a Flow Control queue only if the corresponding data path
stage has confirmed that it executed on correct data (by the
Commit/Validation mechanism of [19]). When the Flow
Control nodes re-issue Start tokens from their queues,
they also ensure that the tokens emerge at the same rate
they arrived in (the loop II). Finally, with the Flow Control
nodes now also having queues, a predecessor node is
allowed to advance its Start token only if all successor
nodes have space available in their token queues. This is
achieved by back-pressure RED signals in the controller
(running upwards in Fig. 5), which also enter into the AND
of all successor nodes’ and stages’ RFD signals. In the
figure, Stage 1 may thus advance its Start token only
if the operators in the datapath stages controlled by the
successor nodes, as well as the successor control nodes
themselves, have queue space available.

Nymble generates the appropriate extensions to the
initial purely static controller in an application-specific
manner: Queues and token transition conditions are inserted
only where required for the current datapath. This avoids
the overhead of a general-purpose approach, possibly even
relying on finely-granular dynamic scheduling at the level
of individual datapath operators [10].

V. TARGET ARCHITECTURE

The experimental evaluation of PreCoRe and its integra-
tion in the Nymble compiler have been performed on the
ACE M5 adaptive computing system. Hardware-wise, the



ACE MS5 consists of a Xilinx ML507 Virtex-5 FX devel-
opment board. The on-chip PowerPC 440 processor acts
as the SPP component of the ACS, while the remainder of
the Virtex-5 FPGA fabric are used for the RCU. The main
memory shared between SPP and RCU is implemented
off-chip as DDR2-SDRAM DIMMs. However, a number
of extensions have been made over the original Xilinx-
provided environment.

First, memory accesses are are performed using the
MARC2 memory access system [13], allowing the RCU
direct access to the DDR2-SDRAM memory controller
without having to go over the comparatively slow PLB bus.
MARC?2 provides each memory operation in the datapath
with a dedicated cache port. The system can be configured
by indicating which accesses occur to non-overlapping
memory regions (determined by Alias/Points-To analy-
sis in the Nymble compiler) to generate an application-
specific sparse cache coherency communication network.
Each coherency cluster may have an arbitrary number of
read ports, but only a single write port. If more writes
occur to address ranges potentially overlapping those of the
read ports, multiple writes need to be sequentialized and
issued through the single write port. An arbitrary number
of parallel writes may be performed to non-overlapping
ranges. In that case, the writes can be assigned to different
coherency clusters. This arrangement allows PreCoRe to
issue multiple memory operations in parallel per cycle.

Second, the ACE M5 platform runs under a heavily
modified full-scale version of the Linux operating system
that allows fast RCU-SPP signaling (up to 23x faster than
even a kernel with real-time patches) as well as the use of
virtual memory by the RCU using the AISLE technique
[12]. The latter is important for allowing the SPP and
RCU to freely pass pointers across the hardware/software
boundary, a crucial capability when compiling from a
pointer-intensive language such as C.

VI. EXPERIMENTAL RESULTS
VI-A. Performance Overview

This section shows the experimental results of applying
the PreCoRe approach to a number of sample applications.
Initially, the nature of the benchmarks will be described and
the performance data presented. Then, selected aspects of
the results will be discussed in greater detail, among them
the interaction of different optimization effects.

Some of the kernels compiled to hardware accelerators
on the RCU are selected from real application programs or
benchmark suites, others have been designed synthetically
to examine specific aspects of the technology.

of_multiply is part of the Pegwit elliptic curve cryptog-
raphy application, in itself part of MediaBench [14]. The
kernel performs a Galois Field multiplication. The kernels
versatility_fcdf22 and versatility_quantization are part of a

wavelet image compression algorithm used in the Versa-
tility benchmark of the Honeywell suite [11]. The sample
median_filter_row realizes a luminance median filter, where
blocks of 9 pixels are read and the median of the luminance
is written to the center pixel. In addition to the usual ap-
proach of processing the image row-by-row, we also imple-
mented a version median_filter_col proceeding column-by-
column, to selectively disable the MARC2-internal cache
line prefetching. This can be used to observe the impact of
load-value speculation for cases when the cache efficiency
deteriorates. Two other kernels also exercise difficult-to-
cache cases by implementing pointer-chasing algorithms:
pointer_chase traverses a linked list and increments the
value of every second node. bintree_search searches for
keys in a binary tree. To gauge the impact of data dependen-
cies, we use two synthetic benchmarks: simple_read sums
all values in an array, it has a loop-carried data dependency
on the intermediate sum. array_add adds a scalar to all
elements of an array, an operation without loop-carried
dependencies.

