
A Dynamically Reconfigured Network Platform for High-Speed Malware Collection

Sascha Mühlbach
Secure Things Group

Center for Advanced Security
Research Darmstadt (CASED)
sascha.muehlbach@cased.de

Andreas Koch
Embedded Systems and Applications

Dept. of Computer Science
Technische Universität Darmstadt

koch@esa.cs.tu-darmstadt.de

Abstract—Malicious software has become a major threat to
computer users on the Internet today. To combat it, security
researchers need to gather and analyze many samples to
develop proper defense mechanisms. The setting of honeypots,
which emulate vulnerable applications, is one method of
gathering attack code. In contrast to the conventional software-
based honeypots, we have proposed a dedicated hardware
architecture for honeypots to both allow high-speed operation
at rates of 10+ Gb/s as well as a higher resilience against
attacks on the honeypot infrastructure itself. We now improve
the flexibility of our prior solution by using partial dynamic
reconfiguration to update the functionality of the honeypot
during operation.

I. INTRODUCTION

The significant increase of malicious software (malware)
in recent years (see [1]) requires security researchers to
analyze an ever increasing amount of samples for developing
effective prevention mechanisms. One method for collecting
a large number of samples is the use of low-interaction
honeypots (e.g., [2]). Such dedicated computer systems
emulate vulnerabilities in applications and are connected
directly to the Internet, spanning large IP address spaces
to attract many different attackers. But in addition to having
performance limitations, such software systems also suffer
from being compromisable themselves (can be subverted to
attack even more hosts).

In this context, we have proposed the idea of a low-
interaction malware-collection honeypot realized entirely in
reconfigurable hardware without any software components
in [3]. The core of our MalCoBox system is a high-speed
implementation of the basic Internet communication proto-
cols, attached to several independent vulnerability emulation
handlers (VEH), each emulating a specific security flaw
of an application (see Fig. 1). We have demonstrated the
feasibility of that approach by implementing a prototype on
a FPGA platform, fully employing the power of dedicated
hardware resources to support 10+ Gb/s network traffic.

A common question of potential MalCoBox users is how
the platform can be updated during operation with new or
improved VEHs to react to the changing threat landscape.
We have thus extended our solution by using partial dynamic
reconfiguration [4] to update individidual VEHs while the
system stays in operation.

Network
Interface

and
Core

Protocol

VEH

VEH

VEH

FPGA

Figure 1. Hardware-Based Malware Collection

The paper is organized as follows: Section II briefly
describes the core architecture and its major characteristics.
The next Section III covers the details of the reconfigurable
VEH slots, followed by a discussion of our partial reconfig-
uration strategy in Section IV. The implementation of the
complete system on an actual FPGA platform is described
in Section V, with Section VI giving experimental results.
We close with a conclusion and an outlook towards further
research in the last Section.

II. KEY ARCHITECTURE COMPONENTS

The system architecture of the honeypot is based on
the idea of a hierarchy reflecting the levels of the Internet
protocol. Figure 2 shows our so-called NetStage Architec-
ture (discussed in greater detail in [3]), now including the
extensions to support partial reconfiguration which are the
focus of this work.

The VEHs are modules loosely interconnected with the
core system by buffers. The architecture provides slots into
which VEHs can be configured. Each VEH slot provides the
same inputs and outputs, and all the VEHs follow a similar
structural pattern by reading and writing data only from and
to the buffers. In that fashion, new modules can be easily
“plugged-in” in any slot. The buffers also mitigate the effect
of brief VEH-local stalls on system-level throughput.

VEHs share the underlying implementations of the core
protocols (IP, TCP, UDP) in NetStage. These have been very

Legend
A: Arbitration S: Slot Selection
D: Data R: Reconfiguration Handshake Port

VEH
Application
State RAM

Management
Interface

VEH
Slot 1

VEH
Slot 2

VEH
Slot 3

ICMPARP

Network Frame
Receiver

IP
Implementation

TCP
Implementation

UDP
Implementation

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

0

1

2

0

1

2
B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

R

Bitstream
Memory

VEH
Slot n-2

VEH
Slot n-1

VEH
Slot n

0

1

2

0

1

2
B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

0

1

2

n-3

n-2

n-1

S

A

D

D

S

A

D

D

ICAP

PR
Controller

Partial Reconfiguration
Controller

R

R

R

R

R

Reconfiguration Handshake

DST PORT =

25

80

339

...

