Accelerating High-Level Engineering Computations
by Automatic Compilation of Geometric Algebra to
Hardware Accelerators

Jens Huthmann* , Peter Miiller*, Florian Stock*, Dietmar Hildenbrand’, and Andreas Koch*
* Embedded Systems and Applications Group
Technische Universitidt Darmstadt, Germany
Email: {huthmann|mueller|stock|koch} @esa.cs.tu-darmstadt.de
TComputer Science Department
Technische Universitidt Darmstadt, Germany
Email: dhilden@gris.informatik.tu-darmstadt

Abstract—Geometric Algebra (GA), a generalization of quater-
nions, is a very powerful form for intuitively expressing and ma-
nipulating complex geometric relationships common to engineer-
ing problems. The actual evaluation of GA expressions, though,
is extremely compute intensive due to the high-dimensionality of
data being processed. On standard desktop CPUs, GA evalua-
tions take considerably longer than conventional mathematical
formulations. GPUs do offer sufficient throughput to make the
use of concise GA formulations practical, but require power far
exceeding the budgets for most embedded applications. While the
suitability of low-power reconfigurable accelerators for evaluat-
ing specific GA computations has already been demonstrated,
these often required a significant manual design effort. We
present a proof-of-concept compile flow combining symbolic
and hardware optimization techniques to automatically generate
accelerators from the abstract GA descriptions without user
intervention that are suitable for high-performance embedded
computing.

I. INTRODUCTION
A. Compiling for Reconfigurable Computing

Reconfigurable computers have successfully been used to
accelerate a wide spectrum of high-performance embedded
applications, while requiring a power budget far below that of
Graphics Processing Units (GPUs) with comparable through-
put. However, the use of reconfigurable technology often
required significant manual implementation effort and knowl-
edge not only of the application, but also of digital design and
computer architecture.

As in ASICs, the productivity gap between the HDLs
traditionally used for digital design and the ever-increasing
FPGA capacities has widened. On one side, this has been
addressed by growing the synthesizable subsets of HDLs.
Today, some tools can already synthesize variable operand
multiplication and division into hardware and infer various
kinds of memories directly from the HDL code. On the other
side, many attempts have been made to compile from higher-
level software programming languages (HLL) into hardware,
e.g. [1]-[4].

Despite the progress in that area, translating HLLs into
hardware is complex. In many cases, only a limited subset of

language constructs can be translated. Restrictions often exist
with regard to control flow, data types, and pointer handling.
All language features, that software developers expect to be
available. Their lack again complicates the use of hardware
acceleration by non-experts.

A different approach to compiling to hardware lies in using
more abstract domain-specific languages instead of generic
HLLs as input. They often pose less difficulty for automatic
compilation since, e.g., difficult-to-translate constructs pointers
or irregular control flow are not part of the language at all.
This has already been done successfully for signal processing
applications from MATLAB and Simulink ([5], [6]). Our work
also takes this route of compiling from Geometric Algebra,
a powerful domain specific language much better suited to
hardware mapping than a full HLL.

B. Geometric Algebra

The input language for our compiler are expressions for-
mulated in Geometric Algebra (GA). GA is a very powerful
mathematical framework for intuitively expressing and ma-
nipulating the complex geometric relationships common to
engineering problems. In many cases, GA descriptions require
only a fraction of the space of that conventional formulations
(e.g., half page instead of dozens of pages).

GA generalizes projective geometry, imaginary numbers,
and quaternions to provide a powerful and flexible mathe-
matical framework. It describes the manipulation of multi-
vectors, which are linear combinations of simple vectors
(called blades in this context). In addition to standard operators
such as addition and subtraction, GA also encompasses special
operators such as geometric product, inner product, outer
product, inverse and division, dual and reverse operators (see
[7] for an introduction).

The current form of GA has its roots in work by Grassmann
[8] and Clifford [9] from the 19th century. However, its
usefulness and wide practical applicability has only recently
been discovered. Initially, it became popular in physics to

concisely express complex geometrical relationships [10]-
[12].

With the invention of conformal geometric algebra [13] by
David Hestenes, this has also been extended to engineering
applications such as robotics, computer graphics and computer
vision. In conformal geometric algebras, high-level geometric
objects such as points, lines, planes and spheres, as well as
operations on them (e.g., intersection) can all be concisely
expressed using GA operators.

