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Abstract— Side-channel attacks have changed the design of
secure cryptographic systems dramatically. Several published
attacks on implementations of well known algorithms such as,
e.g., AES, show the need to consider these aspects to build
more resistant cryptographic systems. On the other hand, with
the increasing use of cryptography in embedded systems a
significant demand exists for cryptographic algorithms that are
both resource- and power-efficient. These can be either modified
existing or completely new ones. One of the candidates for such a
new algorithm is the Tree Parity Machine Public Key Exchange,
an algorithm based on artificial neural networks. While it has
been evaluated in a number of practical applications in the past,
its side-channel resistance has not been examined yet. We would
like to close this gap and present a side-channel attack strategy
as well as results gathered from measurements made on a real
implementation.

I. INTRODUCTION AND RELATED WORK

Security and integrity aspects play an important part in
the design of current embedded systems. Identification cards,
gaming consoles, SIM cards or Digital Rights Management
systems for audio and video content require a strong security
concept to protect data from unauthorized access, duplica-
tion or forgery. As hardware resources in these devices are
often limited, intensive research aims to find optimized im-
plementations of traditional algorithms (e.g., RSA, AES) or
completely new algorithms with low hardware resource costs
(sometimes also referred to as ”‘lightweight”’ implementa-
tions/algorithms) [1]. On the opposing side, new techniques
for attacking the implementations of cryptographic algorithms
have been discovered. In recent years, aided by increasingly
accurate measurement equipment, especially side-channel at-
tacks which attempt to exploit information leaking from a
device while it is performing cryptographic operations have
been published [2]–[5]. Algorithms / implementations must
thus be designed not only for computational efficiency, but
also for a resistance against well-known side-channel attacks.

To this end, we will examine a recently published algorithm
for public key exchange targeted especially for the use in
resource-constrained environments. In contrast to the currently
dominant algorithms, the proposed cryptographic system does
not rely on number theory and complex mathematical calcu-
lations. Instead, its security is based on the synchronization
of special neural networks by mutually adapting their internal

states [6], an operation which can be implemented with very
low hardware requirements. By using an appropriate learning
rule, these tree-structured neural networks (called Tree Parity
Machines, TPM) will synchronize to a common state when
they are trained to imitate the output of the corresponding
network on a set of common inputs. Since the internal state
is never transmitted over the insecure channel, it can be used
as a common encryption / decryption key for, e.g., an AES
algorithm after synchronization has completed. Synchroniza-
tion time is short and only a few hundred bits need to be
transmitted to securely exchange a 128 bit symmetric key [7].
Furthermore, the computational complexity of the operations
performed by the cryptographic devices is very low.

The security of the TPM algorithm has first been evaluated
by Shamir et. al [8], discovering some weaknesses that could
be exploited by a group of cooperative attackers. In recent
years, however, a number of publications presented counter-
measures alleviating these weaknesses (e.g., by adjusting the
network parameters [7], or by adding predictable errors to
the network output to confuse the attacker [9]). With these
improvements, TPM has become a promising algorithm for
use in resource-constrained environments.

Beyond the theroretical analysis, a number of case studies
have examined the practical use of TPMs: [10] presents an
architecture for secure chip-to-chip communication in embed-
ded systems, using TPM key exchange extended with multi-
party functionality for an unlimited number of bus participants.
The same authors proposed a special stream cipher based on
TPMs, which allows high-speed encryption and decryption
at native bus speeds with very low resource demands [11].
The technique was also used for One-Time Password schemes
[12], secure authentication in WiMAX networks [13], and
supporting secure group communication in ad-hoc networks
[14].

However, all the contributions did not discuss the side-
channel resistance of implementations of the TPM algorithm
(as demanded by [15]). We close this gap by providing a
first evaluation of the side-channel resistance of the TPM
algorithm and offer practical results gained by attacking an
actual hardware implementation of the algorithm using the
well-studied Differential Power Analysis (DPA) method.

The paper is organized as follows: Section II describes the



Fig. 1. Tree parity machine scheme

TPM-based cryptographic algorithm, while Section III covers
implementation details. Section IV explains strategies to attack
the TPM-based system by a side-channel analysis, followed
by a discussion of the results of the practical experiments in
Section V. We close with a conclusion and an outlook towards
further research in the last Section.