DST IP matches

0.0.0.0 / 0

1.2.3.4 / 32

1.2.0.0 / 16

...

SLOT

1

2

3

...

Packet Matching Rules
for Slot Selection

AND =>

Updates

first match gets precedence

Figure 2. Core Architecture of the Partially Reconfigurable Malware Collection System

carefully optimized to achieve a throughput of at least 10
Gb/s to keep up with the line-rate of the 10 Gb/s external
network interface.

A. Vulnerability Emulation Handler

When a packet has passed the core, it will be forwarded to
the responsible VEH performing the actual malware detec-
tion and extraction. To this end, the core contains a mapping
table with matching rules for the different vulnerability
emulations currently active in the system. In the MalCoBox
refinement presented here, the mapping table is writable to
allow dynamic alteration of the actual VEHs used, a feature
that will be exploited when reconfiguring.

A basic set of mapping rules includes the destination port,
destination IP and netmask. The latter allows us to set-up
separate IP address ranges which use VEHs for different
vulnerabilities on the same port (e.g., many handlers will
listen on the HTTP port 80).

With the processing speed achievable in reconfigurable
hardware, these basic rules could also be extended to di-
rectly match payload contents. However, this would require
dynamic reconfiguration of the actual matching unit, instead
of just writing new values into registers (as in the basic
matcher). Since our current VEHs can be activated inde-
pendently of the payload, we will use the simpler basic
approach.

B. VEH Application State Memory

In some cases, VEHs have to track session state to gen-
erate an appropriate response. NetStage provides a central

facility of storing per-connection state: When a packet is
passing the IP implementation, the globally maintained state
information is attached to the packet in a custom control
header which accompanies every packet through the system.
The VEH can read this information, act on it, and update
it. The value is written back to the state memory when a
response packet (or an empty state write packet) passes the
IP implementation on the transmit path. Such a centralized
storage is more efficient than attempting to store state in
each VEH (which would fragment the capacity of the on-
chip memories).

The global VEH application state memory can also be
used to save/restore VEH state during reconfiguration, allow-
ing the seamless swapping-in of newer (but state-compatible)
versions of a VEH.

C. Partial Reconfiguration Controller

The partial dynamic reconfiguration of VEHs is managed
by the Partial Reconfiguration Controller (PRC), which is
connected to the FPGAs internal configuration access port
(ICAP). On the application side, the PRC is connected to the
MalCoBox management interface (either by a PCI Express
endpoint or a dedicated 1 Gb/s network link, depending on
the selected deployment mode of the system).

The PRC is also connected to the individual VEH slots by
a number of handshake signals to inform the VEHs about
their impending reconfiguration (for a clean shutdown, to
save state in the global memory, etc.) and to check whether
the VEH is idle.

rd_en

wr_en

din dout

empty

ringbuf_fifo

addra

wr_en

dina doutb

ringbuf_bram

addrb

ringbuf_fifo

addra

wr_en

dina doutb

ringbuf_bram

addrb

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

data_available send_buffer full

data in

write bytes

get next packet

VEH Handler

ctrl word in

read finished

amount of bytes read write finished

read address

write enable

data out

write address

ENB

ENB

ENB

veh reset
0

1

1

ENB

ENB

ENB

ENB

ENB

ENB ++

write byte count

write done

Buffer Management

read byte count

read done

param: buf_size

full

offset

reset

reset

rd_en

wr_en

din dout

emptyreset

write byte_count

write done

Buffer Management

read byte_count

read done

param: buf_size

full

offset

reset

0

1

0

ENB

0

1

0

ENB

0

1

0

ENB

0

1

0

ENB

ENB

reset

reset reset

reset reset

read address

en
ab

le m
o

d
u

le

ENB

get next packet

control word out

packet available

read done

read bytes

data out

active

m
o

d
u

le active

p
r req

u
est

combined
control word combined

control
word

Receive Buffer Send BufferPR Handshake Port

receive buffer full

write done

write bytes

write enable

write address

data in

reset

Figure 3. Wrapper encapsulating a Vulnerability Emulation Handler Slot

An attached bitstream memory can hold several partial
bitstreams to allow the system to be reconfigured indepen-
dently of the management station.