However, due to the significant computation effort necessary
to evaluate the multi-dimensional GA expressions, practical
adoption has only been limited so far. While modern GPUs
do have sufficient compute capacity [14], their long latencies
(40 ps for a single computation) and high power requirements
(170 W+) make them infeasible for many embedded control
scenarios. Most FPGA-based reconfigurable computers do not
quite reach the throughput of GPUs, but achieve much shorter
latencies (for this example, 2 ps) and a much reduced power
draw (here just 7 W). This will be discussed in greater detail
in Sec. IV.

II. RELATED WORK
A. Tools

A number of pure software tools exists for working with GA
expressions. Some of these, specifically CLUCalc, CLIFFORD,
and Gaalop also play a role in our hardware compile flow.

CLUCalc is a software program [7] for developing GA algo-
rithms in CLUCalc-script, a domain specific language. It con-
siderably simplifies development by its ability to graphically
visualize the geometric interpretation of GA descriptions in
real-time, also extending to accepting user input as geometric
data.

CLIFFORD [15] is a library adding GA operations to the
symbolic computer algebra system Maple. Now, GA expres-
sions can also be evaluated and simplified (in contrast to
CLUCalc, which performs only numerical evaluation). CLIF-
FORD is limited to multivectors with at most nine dimensions,
however, this is sufficient for many practical applications.

Gaalop (Geometric Algebra Algorithms Optimizer) [16]
is a plugin-based source-to-source compiler framework. It
reads CLUCalc-script programs into a flexible intermediate
representation which can then be optimized. Output code
can be generated C, I&IEX, dot-graphs or CLUCalc-script (to
visualize and verify the output). Gaalop internally uses Maple
and CLIFFORD for symbolic transformations. We use it as the
base for our hardware compiler.

Gaigen [17], [18] has a similar aim as Gaalop and reaches
similar performance when compiling the GA models into C
code. However, it requires additional specifications to the
GA description (such as identifying zero-coefficient blades).
Furthermore, Gaigen is restricted to a C++ code generator.

The main contribution of this work is the extension of
Gaalop with numerous hardware-specific optimizations and a
code generator for Verilog HDL, thus allowing the compilation
of GA models into dedicated hardware accelerators.

B. Hardware Accelerators

With the high computing requirements for actually evaluat-
ing a GA model, much effort has been expended on special-
purpose processor architectures.

One of the first attempts [19] tried to structurally map GA
operators embedded in Prolog descriptions to corresponding
hardware units. However, the paper is rather vague and does
not give benchmark results for non-trivial examples.

The approach in [20] concentrates on accelerating just the
geometric product, using an FPGA-based co-processor running
at a clock speed of 20 MHz and attached to the PCI bus
of the host computer. It operated on 24b integers and was
able to process up to eight-dimensional multi-vectors. Since
it operated strictly sequentially (no pipelining was used),
lower dimensional multi-vectors could be processed quicker.
Performancewise, [20] claims a speed-up of 1.5x over a soft-
ware implementation in terms of clock cycles. When actually
considering the clock frequencies of the GA-accelerator and
CPU, though, the CPU is roughly 50x faster in terms of wall-
clock time.

CliffoSor [21] attempts to accelerate more GA operations
than the geometric product (e.g., outer product, contraction,
etc.). It is restricted to four-dimensional multi-vectors, but
does execute the computations in parallel for each component
of a multi-vector. Intermediate calculations are performed on
16b integers, with 32b final results. CliffoSor was realized
on an FPGA with 50 MHz clock speed, but suffers from
large communication overheads with the host machine (49
of the 56 cycles for a geometric product are spent on data
transfers). Again, an acceleration over a conventional CPU
was demonstrated only on a per-cycle basis. In terms of wall-
clock time, the CPU is 9x faster.

[22] is the first co-processor operating on floating-point
data. It consists a basic IEEE-754 double precision floating-
point unit (FPU) supported by smaller utility units, all exe-
cuting separate micro-programs for each GA operation. While
the FPU itself is pipelined, the micro-programs execute se-
quentially for each coefficient of the two-dimensional multi-
vectors supported. This attempt was actually realized as an
ASIC, reaching a clock-speed of 130 MHz. The author’s claim
a wall-clock speed-up of 3x over software [23], but give no
details on the CPU used for benchmarking.