II. TREE PARITY MACHINE KEY EXCHANGE

For simplicity, we assume to have just two nodes A and B
participating in the key exchange, but the approach is easily
extensible to more nodes [14]. The TPM of a node is a network
structure with K parallel hidden units (1 ≤ k ≤ K) and a
single unit in the output-layer, arranged in a tree structure
(see Fig. 1). Each hidden unit has 1 ≤ j ≤ N integer weights
wkj ∈ [−L,L] and the same number of inputs xkj . For brevity,
the weights and inputs of a hidden unit k will be referred to as
the vectors w̄k and x̄k later. Every input has a connection to
exactly one weight. The inputs are streams of time-dependent
random numbers xkj(t) ∈ {−1, 1} applied to both nodes in
parallel. The initial weight values should be random and they
must be kept private to each node for the cryptographic system
to be secure. For each time step, the network output O(t) ∈
{−1, 1} of each node is calculated by a parity function of the
signs yk(t) ∈ {−1, 1} of sums:

O(t) =

K∏
k=1

yk(t) =

K∏
k=1

σ

 N∑
j=1

wkj(t) xkj(t)

 (1)

σ(·) computes the sign of its argument as 1 or −1. However,
it has a slightly different definition for the separate nodes:
For the node initiating the key exchange σ(0) = 1, for the
responding node σ(0) = −1 holds.

A calculated output value is then transmitted over the
(potentially insecure) channel to the other node. The nodes
then perform an adaption step using the rule in Eq. (2).

wkj(t) :=


wkj(t− 1) +O(t) xkj(t) , OA(t) = OB(t) ∧

O(t) yk(t) < 0

wkj(t− 1) , otherwise
(2)

This rule reinforces matching node outputs O for the parties.
It has been shown to lead to faster convergence than rules
aiming to attenuate mismatched node outputs [7] (which are
simply skipped here). When node outputs match, the second
condition limits adaptation to just those hidden units which
disagree with the node output. Furthermore, the weights are
clamped to always be inside the interval [−L,L].

The steps of output calculation, output transmission, and
network adaption are repeated multiple times. By using the
same set of inputs xkj(t) for both nodes, the weight-vectors
successively converge to each other [6]. When they become
equal, both parties produce the same outputs. The adaptation
rule ensures that further value changes now occur in lock-
step at both nodes (remember that Eq. (2) leads to adaptation
on matching outputs). We thus generate a sequence of time-
dependent weight-vectors common to both TPMs.

As these weights (represented by bit vectors in an actual
implementation) have not been exchanged over the insecure
channel, there must be an indirect termination condition which
detects the end of the key exchange process. This could be,
e.g., realized by regular transmissions of a hash checksum
derived from the current weight state, but on the other hand
such an approach would lead to additional potential leakage
and additional resource demands. In practice, experiments
have shown [7] that observing a sequence of matching outputs
for sufficiently long can be used to establish whether the two
nodes have become synchronized with only a negligibly low
risk of falsely assumed synchronization on chance matches.
This is feasible because after nodes have synchronized at all,
the TPMs continue to run in lock-step (producing the same
outputs) and will never lose synchronization ever again. Since
the weights are node-private, they can from then on be used as
a symmetric key for encryption and decryption, respectively.

Synchronization time has been experimentally observed in
[7] to be finite for integer weights and to peak at around 400
transmitted bits for practical network configurations (K =
3 . . . 15, N = 3 . . . 21, L = 3), leading to key sizes between
128 and 512 bits. Actual performance can be improved further
by using the so-called bit-package variant [7], which speeds-
up the synchronization process by reducing the communication
overhead. Assuming that we send packets of 32 bits in parallel
(which is feasible for embedded devices), synchronization is
achievable in just 12. . . 14 transmitted packets [11].

Since an attacker can observe both inputs x̄k(t) and outputs
O(t) of the nodes, the security of the TPM key exchange
relies on the initial weights being private. Otherwise, assuming
that the attacker had full knowledge of the internal design
of the nodes (K, N , etc.), he could just perform the same
computations as the communicating nodes and also end-up
being synchronized and able to follow the conversation. In
some cases, it is actually possible to increase security further
by also keeping x̄k(t) secret [16]. This provides a possibility
for implicit authentification of two or more parties due to the
fact that synchronization of nodes is solely possible when the
inputs are common.
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Fig. 2. Implementation of a) parity calculation and b) adaptation

III. ARCHITECTURAL DETAILS OF A TPM
IMPLEMENTATION

Implementations of the Tree Parity Machine key exchange
are often partitioned (see [7] and [10]) into parity calculation
and weight adaption blocks (see Fig. 2). For calculating the
parity output, the weight and input values of each hidden unit
are loaded from a register file, multiplied (which only alters
the sign bit) and then fed into an adder. Next, the sign bit of
the resulting sum in every hidden unit is extracted and stored
(for later use in the adaptation step). The stored sign bits are
then used as inputs for the parity calculation. In bit packet
mode, this step is repeated multiple times, thus resulting in a
bit vector holding the parity output bits.