III. RECONFIGURABLE VEHS

To support independent partial reconfiguration (PR) of any
of the VEH slots, a wrapper encapsulates the actual VEH
implementation module (see Fig. 3). This wrapper includes
glue logic controlled by the PRC to disconnect/reconnect all
inputs and outputs of the VEH module. This clean separation
is essential to avoid introducing errors in the rest of the
system when reconfiguring.

The wrapper also contains the send and receive buffers
for each module. As all the handlers share the same buffer
structure, it is more efficient to keep it static than configure
it with each VEH. The inputs and outputs of the wrapper
are directly connected to the UDP or TCP implementations
within the MalCoBox core (see Fig. 2).

Internally, the VEHs themselves all have very similar
message-oriented architectures: Packet data is read as 32b
words from the receive buffer, processed within the VEH,
and output packet data is written back to the send buffer
(if required). The output packet can be a response to the
client, or a system-internal control packet (e.g., state write
information for the global memory). This structure allows
all VEHs to share the same interface (important for PR) and
is sufficiently flexible for the MalCoBox’ needs.

A. Buffer Management

The packet buffers in the wrappers are organized as mod-
ified ring-buffers, which avoids fragmentation. The packet

data itself is stored in a dual-port BlockRAM, allowing pro-
ducers and consumers of packet data to work independently.
An additional FIFO is used to manage the BlockRAM
addressing. Each FIFO entry consists of a 16b start adress
and a 16b length field, and presence of an entry indicates
that a complete packet has been stored in the BlockRAM.

To control the buffer fill status, a buffer management unit
(BMU) keeps track of the number of bytes read and written.
When the number of bytes in the buffer exceeds the capacity,
the buffer full signal is asserted. Then, as a system-wide
policy, the TCP and UDP implementations in the core will
gracefully discard entire packets (instead of stalling) to avoid
congestion. The BMU also keeps track of the start address
for the next packet within the buffer, avoiding the need to
save/restore this state when a VEH is reconfigured.

IV. PARTIAL RECONFIGURATION

Partial bitstream data is transferred from the management
station (usually an external PC) to the MalCoBox via the
management interface. The underlying protocol consists of
the raw bitstream preceded by a reconfiguration header (see
Figure 4) and an optional address offset in the MalCoBox
configuration memory (which can thus hold multiple bit-
streams locally).

A. Partial Reconfiguration Process

When the PRC receives a reconfiguration request (which
includes a pointer to the desired bitstream in configuration
memory), it initially informs the wrapper of the target slot
that the slot is about to be reconfigured. This will stop
the receive buffer of the VEH from accepting new packets
(which will thus accumulate in an earlier stage). The VEH

Matching Rules Bitfile Size

Optional: Matching Rules Partial Bitstream Data

Figure 4. Custom PR header and bitstream data

is allowed to process all of the packets held in the buffer
at this time, asserting a signal to the PRC on completion.
The PRC then deactivates the VEH and, using information
in the incoming VEH’s reconfiguration header, updates the
mapping tables with the characteristics of the incoming VEH
about to be configured. This will forward matching packets
to the incoming VEH’s receive buffer.

Meanwhile, the now inactive VEH is disconnected from
the slot wrapper by the PRC setting the appropriate control
signal. Now the actual PR occurs: The bitstream data is read
from memory and transformed into a Select MAP protocol
[5] compatible form, before being fed into the ICAP. Once
reconfiguration is completed, the PRC re-enables the VEH-
wrapper connections and allows the new VEH to wake up
in its reset state.

Since the management console is assumed to run trusted
software under control of trusted operators, we do not
perform security measures during this process. But such
functionality could be easily added without affecting the
base architecture (see, e.g., [6], [7]).

V. IMPLEMENTATION

The system has been implemented on the BEEcube BEE3
FPGA-based reconfigurable computing platform equipped
with eight 10 Gb/s network interfaces and four Xilinx Virtex
5 FPGAs (2x LX155T, 2x LX95T). Currently, we are only
using one of the LX155T FPGAs, but this could be easily
extended.

