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Abstract—With the growing diversity of malware, researchers
must be able to quickly collect many representative samples for
study. This is commonly achieved by harvesting the malware from
honeypots: Insecure systems presenting a wide attack surface
to the public Internet, aiming to attract attackers. However,
software-based honeypots have both performance issues in light
of 10+ Gb/s networks, as well as difficulties in preventing
the compromise of the honeypot system itself. We present an
architecture for a honeypot using dedicated hardware instead of
a general-purpose processor. Our system is fast enough to keep up
with high-speed networks and more resilient against subversion
attempts than existing software solutions. It consists of a high-
speed implementation of the Internet protocol stack attached to
hardware-based emulations of vulnerable applications. A special-
ized implementation of the TCP protocol, capable of managing
hundreds of thousands of simultaneous connections, allows the
system to span large honeynets. The practical feasibility of the
approach has been demonstrated on a real FPGA platform
connected to a 10 Gb/s network interface.

I. INTRODUCTION

To defend against Malicious software, short ‘malware”,
anti-virus programs scan PCs continuously for patterns or
anomalous behavior indicating a possible malware infection.
But malware is evolving very quickly. Research indicates that
the number of different malware variants detected per year has
risen significantly from around 100k to 3M between 2005 and
2009 [1]. Timely malware capture and analysis has become
essential to establish adequate defenses. One possibility is to
use dedicated computer systems, that emulate vulnerabilities
of applications to attract attackers.

Software packages [2], [3] exist for setting-up honeypot
systems. However, software running on general-purpose pro-
cessors always runs the risk of being compromised beyond the
purpose of the honeypot and using it, instead, as a launch-pad
for further attacks against other hosts on the Internet. Often,
careful manual monitoring is required to detect and shut down
a rogue honeypot. Furthermore, software-based solutions are
severely taxed by current networking speeds of 10+ Gb/s.

As a solution, we proposed the idea of a malware collection
honeypot realized entirely on dedicated hardware in [4]. The
core of the system is a high-speed implementation of the basic
Internet communication protocols. Attached to this core are

several independent emulation engines (called vulnerability
emulation handler, VEH), each dedicated to emulate a specific
security flaw of an application.

However, the initial proof-of-concept implementation was
covering the UDP protocol only and omitted the TCP protocol
due to its complexity. To close this gap, we will now present
a special stateless TCP hardware implementation, which is
highly tuned to the application domain and able to handle
hundreds of thousands of concurrent connections at line speeds
of 10 Gb/s.

This paper is organized as follows: Section II briefly de-
scribes the core architecture and its major characteristics. Sec-
tion III covers the details of our stateless TCP implementation,
showing capabilities and limitations. Section IV discusses im-
plementation specifics of the system on a real FPGA platform
and is followed by a discussion of experimental results in
Section V. We close with a conclusion and an outlook towards
further research in the last Section.

II. SYSTEM ARCHITECTURE OVERVIEW

The TCP implementation will be integrated into our Net-
Stage Architecture [4], which is a hierarchical design reflecting
the levels of the Internet protocol stack. Within each stage,
dedicated processing elements (called “handlers”) perform
their specific tasks in-line with the data flow. The handlers
of adjacent stages are loosely coupled using buffers. In this
fashion, new handlers can easily be “plugged-in” at the ap-
propriate stage.

A. Core System

The core system consists of all handlers responsible for the
Internet protocol stack. This includes the IP, UDP, and TCP
protocol handlers as well as the ARP and ICMP implemen-
tation needed for the autonomous operation as a networked
system.

Within each stage, packets are classified according to their
protocol information, processed (e.g., checksummed) and then
forwarded to the next handler by assigning the output data
to the corresponding buffer. As a hard constraint, all handlers
must provide a processing speed of at least the data rate of the
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Fig. 1. NetStage Architecture of the malware collection network platform including the TCP implementation

network interface (10 Gb/s, in our case) to avoid congestion in
the data path. As packets proceed upwards, lower-level proto-
col headers will be stripped away and replaced by an internal
control header, which accompanies the packet throughout the
various stages, carrying architecture-specific data.