S-CliffoSor is another attempt at a general GA co-processor
[24] from the same team as CliffoSor. It replaced the GA-
operator specific compute units of the latter with so-called
slices able to execute all GA operators for four-dimensional
multivectors, processing 32b integer coefficients. Each slice
has an ALU and uses sequential micro-programs to realize the
GA operators, pipelining is not performed. The authors argue
that multiple slices could be instantiated to achieve greater par-
allelism, but appear not to have implemented this: The claimed
cycle-based speed-up on a 45 MHz FPGA implementation of
3x...4x over a2 GHz CPU is in reality a wall-clock slowdown
of 9x...12x.

The main reason for the poor performance of these prior
attempts appears to be the fixation on programmable processor

architectures, even when targeting reconfigurable logic.

As an alternative, [14] evaluates the performance of a fully
spatial FPGA realization of a complex inverse kinematics
algorithm expressed in GA (see Sec. II-C). The 175 MHz
FPGA implementation has a throughput of one result per
clock cycle and achieves a wall-clock speed-up of 7x over
a very carefully tuned (vector instructions, multi-threaded) C
implementation running on a 2.4 GHz quad-core CPU. This
success was the main motivation of our work on automatically
generating such high-performance compute units.

C. Benchmark Application

As an example for a typical engineering application, we will
examine the performance of our proof-of-concept compiler
using a inverse kinematic computation expressed in GA: Given
a target point and a kinematic chain (e.g., shoulder, upper
arm, elbow, forearm, wrist, hand), the algorithm computes the
angles of all joints so the target point can be reached.

Such computations occur in practice, e.g., in robotics, or
in computer animation (e.g., of human models). In the latter
case, the computation speed is actually relevant (in the first,
mechanical limits set an upper bound on speed). This specific
inverse kinematics algorithm is used in a virtual reality (VR)
application [18]. As shown in [25], a formulation in five-
dimensional conformal GA was 3x faster in software and much
more concise (a page of formulas instead of many pages) than
an algorithm using conventional math.

While this specific algorithm would only be used in very
specialized embedded systems (e.g., on-board VR/AR visu-
alization systems in vehicles), it is representative both for
the expressive power of GA as well as the corresponding
computational requirements.

This inverse kinematics algorithm makes for a very in-
teresting benchmark, since we have manually created highly
optimized versions for FPGA, GPU and multi-core CPU tar-
gets [14], [26]. Each implementation has been carefully hand-
tuned for each platform (including, e.g., optimal bit width
determination of FPGA operators and multi-threading for the
GPU and CPU targets). We can thus judge the performance
of the GA-to-hardware compiler using the manual design as a
reference.

III. EXTENDING GAALOP

We extend the Gaalop compiler framework with a new
back-end to translate its intermediate representation into high-
performance pipelined hardware datapaths. In this section, we
will give an overview over the entire compile flow.

A. Gaalop Introduction

While CLUCalc is a very productive environment for the
interactive development and debugging of GA algorithms,
it does not allow the export of the completed models for
execution outside of the tool. Gaalop aims to close this gap
and export GA models into a variety of external formats (both
executable and graphical).

GA Algorithm
(ClucCalc)

T

Symbolic Simplification
(Maple with Cliffordlib)

T

Intermediate Representation

. | | | | | | | | Graphviz
Verilog C LaTeX CLUCalc Dot
\ J

Fig. 1.

Compile flow

As shown in Fig. 1, Gaalop reads a description for five-
dimensional conformal GA algorithms as developed in CLU-
Calc. The CLUCalc-script is parsed into an intermediate rep-
resentation (IR), specifically a control flow graph (CFG) of
basic blocks holding the actual GA expression. Each of the
blocks is stored as a data flow graph (DFG). The DFG
represents the linear combinations of five blades. Each blade
itself is represented as the outer product of five basis vectors
(eg, .. .,e3, €, listed in Tab. I), with the grade of the blade
being the number of different basis vectors combined. At this
stage, the multi-vectors in the DFG may be fed to high-level
GA operators. Note that using a CFG in the IR is a forward-
looking decision, since CLUCalc-script itself currently does
not support control constructs.

From Tab. I, it can be seen that the largest multi-vectors
linearly combine at most 32 independent blades. For efficient
compilation to a language without GA operators (e.g., C or
fully spatial hardware), both the multi-vectors as well as the
GA operators combining them have to be translated into their
underlying primitive scalar representations and computations.

