
A Comparison of Hardware Acceleration Interfaces
in a Customizable Soft Core Processor
Gerald Hempel, Christian Hochberger

Chair for Embedded Systems
TU Dresden, Germany

Email: {gerald.hempel,christian.hochberger}@inf.tu-dresden.de

Andreas Koch
Embedded Systems and Applications Group
Technische Universität Darmstadt, Germany
Email: koch@esa.informatik.tu-darmstadt.de

Abstract—Due to the continuously decreasing cost of FPGAs,
they have become a valid implementation platform for SOCs.
Typically, a soft core processor implementation is used to execute
the software parts of the SOC. As each system is individually
designed for a particular application, the idea is natural to
support compute intensive parts of the code through customized
hardware acceleration. Two different architectural variants have
been proposed for this purpose in SOCs: either as an instruction
set extension with specialized pipeline implementation or as
a peripheral component that is programmed through memory
mapping. In this contribution we analyze the efficiency (speedup
related to LUTs) of those two variants.

I. INTRODUCTION

According to Moore’s law the number of usable transistors
doubles every 24 months. This is also true for FPGAs. Thus,
we have seen a development of very large, yet low cost FPGA
devices. Various vendors have developed such FPGAs, e.g.
Xilinx with their Spartan family, Altera with their Cyclone
II devices or Lattice with their ECP2 family. They all have
reached the million system gate level, which offers an enor-
mous capacity for logic. In the meantime these devices do not
only contain logic cells, but also embedded memory blocks
and even DSP blocks for arithmetic operations. The mix and
amount of these elements are sufficient to implement small to
medium size systems on a single FPGA, thus leading to a true
system on a chip structure (SoC).

A primary component for such systems is the processor
core. It is the heart of the system and determines its applica-
bility to certain problems. Soft core processor implementations
with a range of bit widths from 8 to 32 bit are used in
FPGA based SoC designs. Small bit widths have the advantage
of a small memory footprint for simple applications, but
also imply a limited complexity of the application software.
Wide instructions allow for much more complex applications,
but will also require large amounts of memory even for
small applications. In the classical microcontroller world 16
bit processors fill the gap between those extremes and are
typically best suited for medium sized applications.

To close this gap, we have developed the SpartanMC
SoC kit. It contains a soft core processor with 18 bit wide
instructions and data path. Also, it delivers almost any type of
peripheral interface that is widely used in these systems.

Building SoCs in FPGAs automatically enables us to add
custom hardware components to speed up compute intensive

parts of the application. Various options for architectural
integration of these hardware accelerators have been proposed
in the past. In SoCs mainly two variants need to be considered:
either as instruction set extension or as peripheral component.
It is not automatically clear which variant is better. We define
an efficiency metric to evaluate the quality of the variants.
Efficiency quantifies the gained speedup in relation to the
amount of LUTs.

In this contribution we compare the efficiency of the two
architectural variants of hardware accelerations. To this end we
have implemented two applications from different application
domains in both ways and purely in software.

II. RELATED WORK

A number of design patterns recur in the wide spectrum
of interfaces between hardware accelerators (HAs) and pro-
cessors. They include whether the HAs are directly integrated
into the processor pipeline (usually the EX stage), or accessed
as memory-mapped peripheral devices located outside the
pipeline. Also of interest is the way data is exchanged: Is
it limited to registers, or can the HA access memory on its
own (master-mode)?

While targeting ASICs, the Tensilica Xtensa line config-
urable 32b processors [1], allows the integration of HAs
directly into the EX stage of the pipeline, with the regular
register file being used for communication. Additionally, the
HAs can be configured to have wide-word (up to 128b) master-
mode memory access with arbitrarily calculated addresses
through the processor’s load-store units (LSU). This combines
the availability of low-bandwidth CPU/HA communication
with high-bandwidth memory accesses.