B. Vulnerability Emulation Handlers

Packets passing the lower core stages will finally be for-
warded to a responsible VEH which performs the actual
malware detection and extraction. To this end, Stage 3 handlers
have mapping tables that use matching rules to assign packets
to specific Stage 4 VEHs. Due to the finely grained parallel
processing possible in dedicated hardware, these rules can be
very flexible and exploit both header and payload matching.
E.g., HTTP requests could be forwarded to different VEHs
based on the URL, emulating web servers running on Windows
or Linux.

C. UDP and TCP Protocol Handling

Our architecture can easily handle UDP data streams (which
are stateless), but TCP requires significantly more efforts. We
went to considerable length to maintain our high-performance
stateless architecture, while remaining compatible with TCP-
speaking partners (despite violating some protocol specifica-
tions, which would be very expensive and/or slow to perform,
see Section III for details).

D. VEH Global Application State Management

To keep our architecture stateless as much as possible, we
only evaluate state information at the VEH level and only
if this is absolutely required by the emulated application. To
support this, we place a global state memory on-chip in the

second stage along the IP handler (see Figure 1). When an
incoming IP packet passes the IP receive handler, the current
state information for this connection is retrieved from the state
memory and attached to the packet in a custom field of the
internal control header.

III. TCP IMPLEMENTATION

Originally, TCP is a stateful protocol which establishes a
reliable communication channel between two communication
partners on top of the (itself unreliable) IP protocol. Funda-
mentally, the reliability is achieved by two counters on each
side, one for the cumulative number of bytes received and
one for the cumulative number of bytes transmitted since
establishment of connection [5]. The TCP stack divides the
data to be sent into TCP “segments”. Whenever a TCP segment
is transmitted, it carries the current byte offset (called sequence
number, short: SEQ) of the data within this segment relative
to the beginning of the connection as part of the TCP header.
If all expected bytes were received, the receiver notifies the
sender of the successful in-order reception of bytes by sending
its current number of cumulative received bytes including the
actual ones as acknowledgment (ACK) back to the sender. By
tracking these numbers, both sides can provide an ordered data
stream and determine if there a segments outstanding or lost.

A. Stateless Design

By its design, TCP normally requires to maintain state in-
formation (e.g., the counter values) for each open connection.
However, for applications such as our malware collection in
large IP networks, potentially hundreds of thousands of open
connections need to be managed at 10+ Gb/s. This would be
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very difficult to handle with conventional TCP implementa-
tions (e.g., [6]). Instead, we will use a custom implementation
highly tuned for our application domain, which emphasizes
multi-connection performance over single-connection through-
put. The latter is irrelevant to our domain, as it would involve
the highly unlikely use-case of a single attacker interacting
with us at full line-speed.

To this end, we will avoid storing local state and instead
re-use TCP header information to reconstruct the session
state. Concepts of stateless TCP implementations have been
proposed in the past, e.g., as part of a TCP port scanner [7].
Another approach moves the state-tracking functionality to
the client [8]. But since that requires modified clients, this
technique is inapplicable to our application.

For our solution to the stateless TCP problem, we exploit
the nature of interactions with the honeypot: We will only react
to incoming request packets and never self-initiate traffic. This
means that we can always rely on the ACK and SEQ header
data of the incoming packets (which is retained in the internal
control header) to reconstruct the connection state. As sketched
in Figure 2, the TCP implementation consists of receive, send,
and control handlers, easily integrated into our layered system
architecture (Fig. 1). While the send and receive handlers man-
age checksum calculation and header inspection, the control
handler is responsible for the connection establishment process
and handling of other control messages.