This is achieved symbolically using the Maple computer
algebra system with the CLIFFORD library. With the library,
Maple can now symbolically evaluate GA expressions in
each DFG, simplifying them. Next, we also symbolically
transform the remaining GA operators in the simplified GA
expressions into their scalar equivalents, now operating on
the individual scalar components of the basis vectors making
up the blades. The result are scalar computations, amenable
to both parallel as well as pipelined computation. Note that
these scalar computations may well include trigonometric and
similar functions as operators.

Fig. 2 shows this process of lowering a set of GA ex-
pressions into an expression solely consisting of primitive
operations.

From this lowered DFG, the various back-ends can then
generate code in the desired format. In addition to various
textual and graphical formats (for documentation and debug-
ging purposes), we have so far generated executable code in
C/++ and CLUCalc-script. In the next Section, we describe the

TABLE I
THE 32 BLADES OF 5D CONFORMAL GA IN GAALOP.

[index [blade [grade |
l [1 [0]

€1
€2
€3

€oco
€0

1

1

1

1

1

el N\eg 2
e1 Nes 2
e1 N €so 2
e1 N eg 2
ex N e3 2
€2 N €oo 2
13 e N eg 2
14 e3 N €oo 2
15 e3 N eg 2
16 €oo N €g 2
17 e1 Nea Nes 3
3

3

3

3

3

3

3

3

3

7

7

7

4

7

5

DI 2| of oo || & | & | 1| =

18 e1 Nea N eso
19 e1 Nea2 A eg
20 e1 Ne3 N eso
21 e1 Ne3 NAeg
22 e1 N eso N eg
23 e2 Ne3 N e
24 ez N ez Aeg
25 e2 N eso N €9
26 e3 N\ eso N €g
27 el Nea ANes A exo
28 e1 Nea Nes Aeg
29 e1 ANe2 Aeso A€
30 e1 Ne3 Neso Aeg
31 e2 Ne3 Neso Aeg

e1 Nea Neg Newo Neg |

flow from the lowered DFG to efficient hardware.

B. IR for Hardware Generation

After performing several standard optimization techniques,
i.e. constant folding and common subexpression elimination,
the Gaalop-DFG is translated into an expanded form better
suited to hardware generation. While also a DFG (now holding
only primitive operations acting on scalar data), it also carries
additional attributes such as data types (floating or fixed-point),
format (bit-widths of integer and fractional parts of fixed-point
representations), latencies and scheduling cycles.

C. Word Length Optimization

The area and speed of fully spatial compute units can be
improved significantly by matching the width of the hardware
operators to the data types processed at this point in the calcu-
lation. This optimization must be assisted by the developer by
specifying the value ranges and precisions of input and output
data.

Word length optimization is performed by forward and
backward propagation of the desired value ranges and preci-
sion. In the forward phase, the incoming value ranges (integer
and fractional parts) determine the required width of the
operator and its result. In the backward phase, unnecessarily
precise (and thus too wide) operators can be narrowed and this
truncation also propagated back toward the operator inputs.

DefVarsN3 () ;

// Generic example:

// inputs: two points (x1, x2,
// two diameters :dl1,d2
// two spheres are intersected, and the

// resulting circle is intersected with a plane
// the end result is a pair of points Pp

Pw =xlxrel+x2*xe2+x3*e3;

x3), (pl,p2,p3)

sl = Pw—0.5*«d2+d2+einf;
s2 = e0-0.5+xdl*dlxeinf;
Ze = sl”s2;
Plane = plxel+p2*e2+p3xe3;
?Pp = Ze Plane;
(a)
Pw := ((subs(Id=1, (x1 &c el)) + subs(Id=1, (x2 &c e2))) + subs(Id=1l, (x3 &c e3)));
sl := (Pw - subs(Id=1, (subs(Id=1, (subs(Id=1, (0.5 &c d2)) &c d2)) &c einf)));
s2 := (e0 - subs(Id=1, (subs(Id=1, (subs(Id=1, (0.5 &c dl)) &c dl)) &c einf)));
Ze := (sl &w s2);
Plane := ((subs(Id=1l, (pl &c el)) + subs(Id=l, (p2 &c e2))) + subs(Id=1l, (p3 &c e3)));
Pp := (Ze &w Plane);
gaalop (Pp);

(b)