A similar example of tighter coupled HAs is the 32b Altera
Nios II [2] reconfigurable soft-core processor, which also
integrates HAs in the EX stage. However, since these HAs can
have multi-cycle latencies (stalling the pipeline while in the
meantime), they could perform master-mode memory accesses
using a dedicated connection to the system bus (not using
the processor LSU). With this freedom, the HA can realize
arbitrarily complex algorithms (e.g., also containing loops).

The Stretch software-configurable processors (SCP) [3] also
use a 32b Xtensa pipeline as core, but they run the HA as
a separate (and possibly much longer) pipeline in parallel
to the processor pipeline. The processor can write data into



the dedicated 128b wide HA register file, but not retrieve
results that way. Instead, special processor instructions can
transfer wide HA register words from and to memory, but
with all address calculations being performed in software.
Recent versions of the SCP also embed 32 KB of small
memory blocks directly into the HA, which are accessible in
the processor memory-map. As with the Tensilica technology,
Stretch HAs are limited to algorithms with fully unrollable
loops. Variable-bound (or too-large) loops will be realized
using software instructions to restart new iterations of the HA
appropriately.

Xilinx configurable 32b MicroBlaze processors [4] allow the
attachment of HAs outside of the pipeline, but accessible using
dedicated (non-memory mapped) instructions transfering data
between HA and the register file. The HA itself is only loosely
coupled with the processor, and may implement algorithms of
arbitrary complexity and using master-mode memory accesses.

The Triscend (now part of Xilinx) TE5xx [5] and A7S [6]
reconfigurable SoCs (rSoC) have their HAs attached to the
chip-internal busses as peripheral devices. The processor, an
8b 8051-derivative for the TE5x and an ARM7TDMI for the
A7S, accesses the HA registers in a memory-mapped fashion.
The HA is master-mode capable, but relies on regular address
sequences computed by an external DMA controller. This
loosely-coupled HA can execute loops independently.

As an example for a more complex HA, the
hardware/software co-compiler COMRADE [7] generates
peripheral-mode HAs directly attached to the rSoCs main
memory controller. While memory-mapped communication
with the 32b PowerPC processor is possible and used to
exchange limited amounts of parameter data, this architecture
is specialized for HAs executing independently of the
processor using high-throughput master-mode to bulk process
data in main memory, including generation and translation of
virtual addresses [8].

III. THE SPARTANMC SOC-KIT

To use an FPGA as implementation platform for SoCs,
we need to provide a number of tools and components to
the system designer. Besides the processor core, a sufficiently
large selection of standardized peripheral components needs to
be available. Also, generation and programming of the system
should be simplified as much as possible. Thus, tools like
compiler and system builder are required.

A. Processor Core

8 and 32 bit processor soft cores are already available
for FPGAs. Applications of medium complexity neither can
be implemented with 8 bit cores nor do they require the
computing power of the 32 bit cores. Thus, we have decided
to provide an SoC-kit with a processor core corresponding to
traditional 16 bit microcontrollers. In fact the SpartanMC core
uses 18 bit wide instructions and data path as this has been
established as the natural bit width in FPGAs for memory
blocks and multipliers.

Fig. 1 shows the microarchitectural structure of the RISC
processor core. The pipeline uses three stages. In the first
stage instruction fetch, operand fetch and instruction decoding
are carried out. In the second stage the ALU execution
and memory access follow. The third stage writes back the
results into the register memory. The core uses four differ-
ent instruction formats all of 18 bits length. Fig. 2 shows
the different instruction formats. All instructions provide at
most two register addresses (immediate instructions only use
one address and jump instructions use no address). Register
addresses are 4 bit wide. The first operand is always used
as destination operand. Register type instructions include an
additional function code (bits 4 to 0) which specifies the actual
ALU operation.

Using the dual ported internal memory blocks of modern
FPGAs, the processor core can simultaneously access code and
data without resource conflict (modified Harvard architecture).

In order to simplify the software design and to provide fast
procedure and interrupt invocation, the SpartanMC core uses a
sliding register window. Registers 0 to 3 are globals, registers 4
to 7 are the input window of the current procedure, registers 8
to 11 are the locals while registers 12 to 15 are the output
window. Through procedure invocation, the current output
window becomes the input window of the called procedure.
Thus, each called procedure can access 8 new registers.

