
A Fast GPU Implementation for Solving Sparse
Ill-Posed Linear Equation Systems

Florian Stock and Andreas Koch

Embedded Systems and Applications Group
Technische Universität Darmstadt

{stock|koch}@eis.cs.tu-darmstadt.de

Abstract. Image reconstruction, a very compute-intense process in gen-
eral, can often be reduced to large linear equation systems represented
as sparse under-determined matrices. Solvers for these equation sys-
tems (not restricted to image reconstruction) spend most of their time
in sparse matrix-vector multiplications (SpMV). In this paper we will
present a GPU-accelerated scheme for a Conjugate Gradient (CG) solver,
with focus on the SpMV. We will discuss and quantify the optimizations
employed to achieve a soft-real time constraint as well as alternative solu-
tions relying on FPGAs, the Cell Broadband Engine, a highly optimized
SSE-based software implementation, and other GPU SpMV implemen-
tations.

1 Introduction and Problem Description

Modern imaging technologies in many application areas (e.g., medical, secu-
rity, safety, multi-media) require the efficient solution of large systems of linear
equations. In this work, we describe the solution of a practical reconstruction
problem under soft-real time constraints as required by an industrial embed-
ded computing use-case. For greater generality, we have abstracted away the
individual problem details and concentrate on the solution itself, namely the
reconstruction of voxel information from the sensor data.

For the specific use-case, this process requires the solution of a matrix system
with up to 250 × 106 elements (depending on the image size). However, due to
practical limitations of the sensor system (e.g., due to unavoidable mechanical
inaccuracies), the gathered data does not allow perfect reconstruction of the
original image and leads to a strongly ill-posed linear equation system. To achieve
acceptable image quality, a domain-specific regularization, which narrows the
solution space, has to be employed. It expresses additional requirements on the
solution (such as ∀i : xi ≤ 0) and is applied during each step of the conjugate
gradient (CG) method, allowing the reconstruction of suitable-quality images in
≈ 400 CG iterations. It is the need for this regularization vector F as a correction
term, that makes other, generally faster equation solving methods (see Section
2) unsuitable for this specific problem.

The matrix A, which represents the linear equation system, has up to 855000
nonzero elements. These nonzero elements comprise 0.3 − 0.4% of all elements.
If stored as single-precision numbers in a non-sparse manner, it would require
more than 2 GB of memory.

ek = ATAdk + F (xk, dk)
fk = dT

k ek

αk = −(gT
k ek)/f

xk+1 = xk + αkdk

gk+1 = AT (Axk+1 − b) + F (xk, xk+1)
βk = (gT

k+1ek)/fk

dk+1 = −gk+1 + βkdk

Table 1. Loop body of the CG algorithm.
F is the regularizing correction term.

Shared
Memory

Multiprocessor

Scalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar Processor

Texture Cache Constant Cache

Shared
Memory

Multiprocessor

Scalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar Processor

Texture Cache Constant Cache

Shared
Memory

Multiprocessor

Scalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar Processor

Texture Cache Constant Cache

Shared
Memory

Multiprocessor

Scalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar Processor

Texture Cache Constant Cache

Shared
Memory

Multiprocessor

Scalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar ProcessorScalar Processor

Texture Cache Constant Cache

Device
Memory

Fig. 1. CUDA architecture

A number of storage formats are available for expressing sparse matrices more
compactly (e.g., ELLPACK, CSR, CSC, jagged diagonal format [12]). For our
case, as the matrix is generated row-by-row by the sensors, the most suitable
approach is the compressed sparse row format (CSR, sometimes also referred
as compressed row storage CRS). For our application, this reduces the required
storage for A to just 7 MB.

As the CG solver demands a positive semi-definite matrix, we use the CGNR
(CG Normal Residual) approach [12] and left-multiply the equation system with
AT . Hence, we do not solve Ax = b, but ATAx = b. Due to the higher condition
number κ of the matrix ATA, with κ(ATA) = κ(A)2, this will however result in
a slower convergence of the iterative solver.

Table 1 shows the pseudo-code for the modified CG algorithm. Computing
400 iterations of this CG (size of matrix A 320,000 × 3,000 with 1,800,000
nonzero entries) requires 15 GFLOPS and a bandwidth of 105 GB/s. The soft-
real time constraint of the industrial application requires the reconstruction of
four different images (taken by different sensors) in 0.44 seconds. However, since
these images are independent, they can be computed in parallel, allowing 0.44s
for the reconstruction of a single image.

The core of this work is the implementation of the modified CG algorithm
on a GPU, with a focus on the matrix multiplication. The techniques shown will
be applicable to the efficient handling of sparse matrix problems in general.