B. TCP Connection Establishment

TCP connections are established using the well-known
“three-way handshake”. Client and server exchange random
initial sequence numbers (identified by a set SYN flag in
the TCP header), and mutually acknowledge them. Random
numbers are used to defend against connection hijacking
attacks, where the attacker predicts the next sequence number
and uses it to inject a packet of his own into the connection.
Instead of storing the sequence numbers (which would again
require memory accesses), we use a simplified mechanism
(shown in Figure 3) similar to SYN cookies [9].

After the connection is established, the corresponding VEH
is notified by generating an internal dummy packet indicating
a new connection by a special flag which is set within the

TCP Receive TCP Control VEH x TCP SendIP Handler

SYN

SYN, ACK
Y=HK(EID) | X1=X+1

ACK
X1 | Y1=Y+1 IF (HK(EID)+1 = ACK) THEN

CONNECTION ESTABLISHED
X1 | Y1

X1 | Y1

Y1 | X1

Data (N Bytes)

ACK
X1 | Y2=Y1+N

ACK, Data (M bytes)
X1 | Y2

Data (M bytes)

M Bytes received

ACK
Y2 | X2=X1+M

SYN

X1 | Y2

Data (N Bytes)

Y2 | X2

ACK, Data (P Bytes)

ACK
X2 | Y3=Y2+P

X2 | Y2

Data (P bytes)

X | -

X | -

X2=X1+M | Y2

Sequence Number | Acknowledgment Number

I
N
I
T
I
A
T
I
O
N

D
A
T
A

T
R
A
N
S
M
I
S
S
I
O
N

Fig. 3. TCP sequence of the stateless implementation

control header. This dummy packet is required, e.g., to induce
the VEH to send out an initial welcome message over the new
connection.

C. TCP Data Transmission

Data can now be exchanged over the newly established
connection (Fig. 3). To remain stateless, we compute outgoing
SEQ and ACK numbers from the incoming packet headers that
accompany the packet in the internal control header. While
compatible with the TCP protocol, this approach does have
limitations:

• Lost incoming single packets cannot be detected. Here,
we rely on the sender to just retransmit the packet after
we have not acknowledged it within the time-out period.

• Packets arriving out-of-order or packets lost from a
packet group cannot be detected. We avoid this situation
(for consecutive transmission of full segments) by offer-
ing a constant receive window size equal to the MSS.
Thus, at most one packet may be unacknowledged at a
time and the sender must wait for our acknowledgment
(offering a new window size) before it can send the next
packet. This is one of the cases where we have accepted
deterioration of per-connection throughput to raise the
number of manageable connections.

• Unnecessarily retransmitted packets are not detected.
This can occur, e.g., if our initial acknowledgment got
lost. We will then just acknowledge the packet again,
satisfying the sender. However, since we cannot detect
the superfluous packet, it will be passed upward in our
architecture for processing, possibly triggering actions
twice. VEHs must be aware of this possibility. In practice,
this is easily achievable since VEHs are often stateless



already, and a duplicate response packet will be silently
discarded at the remote site (due to SEQ and ACK
numbers being equal to an already received packet).

Independent of our sequence number scheme, we currently
aim to save hardware resources by not retransmitting packets.
We justify this severe measure with the observation that only
about 10% of the TCP connections transferring less than 50
kB of data on the Internet suffer from packet loss at all [10].
Typical vulnerability emulations will exchange a much smaller
amount of data within a single connection, either because
they are very simple (see Section IV), or because they create
a new connection for every request (such as a simple web
server). This limitation is not a fundamental characteristic
of our architecture: If future live evaluations in a production
environment demonstrate the practical need for retransmission,
appropriate logic could be added to the handlers without
invalidating the general approach.