1= xlxel+x2+e2+x3xe3

lrel+x2+e2+x3+e3—.5+d2" 2xed—.5+d2 2+e5
1= —1/2+ed+1/2%e5-.5+d1"2+ed—.5+d1"2+e5
Ze:=xlx(-.5-.5%d1°2) xeld+
x2% (=.5-.5%d1°2) xe24+
x3% (-.5-.5%d1°2) xe34+
.5%d27°2% (-.5-.5%d1"2) xed5+
x1%(.5-.5%d1"2) xel5+
x2% (.5-.5%d1"2) xe25+
x3% (.5-.5%d1"2) xe35-
. 5%d272% (.5-.5%d1°2) xed5
Pp :=—.5%x2# (1.+d1"2) xpl*el24-.5%x3x (1.+d1"2) +pl+el34—
.5#x2x (d172-1.) xpleel25-.5+x3+ (d1"2-1.) xpl+el35-
. 5%d2"2#plreld5—.5+x3% (1.+d1°2) xp2+e234+
. 5#x1x (d1°2-1.) *p2%e125+.5+x1 (1.+d1"2) xp2+el24-
.5%x3% (d1°2-1.) *p2%e235-.5+d2" 2+p2+e245+
.5%x2% (1.+d1"2) *p3*e234+.5+x1+ (d1"2-1.) xp3+el35+
.5#x1x (1.+d1"2) *p3*e134+.5+x2+ (d1"2-1.) xp3+e235-
.5%d2"2xp3xe345

Plane := plxel+p2+e2+p3*e3
gaaloparray (Pp_opt) ;

Pp_opt [18] L 5#x2+pledl 2+, 54x14p2+dl”2;
Pp_opt [19] 2+xpl-1.*x14p2;

Pp_opt [20] L5%x3+plxdl 2+.5+x1+p3+dl"2;
Pp_opt [21] 34pl-1.+x1+p3;

Pp_opt [22] . 5%d2°2+pl;

Pp_opt [23] L 5xx3xp2xdl"2+.5%x2xp3xdl"2;
Pp_opt[24] := x3%p2-1.*x2%p3;

Pp_opt [25] .5%d2°2#p2;

Pp_opt[26] := -.5xd2°2+p3;

TopLevellnput p2 TopLevellnput x2

(d)

Fig. 2. Converting a geometric algebra expression into primitive scalar
operations. (a) GA computation in GLUCalc-script. (b) GA expressions as
given to Maple. (c) CliffordLib results in GA, containing only primitive scalar
operations. (d) Dataflow graph used for hardware generation. For brevity, we
just show the computation of blade 23 of the result Pp.

For addition, subtraction, and multiplication the forward
propagation is quite simple. However, division or functions
such as square root, sine or cosine have more complex be-
havior. In this proof-of-concept implementation, we currently
assume a default value (32b, with 16b fraction) for these
functions, but this will be refined in future work. Similarly,
we can set a global limit on the width of intermediate values.
Note that the operators themselves are not affected by this and
compute at the full required precision. Only the result is then
clipped to the global limit.

In addition to these established techniques, we can also
do word-width optimization based on the original higher-
level Gaalop DFG-representation containing GA operators.
For the proof-of-concept compiler, e.g., we recognize the
normalization of vectors at the GA level, and restrict the
output value range of the corresponding scalar operator to
[-1,...,1].

Good examples for operators that profit from backward
propagation are inverse trigonometric functions (which will
restrict the input value range to [—1,...,1]), or the square
root (which limit the input value to be positive). If we cannot
determine a narrow value range for an operator analytically,
we then perform an automatic Monte-Carlo-Simulation of
the entire datapath to achieve a better fit. This Monte-Carlo-
Simulation runs in parallel using both floating-point and fixed-
point formats to also perform error estimation for all operator
nodes.

While we can also directly generate datapaths using single
or double-precision floating-point operators, this is currently
not practical: The proof-of-concept compiler presented here
aims for a fully-spatial implementation (no operator sharing,
but higher throughput). Even very simple GA algorithms
will quickly lead to hardware exceeding the capacities of
even the largest FPGAs. Area optimization of floating-point
computations will be one topic for future research (see Sec.
V).

D. Scheduling and Balancing

After word-length optimization, the latency of the hardware
operations can be determined and the computation actually
scheduled. Since we aim for fully spatial operation without
operator sharing, we use a simple greedy ASAP (as-soon-
as-possible) approach: An operation op; with latency [; is
scheduled at time ¢; = May, c Predecessor(op,) 1t +1j}» 1-€. it
is scheduled after the latest predecessor operation has finished
its computation.