The Xilinx XAUI and 10G MAC IP cores provide the
network connectivity. Within the system, the processing
throughput is doubled by extending the 64b data path of
the 10G MAC to 128b, while keeping the 156.25 MHz clock
speed. This allows us to react to brief stalls in the data flow:
Affected handlers are able to “catch-up” with the normal 10
Gb/s traffic by burst-processing the data accumulated in the
buffers.

The ICAP in the PRC is driven by a separate clock to
allow varying reconfiguration speeds. The data width is set to
the maximum of 32b. Currently, configuration data is stored
on-chip in 256 KB of BlockRAM. Management access
is implemented as a dedicated network interface, directly

connected to a standard PC. The PRC receives bitstream
data and control operations over the network using a custom
protocol. Perl scripts are used to assemble the appropriate
network packets.

A. Vulnerability Emulation Handler

To test the system, we have created a number of VEHs
emulating different vulnerabilities and applications. Ex-
tracted malware is currently sent to the management PC via
an UDP packet with a fixed (set during compile time) IP and
MAC address. In addition to controlling FSMs, the VEHs
contain additional hardware logic to perform tasks such as
parallel pattern matching for high speed operations.

One of the UDP-based VEHs looks for packets exploiting
a vulnerability of the software SIP SDK sipXtapi [8].
Another UDP-based VEH has a similar structure and is
emulating a vulnerable MSSQL 2000 server [9]. As example
for TCP-based VEHs, we implemented simple web and mail
server emulations. They could be used, e.g., to monitor
attack attempts on a login page or to receive large amounts
of SPAM mails that often contain malware attachments or
hidden links to malware download sites.

B. Buffers

MalCoBox is intended to attract attacks incoming from
the Internet. Thus, their packets will generally have transited
wide-area networks and will only rarely have sizes exceed-
ing the Ethernet MTU limit of 1500 bytes. We size our
BlockRAM-based buffers accordingly: Assuming all han-
dlers in our implementation achieve a steady-state through-
put of at least 10 Gb/s, a buffer size of two maximum size
packets (3000 B) will ensure stall-free operation. Practically,
we have to use two 36Kb simple dual-port BlockRAMs
(each providing a bus width of 72b) to achieve a bus width
of 128b. This results in an actual buffer size of 8 KB (512
x 128b).

VI. RESULTS

The design was synthesized using Xilinx ISE 12.1 and
mapped with PlanAhead 12.1, targeting a Virtex 5 LX155T
FPGA and aiming for a clock speed of 156.25 MHz. Partial
reconfiguration was implemented using the newest partial
reconfiguration flow available in PlanAhead 12.1 [10].

System tests were performed by simulation as well as on
an actual BEE3 machine connected to a host PC, sending
data to the VEHs. Partial reconfiguration was performed un-
der operator control, loading in new bitstreams via network
from the management station.

For our prototype, we placed 20 VEH slots on the FPGA,
which seems to be a reasonable value according to the total
number of BlockRAMs available on the LX155T.

Figure 5. FPGA Layout for 20 VEH Slots

Table I
SYNTHESIS RESULTS FOR THE SYSTEM

Module LUT Reg. Bits BRAM
SIP VEH 1082 358 0

MSSQL VEH 875 562 0
Web Server VEH 1026 586 0
Mail Server VEH 741 362 0

Core Implementation 20,764 12,226 190
Core with MAC and XAUI 25,810 17,173 202

A. Synthesis Results

Table I gives a summary of area requirements for the core
and the various VEHs, the latter showing only little variation.
Amongst them, the SIP VEH requires the most LUTs, as it
contains the most complex pattern matching algorithms. The
core implementation (ARP, ICMP, IP, UDP, TCP) including
the 20 VEH wrapper slots occupies around 26% of the LUTs
available on a LX155T. 100 of the Block-RAMs are used
for the wrapper send and receive buffers (four as RAM and
one as FIFO, for each of the 20 slot wrappers).