In practice, the data stream of input values is generated by
using a linear feedback shift register (LFSR). It is initialized
using a common value (which can be fixed, either public or
hidden, or dynamically exchanged over the insecure channel),
and then provides a reproducible sequence of bits. This,
the input bits x̄k(t) do not actually have to be exchanged
between nodes, they are generated by the node-local LFSRs.
This allows the low-bandwidth transmissions described in the
previous Section.

For the adaptation step, the outputs of both nodes are
compared with the previously stored signs of summation of
every hidden unit. Depending on being equal or different, the

weight values of the corresponding hidden unit are altered by
+1 or -1 (respectively).

Parallelism can be exploited during both operations. In
both parity and adaptation, hidden units are computationally
independent (except for the final reduction step in the parity
calculation). Given enough hardware area parity and adapta-
tion computations could be performed in a single clock cycle
each.

In practice, the achievable degree of parallelism is limited
mainly by the required parallel adder for the sum calculation
(large parallel adders are relatively large and slow) in every
hidden unit. As the TPM is targeted at embedded devices
with more restricted hardware resources, real implementations
trade-off parallelism and resource demands (see [10]) to
achieve good performance rates at acceptable costs. A realistic
system could, e.g., process just three weights during parity
calculation and just six weights during adaptation in parallel
in every cycle.

Note that register accesses (characterized according to di-
rection and frequency) during the computations are of great
interest for side-channel analysis attacks, we will thus consider
them in more detail in the next Section.

IV. POTENTIAL SIDE-CHANNEL LEAKAGES OF THE TPM
IMPLEMENTATION

Since Kocher et al. [17] introduced the side-channel analysis
in 1999, published research concentrated on attacks on well-
know block ciphers DES and AES. [2]–[5]. Dynamic power
consumption is the most popular side-channel used for attacks,
spawning the discipline of differential power analysis (DPA).
It exploits the information leaked in the data dependent power
draw of the target device. In this Section we discuss applying
DPA to our TPM-based key exchange.

The effectiveness of DPA is highly dependent on the power
model employed. In contrast to AES and DES, the TPM
implementation under attack does not include any bijective
non-linear function with a significant hamming distance be-
tween different intermediate values, e.g., a S-Box. It thus
becomes more difficult to relate clearly distinguishable power
consumption to these intermediate values (from which the
attack aims to derive the private information).

As stated in Section II, the only private information in the
TPM public key exchange scenario is the initial value of the
weight vector in every node. Therefore, getting information
allowing the derivation of this value will be the target of our
attack.

As shown in Fig. 2a), the summation during parity calcu-
lation operates directly on the node weights. Together with
the publically known input stream x̄k(t), we will subject it
to a side-channel analysis by DPA. We have to prevent the
adaptation of weights during our attack and will thus send a
constant Oa = Ob to both nodes.

For this scenario, a Hamming weight power model (HW) of
the summation step, shown for one hidden node of the TPM in
Eq. 3, appears to be suitable. We interpret x̄(t0) as plain text
(at time t0) and w̄ as secret key. Our hypothesis estimates the



changes at the output of the summation of weights to derive
the power consumption for each summation.

PHW (x̄(t0), w̄) = HW

 N∑
j=1

wj xj(t0)

 (3)

for all w̄ ∈ [−L,L]N ,
with x̄(t0) ∈ [−1, 1]N

To generate estimated power sequences for all weight vec-
tors, we assume the attacker knows range of weights values
[−L,L]. Since all terms summed in Eq. (1) can be computed
independently for each node, it is sufficient to examine only
a single node in Eq. 3. Furthermore, the computation in Eq.
3 is time-independent (as opposed to the summed term in Eq.
1), since we prevented adaptation from altering the weights.

We can improve upon HW by analyzing the data-dependent
power consumption leakage with respect to the previous value
of the summation register (see Fig. 2a). This leads to a
Hamming distance model (HD, Eq. 4) which now considers
not only x̄(t0) at time t0, but also the value of the previous
input x̄(t−1) at t−1 to estimate the power consumption. The
power drawn during the computation depends on the number
of flipped bits in the summation register, which can be more
accurately predicted by also considering the previous sum.
This, in turn, allows a more precise power estimation than
the HW model.