For maximum pipeline throughput of one result per clock
cycle, we then need to balance converging paths with unequal
latencies by inserting registers. Also, all paths from all inputs
to all outputs need to be brought to equal latency.

Fig. 3 shows the balancing algorithm. The successors j of
the current node ¢ in the DFG are sorted by their latency
distance. The latter is defined as dist(op;,op;) = t; —t; —1;,
with op; € Predecessor(op;), t being the scheduled start
cycles, and [the latency in cycles. If the minimal and maximal
and distances are different, a register node is inserted in all

Fig. 3. Balance successors of a node %
let D;; the distance of the current node ¢ to the successor j
sort D;; by ascending distance
if Dfipsp 7 Diagt then
create new register node NOP n
for all successors j of ¢ with Dy > Dgi¢ do
remove edge (4, j)
insert edge (n, j)
end for
add edge (i,n)
execute algorithm for n
end if

paths from the current node that are longer than the shortest
path. The register node itself is scheduled at cycle ¢; + Dt
The algorithm is then restarted on the new register node. The
result is a data path with balanced path lengths.

E. Hardware Generation

Since the data path is a fully spatial, perfectly balanced
pipeline, no additional control logic is required beyond mark-
ers indicating if and when results are available in the output
(a simple shift register).

We support chaining of some computations within the
same clock cycle. At the moment, these are constant shifts,
sign/bitwidth extension and bit-select operations that reduce
to simple wires.

If the sinks of an operator are scheduled one or more cycles
later, the source operator is fitted with a shift register to delay
results over that time. Note that the balancing algorithm in
Fig. 3 ensured that all sinks (possibly NOP nodes inserted
for that very purpose) have the same latency distance from
the source operator. Thus, many paths can share the balancing
shift register.

Dedicated input registers accept input values for the compu-
tation, either as slave-writes from the CPU, or via a streaming
mechanism directly from memory. Output registers can also
be read from the CPU or streamed back into memory.

The operators themselves are implemented using the flexible
module library Modlib [27]. Internally, it expresses simple op-
erators (e.g., addition, etc.) as synthesizable Verilog HDL op-
erators. More complex operators (e.g., multiplication, division,
square root, trigonometric functions) are realized internally
using the Xilinx CoreGen module generators, using pipelined
implementations with maximum throughput. The operators are
generated on-the-fly for the specific bit-widths and data types
required, caching generated modules for re-use if an operator
with the same characteristics occurs again.

IV. EVALUATION AND RESULTS

As described in Sec. II-C, we use an inverse kinematics
application to evaluate the compiler prototype. Specifically, we
compare the compiler-generated hardware with an implemen-
tation very carefully manually optimized by two experienced
designers. In both cases, we target the Xilinx Virtex 5 devices

TABLE II
COMPARISON OF MANUAL DESIGN ([14]) VS. COMPILER-GENERATED
DATAPATH (COMPUTE KERNELS ONLY, DISREGARDING COMMUNICATION

INTERFACE).

[[manual | compiler |
operations 140 258
resources # FFs 49938 71173
resources # LUTs 34912 72664
resources # DSPs 74 817
pipeline length 365 447
max. frequency [M H z] 170 180
throughput [10%eval/s] 170 180
latency [us] 2.147 2.483
speed-up to CPU 6.9x 7.3x
average word-length [bits] 38 45
average fraction-length [bits] 23 41
implementation time [h] 80 << 1

using Synplify Premier for synthesis and Xilinx ISE for

mapping.

For a fair comparison of the different platforms, our per-
formance numbers assume that the input and output data is
fetched from/stored to memory local to the computing device:
The CPU has the data in its node-local memory accessed via
FSB, the FPGA uses directly attached DRAM, and the GPU
processes data in its on-board device memory.

Tab. IT compares the area requirements and the performance
for both solutions. Obviously, the compiler-generated datapath
requires significantly more space than the manually optimized
one, specifically a high number of DSP blocks. But with its
deeper pipeline, it can be mapped to a Virtex 5 SX 240T
device with a slightly higher clock frequency than the manual
design.