The VEH module slots were placed manually on the
FPGA and sized (see Table II) based on the resource usage
indications provided by the sample VEH synthesis results.
The resulting layout can be seen in Figure 5. Instead of
setting the slots to an equal size, we decided to have diferent
sizes to offer more flexibility while not wasting too much
space, as the VEHs may vary in their functionality and size.

To be able to assign each handler to different slots, we
ran the place and route process with different configurations.
Each run produces the partial bitfiles for a specific VEH-Slot
combination. As they are independent, we can use them in
arbitrary combination later.

B. Partial Reconfiguration Results

An operator-managed PR operation (store and reconfig-
ure) performed through the management interface could
be completed in less than a second, which is more than
sufficient for the common scenario of relatively infrequent
in-the-field updates of VEHs (once every few days).

Table II
SLOT SIZE DISTRIBUTION AND RECONFIGURATION TIME

Qty. LUT / Bitfile Reconfiguration Time
BRAM Size 78,125MHz 156,25MHz

w/o SD w/ SD w/o SD w/ SD
10 1496 / 0 64KB 209us 213us 105us 108us
4 2176 / 0 106KB 347us 350us 173us 176us
4 2176 / 2 118KB 387us 389us 193us 195us
2 4144 / 0 162KB 531us 534us 266us 269us

However, for later extension of the system to autonomous
dynamic reconfiguration, we have already measured the
performance when reconfiguring from a locally stored bit-
stream (instead of accepting a new one over the network):
Table II lists the reconfiguration time for two different
clock speeds (the second one operating the ICAP beyond
the specified limits, but still reliable). As the scenario, we
assume that the receive buffer of the VEH to be replaced
is half full and that the VEH is able to process data at 10
Gb/s (being conservative, since all of our current VEHs can
actually handle 20 Gb/s). We show reconfiguration times
both including and excluding the clean shutdown sequence
(abbreviated SD in the Table) for an outgoing VEH (allowing
it to process the remaining packets).

One can see that the time required for cleanly shutting
down the outgoing VEH is negligible. Most of the time is
actually taken by feeding the reconfiguration bitstream into
the ICAP, thus limiting the overall reconfiguration speed.
Thus, the size of the VEHs will also be important for fast re-
configuration and justifies our approach of heterogeneously
sized VEH slots (we can configure the 10 smaller VEH slots
much faster than the 4+4+2 larger ones).

By taking the numbers of Table II and assuming a
continous reconfiguration process at the highest clock rate,
a new handler could be available on average every 155 us
(assuming a memory being able to provide a throughput
of 625 MB/s, easily achievable using current SDRAM).
A new VEH could therefore be provided 6451 times per
second to incoming packets, while the other slots still remain
active processing incoming packets. This should be sufficient
to later self-adapt the MalCoBox to the network situation
by loading the corresponding VEHs from memory, as not
every packet received by the honeypot will result in a
reconfiguration event (certain exploits are more likely than
others and especially TCP-based exploits consist of streams
of multiple packets for a single handler).

In practice, our honeypot will be looking at malware
injected through current exploits. Thus, we expect a set of
roughly a hundred different VEHs. When implemented in
a single static design, they will not fit on current FPGAs.
Autonomous dynamic reconfiguration offers a smart way of
extending the number of VEHs beyond this physical limit.

C. Impact of data path width

To evaluate the impact of the 128b data path on the VEH
size, we created a 64b version of the SIP and the Web Server
VEH and compared it to the 128b implementation (Table
III). Data path conversion between the core and the VEHs
can be easily performed by the wrappers at the cost of a
reduced throughput for the attached VEH.

The area overhead of the 128b version is roughly 75%
for the SIP VEH and 65% for the Web Server VEH. This
was to be expected, since the VEHs mostly read data from
the input buffer and write data to the output buffer. The area
required is thus strongly related to the bus width.

Given these results, it will be an option to implement
VEHs with a reduced data path while keeping the core
architecture at 128b, as this could significantly reduce the
size of the slots and, in turn, also the reconfiguration time
by roughly 40%. By carefully optimizing the design of these
VEHs, the impact of a potential speed decrease below 10
Gb/s could be reduced up to a certain extent. However,
the 20 Gb/s burst capability of the core system could also
compensate for this outside of the slow 64b VEH (as long
as the input link is not saturated with requests).