For each kernel, Table I shows the simulated execution
time, area requirements as well as maximum clock speeds.
The synthesis and mapping tools used were Synopsys
Synplify Premier DP 9.6.2 and Xilinx ISE 11.1. The default
system clock frequency of our ML507-based platform is
100 MHz.

Due to increased complexity of the PreCoRe extensions,
a datapath supporting speculative execution sometimes has
a lower maximum clock speed than the original statically
scheduled version. However, even with a clock frequency
decrease of 1.5...11.4 MHz, many speculative datapaths
still achieve the 100 MHz default clock rate, and thus do
not actually suffer from the slower clock when considering
system-level performance.

More serious is the area increase associated with specu-
lation: Despite the lightweight stage-based approach avoid-
ing operator-granularity scheduling, hardware kernels with
speculation enabled require 1.45x...3.22x the number of
slices of their non-speculative versions. It turns out that
the overhead for the actual data prediction unit itself is
limited to ca. 1000 LUTs per memory read operation, and
the handshaking logic has an even smaller impact. Most of
the overhead is due to the output queues inserted into the
datapath by PreCoRe. When this issue is examined more
closely, it turns out that the way Nymble currently creates
the different storage elements (separate output queues and
registers for pipeline balancing) is not processed efficiently
by the logic synthesis tools: They do not take advantage of
merging adjacent queues and registers for tighter hardware
packing. For example, in pointer_chase, the number of
registers increases by 6.91x for the speculative version,
but 79.84% of them realize individual single-cycle pipeline
balancing nodes that have not been merged into longer,



Kernel FPGA Area Max. Clock Freq. Runtime Comparison
#LUTs #Registers (MHz) #Cycles s at max. freq. Slices | Speed
n.spec spec | n.spec spec n.spec spec n.spec spec n.spec spec ovrhd. -up
1 array_add 10141 | 14717 1246 2948 106.90 96.30 6194 3923 57.94 40.74 1.45x | 1.42x
2 bintree_search 11129 | 19782 1570 5795 105.70 100.10 3497 3359 33.08 33.56 1.78x | 0.99x
3 gf multiply 11918 | 22790 1702 6459 102.80 101.30 2510 2482 24.50 24.42 1.91x | 1.00x
4 median_filter_row 12895 | 28333 2458 9909 106.40 102.20 296409 | 115027 | 2785.80 | 1125.51 220x | 2.48x
5 median_filter_col 12998 | 28391 2529 | 10325 106.00 100.30 1054736 | 666554 | 9950.34 | 6665.24 2.19x 1.50x
6 pointer_chase 11979 | 20637 1478 | 10208 106.40 98.90 4087 3650 3841 36.91 1.72x | 1.04x
7 simple_read 10241 | 14703 1484 3639 105.80 103.20 19615 14150 185.40 135.41 1.45x | 1.37x
8 versatility_quant. 12351 | 39716 5390 | 18495 105.70 97.40 96771 50746 915.53 521.01 3.22x | 1.76x
9 versatility_fcdf22 12055 | 32284 1889 9863 105.20 93.80 43633 20573 414.76 219.33 2.68x | 1.89x

Table I. Hardware area, maximum frequency, and run-time without/with data speculation (n.spec/spec)

more efficient SRL blocks. In practice, the impact of
the high demand for registers is somewhat limited when
considering the slice-level area, as the slices holding the
more complex speculation logic also supply more registers.
However, future work will address this issue by pre-packing
storage elements in the generated RTL Verilog.

Even with is current area increase and slower maximum
clock frequency, our first PreCoRe implementation can
lead to significant speed-ups of the sample kernels. When
comparing PreCoRe kernels to the statically scheduled ones
running at their maximum theoretical clock frequencies,
PreCoRe achieves an average speed-up of 26.88%, going
up to 2.48x for the median filter. The worst-case slow-
down we observed was < 1% in case of bintree_search.
Comparing against the real maximum clock of 100 MHz of
the ACE M5, the average performance advantage increases
to 30.1% for PreCoRe kernels, with a peak speed-up of
2.59x for median filter under these real conditions. With
the maximum clock speed limited to 100 MHz, the use of
PreCoRe does not slow-down any kernel.