1.1 GPGPU Computing and the CUDA System

With continued refinement and growing flexibility, graphics processing units
(GPUs) can now be applied to general-purpose computing scenarios (GPGPU),
often outperforming conventional processors. Nowadays, the architecture of mod-
ern GPUs consists of arrays of hundreds of flexible general-purpose processing
units supporting threaded computation models and random-access memories.
Dedicated languages and programming tools to exploit this many-core paradigm
include the manufacturer specific flows CUDA (described below, by NVIDIA)
and Firestream [1] by ATI/AMD, as well as the hardware-independent Brook+
[5], RapidMind [9] and OpenCL [6] approaches.

For our work, we target NVIDIA GPUs, specifically the GTS 8800 models and
GTX 280. They are programmed using the Compute Unified Device Architecture
(CUDA) development flow. Figure 1 shows the block diagram of such a CUDA-
supported GPU. The computation is done by multiprocessors, which consist

of eight scalar processors, operating in SIMD mode (=all executing the same
instruction, but on different data). Each of the scalar processors can execute
multiple threads, which it schedules without overhead. This thread scheduling
is used to hide memory latencies in each thread.

Each multiprocessor furthermore has a small shared memory (16 KB) which
is randomly accessible with low latency by all of its scalar processors. The device
global memory is also randomly accessible by all scalar processors, but high
performance requires that accesses have to occur to sequential addresses. In the
threaded model, this implies that consecutive threads must access consecutive
memory addresses. Only such accesses, which are called coalesced, allow high-
bandwidth memory operations, others have a significant performance penalty.

An entire computation, a so-called kernel, is instantiated on the GPU device
as multiple blocks. These are then executed in arbitrary order, ideally in parallel,
but may be serialized, e.g., when the number of blocks exceeds the number of
multiprocessors available on the device. The block structure must be chosen
carefully by the programmer, since no fast inter-block communication is possible.
A block is assigned atomically for execution on a multiprocessor, which then
processes the contained threads in parallel in a SIMD manner. Note that the
threads within a block may communicate quickly via the shared memory and
can be efficiently synchronized.

At invocation time, a kernel is parametrized with the number of blocks it
should execute in as well as the number of threads within each block (see [10] for
more details). For high performance computing (HPC) applications the number
of threads is usually much larger than the number of multiprocessors.

2 Related Work

A large number of methods can be used for solving linear equations. They are
often classified into different types of algorithms, such as direct methods (e.g.,
LU decomposition), multi grid methods (e.g., AMG) and iterative methods (e.g.,
Krylov subspace; see [12]) Due to the need to compensate for sensor limitations
by the correction term F (see Section 1), an appropriately modified iterative CG
method fits our requirements best.

The computation of the sparse matrix vector product (SpMV) has long been
discovered to be the critical operations of the CG method, a fact which also
applies to our problem. With the importance of matrix multiplication in gen-
eral, both to this and many other important numerical problems (e.g., partial
differential equation solving or singular value decomposition), it is worthwhile to
put effort towards fast implementations. The inherent high degree of parallelism
makes it an attractive candidate for acceleration on the highly parallel GPU
architecture.

For the multiplication of dense matrices, a number of high-performance GPU
implementations have already been developed [7, 8]. A very good overview and
analysis of sparse multiplications is given in [2]. Different storage formats and
methods for CUDA implemented SpMV are evaluated and compared, but the
focus is on much larger matrices and the different storage formats. Furthermore,
NVIDIA supplies the segmented scan library CUDPP with a segmented scan-
based SpMV implementation (described in [13]). Another similar work, which

focuses on larger matrices, is presented in [4], where two storage formats on
different platforms (different GPGPUs and CPU) are compared.

On a more abstract level, the CG algorithm in its entirety is best accelerated
by reducing the number of iterations. This is an effective and popular method,
but often requires the exploitation of application-specific properties (e.g., [11]).

Beyond our application-specific improvement using the F correction term, we
have also attempted to speed-up convergence by using one of the few domain-
independent methods, namely an incomplete LU pre-conditioner [12]. However,
with the need to apply F between iterations, this did not improve convergence.

3 Implementation

Despite the growing memory capacities available on both the host computer as
well as on the GPU, the communications bandwidth between memory and GPU
remains a bottleneck. Another slow-down is due to the fixed-time overhead of
starting a kernel on the GPU [3]. For smaller computations (of which our image
reconstruction is an instance), this overhead takes a significant amount of time
relative to the total computation time.

Thus, even with the promising match of parallelism between the problem
and the processor architecture, we have to design our implementation carefully
to actually achieve wall-clock speed-ups over conventional CPUs.