PHD(x̄(t0), x̄(t−1), w̄)

= PHW (x̄, w̄) ⊕ PHW (x̄(t−1), w̄) (4)
for all w̄ ∈ [−L,L]N ,

with x̄(t), x̄(t− 1) ∈ [−1, 1]N

V. DISCUSSION OF EXPERIMENTAL RESULTS

We now discuss the results of several experiments analyzing
the leakage of the TPM-based key exchange. They were car-
ried out on the SASEBO platform [18], an FPGA prototyping
board dedicated to side-channel analysis.

In our experiments, we used a TPM implementation based
on the design in [10]. The RTL description of the circuit
was synthesized for the Virtex II Pro FPGA on the SASEBO
board. For simplicity, our implementation consists of K = 1
hidden unit, having N = 3 inputs and a weight value range of
−L = −3. . .L = 3. All weights are processed in parallel. We
chose these parameters to ensure a low signal-to-noise-ratio
for analyzing the weights in a single node and also to keep
the total number (2L+ 1)N = 73 = 343 of possible weight
combinations computationally feasible.

The data-dependent drawn power was measured with an
digital oscilloscope (Agilent DSO6052) and a 1Ω-shunt placed
in the supply line of the FPGA’s inner core voltage. In
this manner, we collected 600,000 individual power traces
using uniform distributed random, but repeatable sequences
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Fig. 3. Correlating measured and estimated power over time for all
hypotheses (the correct hypothesis is plotted solid black)

of input data to the fixed-weight adaptation-inhibited TPM
(as discussed in Section IV). After the measurement phase
we partitioned the 600,000 traces into six groups of 100,000
traces each.

A. Analysis using Hamming weight model

First, we analyze each trace group with the Hamming
weight model HW. To this end, we compute the estimated
power consumption by applying the Hamming weight model
HW to the summation step of the calculation for our single
hidden unit. We perform this for all weight vectors w̄ (which
are our hypotheses for the as-yet unknown secret vector) and
the known current input x̄.

For each input value, we have to test 343 hypotheses.
Finally, we use the Pearson coefficient, which is a number
between -1 and +1 that measures the degree of association
between two statistical variables, to correlate the measured
power for the input value x̄ at time step t in the trace with all
estimated power levels for the same input value (for all values
of w̄). The value w̄ whose estimated power consistently has
the highest correlation with the measured power, is most likely
the correct value of the secret parameter vector.

Figure 3 shows the correlation results for the segment of
time in which the summation of the parity calculation is
processed. The grey bars indicate the maximum correlation
achievable for all 343 choices of w̄ for an input value x̄. It
turns out, however, that the values of w̄ deemed to be most
likely (having the highest correlation between measured and
estimated power) are actually not the secret values of the
actually used weights. For comparison, we have plotted the
correlation of measured power with the estimated power of
the actual secret values of w̄ as a solid black line. For the six
attacks we performed (each using a group of 100,000 traces),
the correlation of the correct hypothesis is dominated in all
cases by a false hypothesis (though not always the same one).

DPA thus cannot directly determine the correct key w̄ when
applying the Hamming weight model. However, it could aid
an attacker by reducing the search space. We demonstrate this
by a convergence analysis on our six group of traces (en-
compassing 100,000 power traces), Figure 4 shows exemplary
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Fig. 4. Correlation of hypotheses for all values of w̄ (grey) and of hypothesis
for correct key (black) over the number of analyzed traces

the result of one of the six power trace sets. The five other
analysis results looks similar to the displayed. The drawback
of such a convergence analysis is, that the computational effort
is much higher than the effort for a normal differential power
attack, why we tried the other approach first. This time, instead
of just showing a single maximum-correlation hypothesis per
time step, we depict the correlations of all 343 hypotheses
over increasing numbers of used traces for the correlation
analysis. In the first half of the experiment, with only a small
number of traces considered, many hypotheses are deemed
similarly likely. However, after roughly 42,000 traces, a group
of hypotheses (marked by a dashed ellipse in Figure 4) clearly
becomes more likely than the rest. Depending on the analyzed
set of power traces this group contains 40. . . 60 hypotheses,
among them the correct values for w̄ (this correlation is again
plotted in black).