VII. PERFORMANCE ANALYSIS

After examining the raw performance data in the prior
section, we now discuss the interaction of two separate
effects occurring when using read value speculation in
PreCoRe.
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VII-A. Prefetching

In the original, pure statically scheduled RCU shown
in Section III, a single cache miss would stall the entire

datapath, halting even operations not actually dependent
on the result of the cache-missing read. With PreCoRe,
the datapath is not stalled, since a read always returns data
within a single clock cycle. This has the effect of improved
prefetching, even if the speculated read value turns out to
be wrong.

Figure 6.a shows an example for this situation: Assume
that READ1 suffers a cache miss and returns speculative
data. By not stalling the datapath, READ2 is allowed to
proceed, pre-fetching data from a non-speculated address.
Even if READ1 speculated incorrectly and a replay would
be required, READ2 will have prefetched the correct line
into its own cache by then (assuming it had a cache miss
at all). This would not have been possible in the static
datapath, since READ2 would only be started after READ1
had completed processing its own cache miss.

The scope of prefetching can be widened even fur-
ther when considering prefetching from a speculative ad-
dress, which is also supported in PreCoRe. Figure 6.b
shows an indirect READ, with the address being a value-
speculated, loop-carried dependency from a prior loop
iteration. Prefetching can be performed here, too, if the
address sequence has a form predictable by the stride
predictor of Section III-C. In practice, this might occur
if an array of pointers into an array of structures is being
processed.

Despite being only a secondary effect of the actual
read value speculation, the impact of prefetching should
not be underestimated. As an experiment, we disabled
the value-predictor, forcing it to always predict incorrect
values, in median_filter_col. Even in this crippled form,
PreCoRe still executes reads as single cycle operations and
avoids datapath-wide stalls (the scenario shown in Fig. 6.a).
Prefetching can still be performed under these conditions.
The static version of the kernel requires 1,054,736 cycles to
execute, while the prefetching-only version using PreCoRe
is accelerated to 738,607 cycles, yielding a speed-up of
1.43x. Additionally enabling the value-predictor reduces
the execution time further to 666,554 cycles, a total speed-
up of 1.58x over the original static version. For this exam-
ple, the prefetching enabled by the fixed-latency speculated
reads, not the speculated values themselves, is actually



Runtime Hit Rate Speed-Up
#Cycles Total Total % %
#Commits | #Fails
33612 991 12 || 99 23
33733 969 34 | 97 22
34025 933 70 || 93 21
34331 877 126 || 87 20
35127 790 213 || 79 17
35550 734 269 || 73 16
35880 692 311 || 69 15
36361 628 375 || 63 13
36841 541 462 || 54 12
38138 398 605 || 40 8
39447 182 821 18 4
41201 0 1003 0 0

Table II. Execution time vs predictor accuracy for
pointer_chase

responsible for most of the performance gain.

VII-B. Load Value Speculation

While the previous section concentrated on using Pre-
CoRe to enable prefetching, this section discusses the
effects of the accuracy of the value-prediction on execution.
To this end, we parametrize pointer_chase to generate a
range of predictor accuracies. The application has a basic
structure similar to that shown for Figure 6.b, with the
address in the current iteration being a loop-carried data
dependency of the prior iteration (that list element’s next
pointer).

Without value speculation, a new iteration can only be
started once a prior iteration has completed retrieving the
next pointer. Using PreCoRe, the READ in the current
iteration can be started immediately using the speculative
value returned from the prior iteration as address for a
prefetch.

Table II shows the impact of predictor accuracy for
such a scenario. The extreme cases (completely accurate
and inaccurate predictions) are shown in the first and last
rows, respectively. Depending on the regularity of the input
data (in this case, the regularity of the linked elements in
memory), performance gains of up to 23% are possible.
The effect is magnified if an even longer backwards edge
implies a longer initiation interval (II) of the loop: The
successful use of speculated addresses for indirect accesses
can reduce the II, and increase throughput correspondingly.

VIII. CONCLUSION AND FUTURE WORK

With PreCoRe, we have introduced a general-purpose
framework for extending simple statically scheduled com-
pute units compiled from C with application-specific value
speculation hardware. Specifically, this work has described
the operation of the actual value speculation units and
the microarchitectural changes required to the scheduling
controller. We have shown the general speed-up potential,

as well as discussed specific effects such as improved
prefetching. Future work will deal with improving the
area efficiency of the scheme as well as adding further
dependency-resolution mechanisms such as store-load for-
warding.
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