A more detailed description of the processor core together
with a discussion of the architectural decisions can be found
in [9].

17 13 9 8 5 4 012

OPC RS1 FuncRD

17 13 9 8 5 4 012

OPC RD/RS2 RS1 Displ.

17 13 9 8 012

OPC RD Constant

17 13 012

OPC Offset

R−Type

M−Type

I−Type

J−Type

Fig. 2. The instruction formats of the SpartanMC

B. Peripherals

Peripherals are typically implemented in a memory mapped
way. They can be implemented in two different ways: Simple
peripherals provide registers that can be read or written by
the processor core. Peripherals that work on larger volumes of
data can use block rams as data interface to the processor. In
this case the second port of the block ram is not connected
to the instruction fetch stage of the core. Thus, the peripheral
can work autonomously on the data in the memory block. This
can be regarded as DMA style operation. It should be noted
that we do not support true master mode DMA operations.
This is caused by the simplified memory management in the
SpartanMC which reserves exclusive access to the ports of the
BlockRAMs to either the code fetch stage or the data access
stage of the processor pipeline. In our experience, the missing



+1
PC

P
ro

g
ra

m

M
e
m

o
ry

Reg. Base

R
e
g
is

te
r

M
e
m

o
ry

OFIDIF

P
ip

e
lin

e
 R

e
g
is

te
r

Memory

Data

P
ip

e
lin

e
 R

e
g
is

te
r

EX MEM WB

Extension

Trap
Int/

Extension
Pipeline

Peripheral

+

+

+

Fig. 1. Microarchitecture of the SpartanMC processor core

master mode DMA would only lead to copying overhead if
data needs to be buffered between processing it with different
peripherals. As most systems realized with the SpartanMC
carry out dedicated functions, this does not occur.

Peripherals are connected to the data memory interface
of the processor core. In order to avoid tri-state buffers, all
incoming data is combined through a wide or-gate. Thus, all
peripherals that are currently not addressed must provide a
value of zero on their outputs.

A wide selection of standard peripherals is available: Digital
IO, UART, SPI, I2C, Timer with configurable capture and
compare, IRQ controller. Furthermore, some more specialized
interfaces are available: JTAG-interface, controller for segment
based LCDs, intelligent stepper control unit and ultra sonic
range measurement.

More complex peripherals using DMA style interfaces are
available for the following protocols: USB 1.1 and USB
2.0, which requires an external physical layer circuit. CAN
bus with configurable number of message filters, ProfiBUS
master and slave which also provides additional capabilities
for analyzing the traffic and to monitor the transmission lines
(even for disrupted or ill formed transfers), LCD controller for
pixel based displays.

C. Tools

The usability of the presented hardware components is very
poorly if we do not supplement them with a number of
software tools.

Appropriately configuring and connecting a selection of
components may require non negligible knowledge of FPGAs
and also may be very tedious. Thus, we have developed a
system builder tool. It is a graphical application that allows in-
experienced developers to define application specific systems.
It generates all required Verilog sources and user constraints
to synthesize the full system.

Programming of the processor should be done on the
highest possible abstraction level to increase the programmers
productivity. Currently, we provide a C compiler and linking
assembler for this purpose.

For debugging and performance analysis purposes we pro-
vide a cycle accurate simulator. It allows setting of breakpoints
and gathers statistics about the executed code. Also, it allows
to integrate models of peripherals which can be cosimulated
with the code.

The tools of the SoC-kit and the implementation flow are
explained more thoroughly in [10].

IV. OPTIONS FOR APPLICATION SPECIFIC HARDWARE
ACCELERATION

To accelerate a software application on the SpartanMC
we have chosen two different approaches. Each of these
approaches can be regarded as trade off between hardware
usage and resulting speedup.