D. Congestion Control
We handle congestion (respecting the available space in the

client receive buffer) in two ways. The simpler one relies on
passing the client window size together with the incoming
packet in the internal control header, and the corresponding
VEH only sending data up to this limit. However, this is
not appropriate if the VEH needs to send more data than the
client currently has space available for. In this case, we cannot
avoid tracking state. However, by moving the state-keeping to
the application-level VEH (instead of having it in the TCP
layer), we can maintain state selectively only for the few
VEHs that actually require it, instead of all (possibly hundreds
of thousands) of connections. To notify such a connection-
tracking VEH that it can send more data, we do forward to it
the dedicated acknowledgment packets (which are discarded
for stateless VEHs). When a VEH receives such a notification,
new transmit data is quickly generated by the VEH (usually
without going to slow external memory) until the window is
filled again. This process repeats until all bytes have been sent.

IV. IMPLEMENTATION

The overall system has been implemented on an FPGA-
based BEEcube BEE3 reconfigurable computing platform,
which is equipped with eight 10 Gb/s network interfaces.
Our BEE3 has four Xilinx Virtex 5 FPGAs (2x LX155T, 2x
LX95T), of which we are currently only using one.

A. Core Architecture
Physical network connectivity is provided by the Xilinx

XAUI and 10G MAC IP cores. To achieve a raw throughput
of 10 Gb/s on the 64b data words output by the 10G MAC,
the entire system operates on a clock speed of 156.25 MHz.
Within the core architecture (IP, UDP, TCP), the processing
speed is doubled to 20 Gb/s by widening the data path to 128b.
This was done to cope with brief variations in intra-system
throughput (e.g., a data-dependent latency in an active VEH)
by giving the system the ability to “catch-up” with normal 10
Gb/s traffic by burst-processing the data accumulated in the
inter-stage buffers during the short stall.

B. Vulnerability Emulation Handlers

To test the functionality of the system, we have created a
number of VEHs emulating a broad spectrum of vulnerabilities
and applications. As UDP-based VEHs, we took the SIP VEH
from [4] and created an additional VEH, emulating a MSSQL
server vulnerability which was the target of the Slammer
worm [11]. To test the TCP implementation, we built a web
and mail server emulation (see below). The heart of a VEH
generally consists of a finite state machine (FSM), which
processes incoming packets, creates a response, and extracts
the malware (if detected). Extracted malware is currently
send to a management station PC via an UDP packet with
a hardwired (set during compile time) IP and MAC address.
Beyond the FSM, many VEHs also contain fast parallel pattern
matchers in dedicated hardware units.

1) Simple Web Server (TCP): With the large number of
attacks targeting vulnerable web applications [12], we have
implemented a VEH emulating a simple web server. It consists
of an on-chip ROM holding predefined HTML pages that
the web server should serve, and a string matching section
that determines the correct response to incoming requests.
The implementation responds to requests for the root URL
“/” with a simple login form (size: 1kB) pretending to be
a webmail service. The HTTP headers indicating the server
version (which should be a vulnerable one) are also stored in
the ROM and are sent back together with the HTML page.

Instead of sending predefined HTTP response headers, they
could also be generated on the fly. Examples include the
current value for the DATE field, or the real Content-Length if
some parts of the response packet are also created dynamically
(e.g., login information previously submitted by the client).

Even this simple emulation suffices for many use-cases.
It can search for extremely long URLs containing special
characters (typical of a web server exploit attempt), or pretend
to be a real webmail service and logging what type of user /
password combinations an attacker is typing in while trying
to get access. In many cases, the web server VEH can execute
stateless and just rely on the requested URL to determine its
next action. This is even true for a login process, which will
just redirect the attacker to the next URL.

2) SMTP Mail Server (TCP): The SMTP mail service is
also a commonly attacked target. Thus, we implemented a mail
server VEH that accepts incoming mails and pretends to be an
open relay server. The implementation of the VEH consists of
a pattern matching unit that recognizes to SMTP commands
and an FSM that emulates a SMTP dialogue. In contrast to
the web server VEH, the response packets of the SMTP VEH
are small and consist only of a status code and a short string.
As spam mails often contain malware or links to malware,
the mails received by this emulation can be forwarded to the
management station, where they can be further inspected. A
future refinement of this VEH could also recognize identical
messages in the VEH using structures such as Bloom filters
to avoid overwhelming the management station.