It is clear that our future work needs to concentrate on
area optimization. The human designers exploited a number of
high-level algebraic simplifications that are not yet performed
automatically using the Maple computer algebra system in the
Gaalop flow. This also affects the fixed-point conversion: The
manually optimized design contains significantly fewer opera-
tors that are infeasible for analytical value range determination.
Instead, the compiler has to rely on the Monte-Carlo-Pass to
tighten the constraints. That approach, however, suffers from
the nature of the Monte-Carlo test data generation: Since we
aimed for a general-purpose solution, we generate streams of
completely random input vectors. Not all of these will actually
be valid inputs for this specific problem (e.g., a kinematic chain
anchored at the origin can obviously not reach the origin and
other points very close to it). Thus, we have to extend operator
value ranges to handle values that will actually never appear
in practice, leading to wider operators. This explains that the
average word-length in the compiler-generated design is 1.2x
larger than the one in the manual design.

Performancewise, though, the compiler-generated design
performs quite satisfactorily: It slightly exceeds the throughput
of the manual design (measured as million function evaluations
per second) and has similar latency. It is still significantly
better in terms of throughput than a four-threaded software

implementation running on a 2.4 GHz Intel Core 2 Quad
Q6600 CPU (which would draw 4.6x the power of the FPGA),
yielding a real wall-clock speed-up compared to most of the
prior approaches outlined in Sec. II. While a GPU under op-
timum conditions could be even faster (1366M evaluations/s),
it also incurs a latency of more that 40 s on an NVidia GTX
280 card, which also would draw more than 24x the power
of the FPGA. [14] gives greater details on these alternate
implementations.

Apart from the area and performance issues, however,
an automatic tool must be rated by its effect on designer
productivity. This is the area where even the proof-of-concept
compiler shines: The manual implementation required a total
of approx. 80 h of determined effort by two experienced de-
signers, familiar with both digital design/computer architecture
as well as the maths underlying GA (which they exploited for
the operator-reducing high-level simplifications). The compiler
itself takes less than a minute to execute, with the bulk of the
total implementation time taken by the Xilinx ISE mapping
tools. Now, a domain expert proficient in GA can use a familiar
notation to describe an algorithm, with no hardware design
knowledge required.

V. CONCLUSION AND FUTURE WORK

Even in its proof-of-concept stage, the compiler generates
compute pipelines for the GA descriptions with a throughput
significantly higher than the carefully tuned software version
on a quad-core CPU.

The compiled compute pipeline does not yet reach the
performance of the manual reference implementation, but was
created in a fraction of the design time (minutes vs. days).
Gaalop can already be used to quickly perform experiments
with other GA algorithms, something simply not possible if a
manual hardware design would be required for each problem.

Ongoing research also tackles going from the fully spatial
design presented here to one with a flexible degree of operator
sharing. This not only will allow the implementation of
even more complex GA applications without using excessive
amounts of reconfigurable area, but also the use of smaller re-
configurable devices for less extreme application performance
requirements.

The compiler does not yet perform all of the optimizations
that were undertaken for the manual design. Specifically, tree
height-reduction would have been advantageous. Also, when
extending CLUCalc-script with control flow constructs, our
very simple word-length optimization has to be replaced with
a more precise algorithm, e.g., [28] or [29]. All of these
classical techniques will need to be extended to exploit the
underlying structure of the high-level GA operators to achieve
even tighter word-length fittings. These issues are also the
subject of current research in our group.

REFERENCES
[1] M. Budiu, “Spatial computation,” Ph.D. dissertation, Carnegie
Mellon University, Computer Science Department, December
2003, technical report CMU-CS-03-217. [Online]. Available:

http://www.cs.cmu.edu/ mihaib/research/thesis.pdf

[4]

[5]
[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Optimized generation
of data-path from c codes for fpgas,” in Design Automation Conference,
2005.

N. Kasprzyk and A. Koch, “High-level-language compilation for
reconfigurable computers,” in Proc. Intl. Conf. on Reconfigurable
Communication-centric SoCs (ReCoSoC), 2005.

L. Séméria, K. Sato, and G. D. Micheli, “Synthesis of hardware models
in ¢ with pointers and complex data structures,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 9, no. 6, pp. 743-756, 2001.

Xilinx, MATLAB for Synthesis, Xilinx, 2008.

——, System Generator for DSP, Xilinx, 2008.

C. Perwass, Geometric Algebra with Applications in Engineering.
Springer, 2009.

W. K. Clifford, “Applications of grassmann’s extensive algebra,” in
Mathematical Papers, R. Tucker, Ed. Macmillian, London, 1882, pp.
266-276.