A. Peripheral Extension

One possibility to accelerate applications on the SpartanMC
is the extension with a dedicated peripheral. As shown in
figure 1 the new peripheral (green box) is mapped to the
data memory using one of the concepts mentioned above. The
development objective for such a peripheral unit is to integrate
as much as possible of the target application in hardware.
Basically, it would be possible to delegate processing steps
back to software. As in this case an overhead of two clock
cycles plus the time for the delegated operation would occur,
it should only be taken into account if the amount of resources
for this processing is extremely large. Thus, we may be forced
to implement even parts of the algorithm in hardware which
are not appropriate for a good hardware mapping.

A crucial point is the interface for such a peripheral unit.
Typically, the processor is a bottleneck for data movement as
we do not have master mode DMA. Even if the peripheral
provides a large buffer for incoming and outgoing data the
processor requires one clock cycle to load each data word
to the peripheral buffer. This bottleneck can be neglected
for streaming based algorithms which start their calculation
with the first incoming data. Whereas it may be a serious
drawback for algorithms which work on complete data blocks.
An interesting feature of peripheral implementations is the
possibility to work asynchronously to the host processor. This



option implies the runtime overhead of interrupt handling and
is only suitable for algorithms with large computing time.

A mentionable fact is the constant amount of hardware
which is used for each peripheral interface, e.g. for address
decoding or output scheduling. This hardware effort may be
small especially for the SpartanMC but affects the efficiency
gain if the peripheral unit and the algorithm are too simple.

B. Instruction Set Extension

Another possibility to accelerate applications on the Spar-
tanMC is the usage of instruction set extensions. Typically,
those extensions require hardware which is connected to the
pipeline as additional execution unit. These afford a more
selective hardware mapping which results in smaller hardware.
At the SpartanMC we are able to use free opcodes for R-Type
instructions to extend the pipeline. The existing ALU reads
two 18 bit operands as input. It computes results for each R-
Type instruction simultaneously independent from the opcode.
The required output is selected afterwards with a multiplexer
which is controlled by the opcode. To integrate a pipeline
extension we have to expand this multiplexer and have to
connect the input registers to our additional execution unit.
In figure 1 the pipeline extension is shown as yellow box. As
shown for the peripheral extension the pipeline extension also
has a data transfer bottleneck. With a pipeline extension we
are limited to two 18 bit operands. If we require more input
data for calculation we have to serialize the data stream which
affects the runtime. Compared to peripherals, pipeline exten-
sions afford a much smaller scope for customized interfaces.
Due to this fact, we demand an accurate application profiling
to identify the profitable code section for pipeline extension.

C. Application Profiling

For our test application we are able to use the SpartanMC
simulator to gather the required profiling data manually. The
simulator allows us to step cycle accurate through an applica-
tion and to observe the pipeline stages. Furthermore, we are
able to set arbitrary break points on function and instruction
level and generate code statistics. It provides the possibility to
identify critical code sections for potential instruction set and
pipeline extensions.

V. EVALUATION

To test our approach we have chosen two compute inten-
sive examples from different application domains. Firstly, we
implemented an Advanced Encryption Standard (AES) [11]
encryption which represents a typical cryptographic algorithm
for embedded systems. Secondly, we chose Joint Picture
Expert Group (JPEG) [12] decoding as a typically image
processing algorithm. The first step was the implementation
of each application in software which we used as baseline for
our further evaluation.

A. JPEG Decoding

A JPEG image consists of the following elements: A Huff-
man coded stream which contains 64 byte blocks of amplitudes

of the frequency coded source image. Each amplitude block
contains the frequency domain representation for one color
channel. The JPEG color space consists of one luminance
component (Y), represents the brightness and two chrominance
components (Cb and Cr) represents the color of the source
image. For our JPEG decoding application we assume that
one luminance block is assigned to one pair of chrominance
blocks which results in no undersampling which is typically
called 4:4:4 format. In reality most JPEG images assign one
pair of chrominance blocks to 4 luminance blocks which is
described by a proportion of 4:2:0. Additionally, a JPEG image
is quantized and all amplitudes will be shifted by a constant
value of 128.