TABLE I
SYNTHESIS RESULTS FOR COMPONENTS AND COMPLETE SYSTEM

Stages Handler LUT Reg. Bits BRAM
Stages 1,2,3 Core System w/o TCP 4,976 4,208 58

TCP Implementation 3,162 2,553 15
Stage 4 SIP VEH 1,119 364 5

MSSQL VEH 788 638 5
Web Server VEH 924 576 9
Mail Server VEH 755 563 5

Core System incl. VEH 11,724 8,902 97
mapped incl. MAC + XAUI 14,441 12,323 110

(% of XC5VLX155T) (14%) (12%) (51%)

V. EXPERIMENTAL RESULTS

The design was synthesized using Synplify Premier 9.6.2
and mapped with Xilinx ISE 12.1, targeting a Virtex 5
LX155T FPGA and aiming for a clock speed of 156.25 MHz.
Functionality and performance tests were performed both by
simulation as well as on an actual BEE3 machine. The BEE3
was connected using a single 10 Gb/s interface to a dedicated
quad-Xeon Linux server, which generated the test traffic load.

A. Synthesis Results

Table I gives a summary for the core, the various VEHs,
and the complete system. VEHs sizes vary only a little. Among
the four VEHs, the SIP VEH requires the most LUTs, as it
contains the most complex pattern matching algorithms. The
other VEHs perform a larger number of simple operations,
but require more data storage (resulting in a higher number
of register bits). BlockRAMs are only needed for the inter-
stage input and output buffers, except for the web server VEH,
where they hold the website response packets as ROMs.

When considering the core system, around 40% of the
LUTs are taken up by the TCP implementation. But due
to our stateless design, the size is still small relative to the
entire device area. Together with the remaining core handlers
(ARP, ICMP, IP, UDP), in total only around 8,000 LUTs are
occupied.

B. Stability and Performance

To verify the stability and performance of the system under
real conditions, we performed multiple tests on the BEE3 in
a live environment. The SIP and MSSQL VEHs were fed
with corresponding UDP packets generated synthetically. The
correct response(s) of the handlers were verified by monitoring
the network traffic.

The Mail Server VEH compatibility was tested by sending
mails through Thunderbird and via Postfix. To accept a single
mail using a SMTP dialog, the VEH required 83ms, while the
Postfix software SMTP service on the Linux server required
153ms.

The Web Server VEH was tested using Firefox and with
Apache Bench 2. For the 1 million of pipelined requests of
the latter, the VEH replied in 22us (mean), while the software
Apache required 100us (mean) to serve a page (fully loading
all eight hyperthreaded cores of the Linux server).

VI. CONCLUSION AND FUTURE WORK

We have presented a flexible system architecture to re-
alize a high-speed hardware-accelerated malware collection
solution. With its stateless TCP implementation, it is capable
of handling large numbers of simultaneous connections. The
vulnerability emulation handlers actually performing the mal-
ware extraction rely on reconfigurable hardware to efficiently
implement complex regular expression matchers or fast FSMs.
Thus, the system can keep up with 10 Gb/s network traffic
spanning wide address ranges.

Due to its hierarchical and modular architecture, it is easily
extensible, but resilient to attackers aiming to compromise the
honeypot itself. Results gathered from a real FPGA implemen-
tation demonstrate the feasibility of our approach.

In the future, we will develop more vulnerability emulation
handlers as well as a complete and autonomous malware
analysis flow, linking the hardware-accelerated honeypot with
software-based malware analysis tools. We also plan to test our
solution in a production environment connected to the Internet
(e.g., at a university or large ISP connection).

Mid-term research will also consider dynamic reconfigu-
ration to swap vulnerability handlers at run-time, as well
as specialized tools to ease the development of handlers.
Additionally, allowing the system to span FPGA boundaries
will also be the subject of further investigation.
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