——, “On the classification of geometric algebras,” in Mathematical
Papers, R. Tucker, Ed. Macmillian, London, 1882, pp. 397-401.

D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus:
A Unified Language for Mathematics and Physics. Dordrecht, 1984.
D. Hestenes, New Foundations for Classical Mechanics. Dordrecht,
1986.

D. Hestenes and R. Ziegler, “Projective Geometry with Clifford Alge-
bra,” Acta Applicandae Mathematicae, vol. 23, pp. 25-63, 1991.

D. Hestenes, “Old wine in new bottles : A new algebraic framework for
computational geometry,” in Geometric Algebra with Applications in
Science and Engineering, E. Bayro-Corrochano and G. Sobczyk, Eds.
Birkhéuser, 2001.

H. Lange, F. Stock, A. Koch, and D. Hildenbrand, “Acceleration and en-
ergy efficiency of a geometric algebra computation using reconfigurable
computers and gpus,” in FCCM, 2009, pp. 255-258.

R. Ablamowicz and B. Fauser, “Mathematics of clifford - a maple
package for clifford and graBmann algebras,” in Advances in Applied
Clifford Algebras. Birkhduser, 2005.

D. Hildenbrand, J. Pitt, and A. Koch, Gaalop - High Performance Par-
allel Computing based on Conformal Geometric Algebra, ser. American
Journal of Mathematics. Springer, 2010, vol. 1, pp. 350-358.

D. Fontijne, “Efficient implementation of geometric algebra,” Ph.D.
dissertation, University of Amsterdam, 2007.

D. Hildenbrand, “Geometric computing in computer graphics and
robotics using conformal geometric algebra,” Ph.D. dissertation, TU
Darmstadt, 2006, darmstadt University of Technology.

D. Crookes, K. Alotaibi, B. Bouridane, P. Donachy, and A. Benkrid, “An
environment for generating fpga architectures for image algebra-based
algorithms,” in Proc. International Conference on Image Processing
(ICIP), 1998.

C. Perwass, C. Gebken, and G. Sommer, “Implementation of a clifford
algebra co-processor design on a field programmable gate array,” in
CLIFFORD ALGEBRAS: Application to Mathematics, Physics, and
Engineering, ser. Progress in Mathematical Physics, R. Ablamowicz,
Ed., 6th Int. Conf. on Clifford Algebras and Applications, Cookeville,
TN. Birkhéuser, Boston, 2003, pp. 561-575.

A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile, and V. Vullo,
“Cliffosor, an innovative fpga-based architecture for geometric algebra,”
in International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), 2005, pp. 211-217.

B. Mishra and P. Wilson, “Color edge detection hardware based on
geometric algebra,” in European Conference on Visual Media Production
(CVMP), 2006.

B. Mishra and P. R. Wilson, “Vlsi implementation of a geometric algebra
parallel processing core,” Electronic Systems Design Group, University
of Southampton, UK, Tech. Rep., 2006.

S. Franchini, A. Gentile, M. Grimaudo, C. Hung, S. Impastato, F. Sor-
bello, G. Vassallo, and S. Vitabile, “A sliced coprocessor for native
clifford algebra operations,” in Euromico Conference on Digital System
Design, Architectures, Methods and Tools (DSD), 2007.

D. Hildenbrand, D. Fontijne, Y. Wang, M. Alexa, and L. Dorst, “Com-
petitive runtime performance for inverse kinematics algorithms using
conformal geometric algebra,” in Eurographics conference Vienna, 2006.
D. Hildenbrand, H. Lange, F. Stock, and A. Koch, “Efficient inverse
kinematics algorithm based on conformal geometric algebra - using
reconfigurable hardware,” in GRAPP, 2008, pp. 300-307.

[27]

[28]

[29]

H. Gédgke-Liitjens, B. Thielmann, and A. Koch, “A flexible compute
and memory infrastructure for high-level language to hardware compi-
lation,” submitted to FPL 2010.

M. Budiu and S. C. Goldstein, “Bitvalue inference: Detecting and
exploiting narrow bitwidth computations,” in In Proceedings of the
EuroPar 2000 European Conference on Parallel Computing. Springer
Verlag, 2000, pp. 969-979.

J. R. C. Patterson, “Accurate static branch prediction by value range
propagation,” in PLDI ’95: Proceedings of the ACM SIGPLAN 1995
conference on Programming language design and implementation. New
York, NY, USA: ACM, 1995, pp. 67-78.