Decoding a JPEG image starts with the transformation of
the entropy encoded input stream into a 64 byte block of
amplitudes. We assume that the data stream is stored in the
processors internal memory. The processing of each block
consists of the following steps: dequantisation, inverse zigzag
reassignment of frequency values, inverse discrete cosine
transformation (IDCT) which transforms the block in the
spatial domain and finally inverse level shift which inverts
the offset of 128. The resulting blocks are stored in a buffer
for color space transformation which converts one Y one Cb
and one Cr block to one block in RGB color space.

The runtime of the software JPEG decoder was determined
with the SpartanMC simulator by setting break points to
the relevant code sections. The values for entropy decoding,
dequantisation, IDCT and inverse level shift are shown in
table I. The measurements are corresponding to the operating
time for one 64 byte block. For the following color space
transformation we assumed two additional blocks. Thus, the
results can not be simply extrapolated to complete image size.

8x8 8x8

Y

Cb

Cr

Transformation

Color Space

16 bit

8 bit

3
2
 b

it
F

IF
O

Level Shift

Inverse

S
p
a
rt

a
n
M

C

8 bit
R

G

B

8 bit

8 bit

12 bit
Huffman

Decoder

Dequantisation &

Inverse ZigZagB
lo

c
k

B
u
ff
e
r

8 bit 8 bit

1D IDCT

IDCT

8 bit
WE

Fig. 3. Architecture of the JPEG peripheral module

To implement the JPEG peripheral extension we used the
existing software as guideline. As shown in figure 3 we
implemented a 16 bit data input as part of a 32 bit FIFO
buffer. The input can be written if a write enable signal is
set (WE register). To simplify matters, the write enable state
is determined by the processor through polling. The 32 bit
FIFO buffer holds the Huffman stream data. The decoding of
the Huffman stream is implemented as table lookup. Thus,
we are able to translate one codeword with each clock cycle.
Therefore, we require 64 clock cycles to decode one block.



TABLE I
COMPARISON OF DIFFERENT IMPLEMENTATIONS FOR JPEG DECODING AND AES ENCRYPTION (EXECUTION TIME IN CLOCK CYCLES)

JPEG Decoding AES Encryption
Processing Step Software

Execution
Peripheral
Extension

Pipeline
Extension

Processing Step Software
Execution

Peripheral
Extension

Pipeline
Extension

Load/Store – 64 – Load/Store – 48 –
Entropy Decoder 1460 64 1460 Key Expansion 9627 10 9627
Dequantisation 4238 64 4238 Add Round Key 3384

12

3384
IDCT 302424 130 416 Shift Rows 528 528
Levelshift 1993 1 1993 Mix Columns 9670 240
Color Transform. 6659 64 384 Sub Bytes 2431 2431∑

316774 387 8491
∑

25640 70 16210

If we assume each codeword with a length of 16 bit, which
represents the worst case scenario, we need additional 64
cycles to reload the Huffman stream data to the 32 bit FIFO
buffer. After the Huffman decoding stage the complete 64
byte block is stored in a buffer. The dequantisation stage
is implemented as a multiplication of one codeword and a
table value. This stage consumes 64 clock cycles. The inverse
zigzag is implemented through controlled read operations of
the block buffer which consumes no additional clock cycles.
The common implementation of the IDCT algorithm uses
two convolution operations to process one block. This two
dimensional IDCT can be parted into two consecutive one
dimensional IDCTs (1D IDCT). A schematic view of a 1D
IDCT is shown in figure 4, it is based on synthesis results
of Xilinx ISE. To compute one amplitude value with eight
sets of coefficients we require one clock cycle. This results
in 64 clock cycles for a 1D IDCT of one block. Since we
need one cycle to load operands and use pipelining for our
algorithm we are able to compute the complete 1D IDCT in
65 cycles. This results in a total of 130 cycles for the whole
two dimensional IDCT. After the IDCT step all codewords
are corrected to their final value through the inverse level
shift. This can be performed combinational and consumes no
clock cycles. Finally, we need to carry out the color space
transformation which consumes only 64 clock cycles due to
parallel processing of all three 8 bit color components. The
resulting clock cycles for processing one block are shown in
table I. As shown in table II we have synthesized the JPEG
peripheral on a Xilinx FPGA (Spartan-3 XC3S400) which
consumes 3441 lookup tables (LUT) and 13 multipliers. Of
these, we use one multiplier in the dequantisation stage, four
for the color space transformation and eight for the IDCT.