Together with the data path area, the BlockRAM usage
is also reduced: With 64b operation, we can now narrow
the buffers and only require three BlockRAMs per wrapper
instead of five for 128b VEHs (see Section V-B), again
increasing the overall number of possible VEH Slots.

VII. CONCLUSION AND NEXT STEPS

With this refinement of our MalCoBox platform, we have
presented a scalable system architecture to build a high-
speed hardware-accelerated malware collection solution that
offers great flexibility through partial reconfiguration. A
management interface allows instant updates or replace-
ments of single vulnerability emulation handlers by loading
new partial bitstreams, without interupting the operation of
the remaining system.

With the high performance of the dedicated hardware,
the VEHs actually performing the malware detection and
extraction can contain a wide range of functionality: They
can embed complex regular expression logic as well as
simple request-response patterns, while still reaching the
required throughput of 10 Gb/s. Furthermore, our hard-
ware approach is resilient against compromising attacks
and significantly reduces the risk of operating hoenypots
in a production environment. The presented implementation

Table III
SYNTHESIS RESULTS FOR 128B AND 64B VEHS

Handler LUT Reg. Bits
SIP VEH 128 Bit 1082 358

SIP VEH 64 Bit 619 278
Web Server VEH 128 Bit 1026 586

Web Server VEH 64 Bit 663 244

covered the core architecture as well as a number of sample
VEHs and showed the feasibility of the approach. The
results indicate that operators have a great flexibility to
adapt the system to their needs: Individual VEH complexity
and total vulnerability coverage by different VEHs can be
traded-of by altering the distribution of VEH slots sizes;
throughput and area can be traded-of by selecting between
VEH implementations with 64b and 128b processing widths.

We will continue our work in this area. MalCoBox will be
stress-tested in a real production environment connected to
the Internet (e.g., university or ISP), preliminary talks to this
end have already been initiated. From this, we expect to gain
valuable information on how to improve the architecture and
its parameters in the future. We will also extend the system
to multiple FPGAs (e.g., the four on the BEE3 platform) to
further increase the number of VEH slots. Finally, with the
high speeds of local reconfiguration, we can begin work on
an autonomously reconfiguring honeypot that self-adapts to
current network traffic to present the maximal attack surface.

REFERENCES

[1] “Internet security threat report, volume xv,” Symantec, 2010.
[Online]. Available: http://www.symantec.com

[2] “Honeyd.” [Online]. Available: http://www.honeyd.org

[3] S. Mühlbach, M. Brunner, C. Roblee, and A. Koch, “Mal-
cobox: Designing a 10 gb/s malware collection honeypot
using reconfigurable technology,” in FPL ’10: Proceedings
of the 20th International Conference on Field Programmable
Logic and Applications. IEEE Computer Society, 2010, pp.
592–595.

[4] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor,
“Reprogrammable network packet processing on the field pro-
grammable port extender (fpx),” in FPGA ’01: Proceedings
of the 2001 ACM/SIGDA ninth international symposium on
Field programmable gate arrays. ACM, 2001, pp. 87–93.

[5] “Virtex-5 fpga configuration user guide,” Xilinx, 2009.

[6] K. v. d. Bok, R. Chaves, G. Kuzmanov, L. Sousa, and
A. v. Genderen, “Fpga reconfigurations with run-time region
delimitation,” in Proceedings of the 18th Annual Workshop
on Circuits, Systems and Signal Processing (ProRISC), 2007,
pp. 201–207.

[7] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream
encryption and authentication using aes-gcm in dynamically
reconfigurable systems,” in IWSEC ’08: Proceedings of the
3rd International Workshop on Security. Springer-Verlag,
2008, pp. 261–278.

[8] M. Thumann, “Buffer overflow in sip foundry’s sipxtapi,”
2006. [Online]. Available: http://www.securityfocus.com/
archive/1/439617

[9] D. Litchfield, “Microsoft sql server 2000 unauthenticated
system compromise.” [Online]. Available: http://marc.info/
?l=bugtraq\&m=102760196931518\&w=2

[10] “Partial reconfiguration user guide,” Xilinx, 2010.