While Figure 4 is fine for getting an overview about the
value of information contained in the data, but does not
clearly show which ones of the 343 hypothesis are within the
group, we will use a further representation. Figure 5 plots the
correlation between the estimated power consumption and the
real power consumption over the 343 different hypotheses.
Individual hypotheses within the group of most-likely hy-
potheses have significantly higher correlation values than other
hypotheses. The hypothesis with the correct weight values w̄
is pointed out and is indeed among the hypotheses with the
higher correlation values.

In summary, our first set of experiments shows that the
Hamming weight model cannot accurately predict the power
drawn by the actual hardware for given values of w̄ and x̄. But
it can decrease the number of possible values for w̄ (reduce
the search space) at the cost of 100,000 measurements.

B. Analysis using Hamming distance model

In a second evaluation phase, we now use the Hamming
distance model HD on each group of gathered traces to
extract information leaking through the data-dependent power
consumption. Building on the experience of the prior eval-
uation using the Hamming weight model, we proceed to

Fig. 5. Ranking of the different HW-based hypotheses with mark on the
correct hypothesis

Fig. 6. Ranking of the different HD-based hypothesis with mark on the
correct hypothesis

directly analyze the correlation between the estimated power
consumption, based on new HD-based 343 hypotheses, and
the measured power consumption.

This time, for roughly half of our six analysis groups, the
hypothesis with the highest correlation value actually was
the correct hypothesis (shown in Figure 6). Even if it was
incorrectly predicted (in the other half of our experiments),
the correct hypothesis was among the group of the most-likely
candidates (based on the correlation value). Furthermore, the
group of most-likely candidates is now also much smaller
(2 to 11 candidates in our experiments), reducing the search
space further even if the correct hypothesis was not obvious
right away. These results show that the more precise Hamming
distance model is significantly better suited to a DPA attack
on the TPM-based key exchange than the Hamming weight
model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a strategy to attack a the
tree parity machine algorithm using the differential power
analysis and conducted experimental attacks on a FPGA
implementation. To our knowledge, this is the first attempt at
a side-channel analysis attack on a TPM-based cryptographic
system. In particular, we were using Hamming weight and



Hamming distance models to get knowledge about the secret
value of the weight vector w̄, which is the only secret for the
tree parity machine public key exchange. In our experiments,
the latter model turned out to be more accurate in this scenario.

However, while we were partly successful with the Ham-
ming distance model in determining the secret values of
the weight vector in our experiments, our experiments also
show that practical attacks on real TPM-based cryptographic
systems will be very costly.

First, the accuracy of both of our Hamming models suffers
from the absence of bijective non-linear functions (e.g., S-
Boxes in AES and DES), which would have a significant Ham-
ming distance between different intermediate values, and thus
have a better exploitable data-dependent power consumption.
Second, our attack targeted a very simple TPM cryptographic
system. With more weights and nodes and a wider range
of weight values, the number of hypotheses to test grows
exponentially and will require a much larger computational
effort than comparable attacks, e.g., on AES. Furthermore, an
increased number of nodes will also produce more noise on
the supply lines, especially when the nodes internally also use
parallel compute architectures. This will make the capture of
meaningful power traces even more difficult. Third, while our
experiments captured hundred of thousands of power traces
(since we artificially inhibited adaptation), a real system would
synchronize after just a few hundred computations. Assuming
a true random number generator for the initial weight values,
there will be no similarities between different runs. Thus, it
will not be possible to collect traces of the length required for
a successful DPA attack, as every new synchronization run
starts with different random hidden weight values.

Our results indicate that an increased number of nodes
not only improves the resistance of TPM against collabo-
rative attacks (as mentioned in [11]), but also hardens it
against a standard DPA side-channel attack. Combined with
the suitability of TPM for certain use-cases (such as the
stream-cipher built on TPM’s continuous key stream [11]),
it thus becomes an even more attractive algorithm choice for
resource-constrained environments.

Furthermore, the impact of the absence of bijective non-
linear functions on the DPA resistance of a cryptographic
system is a strong factor. Future research could study the
inclusion of algorithms such as the TPM-based approach as
an additional layer to conventional cryptographic systems to
harden them against DPA attacks.

On the attack side, another angle could be to use the
DPA just as a starting point. For example, [19] proposes
an attack on the public key exchange based on a set of
cooperative attackers, all starting at different states. Providing
these attackers with more precise knowledge about the possible
range of internal weight values could have the potential to
speed-up the attack.
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