Furthermore, we implemented pipeline extensions for the
IDCT and the color space transformation. As shown in table
I the IDCT and color space transformation consume the
largest amount of clock cycles in our algorithm which makes
them good candidates for pipeline extensions. Furthermore,
both processing steps mainly consist of complex arithmetic
operations which makes them suitable for pipeline extensions.
Also, an interesting candidate could be the dequantisation
stage, which requires a large amount of clock cycles. But the
dequantisation step performs only one multiplication which

x x x x x x xx

++ + + + + +

Intermediate Result

C
o
s
in

e
 0

C
o
s
in

e
 1

C
o
s
in

e
 2

C
o
s
in

e
 3

C
o
s
in

e
 4

C
o
s
in

e
 5

C
o
s
in

e
 6

C
o
s
in

e
 7

A
m

p
lit

u
d
e
 0

A
m

p
lit

u
d
e
 1

A
m

p
lit

u
d
e
 2

A
m

p
lit

u
d
e
 3

A
m

p
lit

u
d
e
 4

A
m

p
lit

u
d
e
 5

A
m

p
lit

u
d
e
 6

A
m

p
lit

u
d
e
 7

Fig. 4. 1D IDCT based on Xilinx ISE schematic view

will provide no speed up compared to the existing ALU.
To perform the IDCT in a pipeline extension we also

implemented a 1D IDCT as shown in figure 4 and compute the
whole IDCT in two iterations. As input for the 1D IDCT we
read each amplitude from one operand register. Each amplitude
is multiplied with a different cosine value which is taken
from a table inside the extension. For a 1D IDCT we require
eight clock cycles to load the input data, four clock cycles to
write it to the operand registers of the pipeline extension and
eight to compute the 1D IDCT results. Finally, we require
eight additional clock cycles to store the data. Loading and
processing of the data can be overlapped with a combined
instruction. Thus, we can save two clock cycles. In total one
1D IDCT consumes 26 clock cycles for eight input values.
The whole IDCT consumes 416 clock cycles for a complete
block. A hardware implementation of the IDCT requires eight
multipliers and 392 LUTs. The color space transformation
requires two clock cycles to read all three input values from
processor registers. The SpartanMC provides a 18 bit width
data path which allows us to load two 8 bit values for the
color space transformation at once. The calculation itself could
be implemented in one clock cycle if we would use four
multipliers. But since we use two clock cycles to write back
all data, there is no need to complete the calculation within
one cycle, because we are not able to write three results
at once. As the calculation of the color components R and
B both uses one multiplier and the G component uses two,
we are able to split the calculation stage and share it with
the write back stage which allows us to use two multipliers



instead of four. The implemented extension needs six clock
cycles for three input values and 384 clock cycles for a whole
block. The implementation of the pipeline extension for color
space transformation consumes 33 LUTs and two multipliers
as shown in table II. The total amount of clock cycles for JPEG
decoding is shown in table I. All processing steps without
hardware acceleration are carried out in software and consume
the runtime measured in the baseline.

B. AES Encryption

As a second benchmark application we implemented an
AES encryption which is a special form of the Rijndeal-
Cipher.

AES is a symmetric block cipher which uses a block size
of 128 bit divided into four rows and four columns of bytes.
The encryption is carried out in rounds. The number of rounds
depends on the key length. For our test application we used a
key length of 128 bit which results in ten rounds for a single
block encryption. At the beginning of the encryption rounds
the key expansion will be executed. This initial step expands
the master key and produces an expanded key at the size of 44
byte (#columns ∗ (rounds+1)). Due to this expansion each
round can be calculated with another part of the expanded
key. The key expansion is called only once for all blocks in
the source data. The AES algorithm uses the following basic
operations:

• Substitution. Replaces each byte through a constant table
value. The table is called S-Box.

• Permutation. This step shifts the row to the left. Each
row is shifted with different offset depending on its row
number.

• Diffusion. This operation computes a matrix multiplica-
tion in GF(28).

• Add round key. Encrypts the data through adding the
round key to the current block byte.

Given that key expansion already took place, the following
sequence of operations forms a block encryption:

• Initially, the round key is added.
• 10 rounds of substitution, permutation, diffusion and

round key addition are processed.
• Finally, substitution, permutation and round key addition

finish the block encryption.
In the software implementation of the AES algorithm we

measured the runtime for the encryption of a single 16 byte
block. This includes one call of key expansion and one
block encryption (12 round key additions, 11 substitutions,
11 permutations, 10 diffusions). The runtime measurements
for the software were made through the SpartanMC simulator.
Table I shows the total clock cycles for AES encryption.

For the AES peripheral we implemented one 16 bit input
register as shown in figure 5. Thus, we require eight clock
cycles to write one 16 byte block and eight additional cycles
to write the key from the SpartanMC to the peripheral. The
proper execution of each cipher stage is implemented in a con-
trol unit. Furthermore, this unit can be used to switch between

Input Reg.

Output Reg.

16 bit

16 bit

16 bit

Data

Key/S
p
a
rt

a
n
M

C

16 bit

S
−

B
o
x

Substitution

Permutation

Diffusion

Add Round Key

Control

K
e
y

Expansion

Key

B
u
ff
e
r

B
u
ff
e
r

B
lo

c
k

Cipher

Fig. 5. Architecture of the AES peripheral module

key input or data input. The key and the current block data are
stored in a dual ported memory which can be accessed from
the cipher and key expansion hardware and from the input
register. Firstly, we need to expand the master key using the
S-Box. This is carried out sequentially and consumes ten clock
cycles, although we could build faster implementations. As this
part of the hardware is used only once during the encryption
of many blocks, we chose to trade space for time and use
the smaller implementation. All following steps are executed
in each round. The substitution step also requires the S-Box
table to substitute each block byte. We use eight dual ported
BlockRAMs to store the S-Box which allows us to substitute
16 bytes at once. In figure 5 we have shown only one memory
block to simplify the diagram. The permutation step is quite
simple. It can be implemented through interchanging of output
wires. The GF(28) matrix multiplication in the diffusion step
is also carried out in parallel through combinational blocks.
Finally, we have to encrypt the data within the add round key
step which is implemented as xor operation. Since we can
map all equations of AES within combinational logic, we are
able to complete one cipher round within one clock cycle. As
we call some processing steps 12 times we require 12 clock
cycles to complete the whole block encryption. Eventually,
we have to transport the data to the processor which is carried
out through a 16 bit output register. This consumes another
eight clock cycles for one block. Overall, we require 70 clock
cycles, because we require one additional cycle for each load
and store operation. Due to many combinational blocks the
AES encryption hardware is quite large. As shown in table
II we require 5650 LUTs and eight block rams on a Xilinx
Spartan-3 XC3S400 FPGA.

As pipeline extension for AES we have chosen the diffusion
step which consumes the largest amount of clock cycles. It
requires high computational effort but only four bytes (one
row) as operands. To execute the special operation we need
to load four byte into two processor registers which consumes
two clock cycles. Accordingly, we execute the first special
diffusion operation and perform a write back for the first two
values in one clock cycle. Afterwards, we need one clock cycle
to store the first two values. In the fifth cycle we perform a
write back for the second two values and in the sixth cycle



we store the second values. One row of the diffusion step
consumes six clock cycles. Hence, we need 24 clock cycles
for the whole block. The total amount of clock cycles for AES
encryption is shown in table I. The processing steps without
hardware acceleration are carried out in software and consume
the runtime measured in the baseline. The hardware effort of
the pipeline extension is 255 LUTs as shown in table II.

TABLE II
COMPARISON OF RESOURCE UTILIZATION FOR JPEG DECODING AND

AES ENCRYPTION

Implementation 4-Input
LUT

Multiplier block
ram

JPEG Peripheral 3441 13 –
JPEG Pipeline Extension 425 10 –
AES Peripheral 5650 – 8
AES Pipeline Extension 255 – –

TABLE III
COMPARISON OF SPEEDUP AND EFFICIENCY FOR DIFFERENT

IMPLEMENTATION OF AES ENCRYPTION AND JPEG DECODING

Implementation Speedup Speedup/LUT
JPEG Peripheral 818.54 0.2379
JPEG Pipeline Extension 37.3 0.0878
AES Peripheral 366.2 0.0648
AES Pipeline Extension 1.58 0.0062

C. Comparison

We try to compare the efficiency of pipeline extensions
and peripheral extensions. Assuming sufficient resources for
our hardware, we implemented both variants for two different
algorithms. To compare the results we calculated the speedup
for each extension method relating to the software baseline.
The speedups for the different algorithms are shown in table
III. Evaluating our approaches we compare the efficiency
which we define as speedup per LUT (speedup per area). We
have taken the number of LUTs as measurement for additional
hardware effort because we believe it is the best indicator for
hardware usage on FPGAs. If we compare the efficiency of
both algorithms we see that the efficiency of peripheral units
is ten times higher for AES encryption and nearly three times
higher for JPEG decoding. Sometimes, the availability of block
rams could be regarded as bottleneck for FPGA soft cores.
But even, if we use distributed RAM for our AES peripheral
extension, which cost approx. 2k additional LUTs, we have a
seven times higher efficiency compared to the AES pipeline
extension. Furthermore, we made no special efforts to optimize
our peripheral hardware. In regard to this evaluation we claim
that it is evident that the peripheral implementation of the
algorithms always represents the better solution for application
acceleration in hardware.

VI. CONCLUSION

In this contribution we have analyzed different variants of
customizing soft cores in FPGA based SoC implementations:

Instruction set extensions and peripheral modules. We imple-
mented applications from two different application domains
in three variants: Pure software, software with instructions set
extensions and as peripheral module. We have defined an effi-
ciency metric to evaluate the quality of the different variants.
Surprisingly, the efficiency of the peripheral implementation is
always considerably higher than the efficiency of the instruc-
tion set extension. We believe that these findings also hold for
other soft cores and for other application domains. Thus, our
overall conclusion is the recommendation to implement soft
core customizations always as peripheral modules.

We are currently working on a gcc based compiler that auto-
matically extracts performance critical parts of the application
and maps them to hardware components.

REFERENCES

[1] Tensilica Inc., “Xtensa customizable processors,”
http://www.tensilica.com/products/xtensa-customizable.htm, 2010.

[2] Altera Corp., “Nios ii custom instruction user guide,” documentation,
2008.

[3] Stretch Inc., “Stretch technology,” http://www.stretchinc.com/technology/,
2010.

[4] Xilinx Inc., “Microblaze processor reference guide,” documentation
EDK 11.4, 2009.

[5] Triscend Inc., “Triscend e5 configurable system-on-chip platform,” data
sheet 1.06, 2001.

[6] ——, “Triscend a7s configurable system-on-chip platform,” data sheet
1.10, 2002.

[7] N. Kasprzyk and A. Koch, “High-level-language compilation for recon-
figurable computers,” in ReCoSoC, 2005.

[8] H. Lange and A. Koch, “Architectures and execution models for
hardware/software compilation and their system-level realization,” IEEE
Trans. on Computers, vol. 99, no. PrePrints, 2009.

[9] G. Hempel and C. Hochberger, “A resource optimized processor core
for FPGA based SoCs,” in DSD, 2007, pp. 51–58.

[10] ——, “A resource optimized SoC kit for FPGAs,” in FPL, 2007, pp.
761–764.

[11] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[12] A. M. Leger, T. Omachi, and G. K. Wallace, “Jpeg still picture
compression algorithm,” Optical Engineering, vol. 30, pp. 947 – 954,
1991.