3.1 Sparse Matrix Vector Multiplications (SpMV)

As we focus in this paper on the SpMV, we implemented and evaluated (see
Section 4) a number of different ways to perform SpMVs for our application on
the GPU.

Variant Simple. This baseline implementation uses a separate thread to com-
pute the scalar product of one row of the matrix and the vector. As described
before, the matrix is stored in CSR format and the vector as an array. This ar-
rangement, while obvious, has the disadvantage that for consecutive thread IDs,
neither the accesses to the matrix nor to the vector are to consecutive addresses.
These non-coalesced accesses to global device memory lead to a dramatically
reduced data throughput.

Variant MemoryLayout. This first GPU-specific optimization uses an altered
ELLPACK-like (see e.g. [2] for more details on the format) memory layout for the
CSR data structures. By using a transposed structure, we can now arrange the
matrix data so that consecutive threads find their data at consecutive addresses.
This is achieved by having k separate index and value arrays, with k being the
maximum number of nonzero elements in row. indexi[j] and valuei[j] is the i-
th nonzero value/index of row j. Since in our case A has a uniform distribution
of nonzero elements, this optimization has little impact on the total memory
required.

The accesses to the vector remain non-coalesced, as the indices pointing to the
nonzero elements are distributed randomly within a row (and accessed differently
from each row thread).

Fig. 2. Original (a) and optimized memory (b) layout of a matrix in CSR format.
The arrows indicate the sequence in the memory.

Variant LocalMemory. The next variant attempts to achieve better coalescence
of memory accesses by employing the shared memory. Since shared memory sup-
ports arbitrary accesses without a performance penalty, we will transfer chunks
of data from global memory to shared memory using coalesced accesses, then
perform non-coalesced accesses penalty-free within shared memory, and use an-
other set of coalesced access to transfer the partial per-chunk result back to
global memory. Due to the strongly under-determined nature of our equation
system, the result vector of A ·x is much smaller than x and fits completely into
the local memory for the multiplication with AT .

However, the complete vector x does not fit into shared memory for the actual
multiplication with A. Thus, the operation has to be split into sub-steps. From
the size of the local memory (16 KB) the maximum size mv for a vector in local
memory can be computed. Mathematically, a thread j computes

∑n
i=1 ajixi.

This is equivalent to
∑mv

i=1 ajixi +
∑2mv

i=mv+1 ajixi + These sums can now be
used as separate SpMV problems, where the sub-vectors fit completely into the
local memory.

Variant OnTheFly. This variant trades a higher number of operations for re-
duced memory bandwidth. The correction term represented by the matrix F
used for the image reconstruction is the result of a parametrized computation,
that allows the separate computation of each of the rows of F . Thus, each thread
is able to compute the indexes and values it needs and only has to fetch from
memory the corresponding vector component.

As this on-the-fly generation of the matrix F is only possible row by row,
but not column by column, this variant can only be used for the multiplication
with A, but not for the multiplication with AT .

This variant can be combined with the previous one, generating only seg-
ments of the matrix row and multiplying them with a partial vector which is
buffered in the local memory.

Variant Backprojection. The last of our implementation variants tries to
reverse the matrix multiplication. Typically, all threads read each component of
the x vector multiple times, but write each component in the result vector just
once. The idea is to reverse this procedure and read each component of x just
once (i.e. thread i would read component xi, which could then be read coalesced)
and would write multiple times to the result component (non-coalesced).

To show the equivalence of this operation with the matrix multiplication,
we compare the computed results. A normal matrix multiplication computes

A · x = y, i.e. yj =
∑

i ajixi where a thread j computes one yj . In the reverse
variant, each thread i would fetch one xi and compute yj+ = aji ∗ xi ∀j. When
performed over all threads, this adds up to the same sum as computed by the
standard multiplication.

While the same result is computed, the altered flow of the computation would
allow a very efficient memory layout: Reconsider from the local memory variant
that the result y of A · x would entirely fit into shared memory. Thus, the non-
coalesced writes to the result components yj would carry no performance penalty.
Instead, the expensive non-coalesced reads of the xi from main memory could
be turned into coalesced ones.

However, this promising approach had to be discarded due to limitations of
the current CUDA hardware: Parallel threads would have to correctly update yj

by accumulating their local result. To ensure correctness, this would require an
atomic update operation that is simply not supported for floating point numbers
at this time. If such an operation would be provided in future CUDA revision,
this variant could be worthwhile.
Variant Prior Work. As mentioned in Section 2, only limited work on GPU
accelerated SpMV is published. For comparison with our kernels, we evaluated
all available implementations (i.e. CUDPP[13] and the kernels from Bell and
Garland [2]) with our matrices.

We follow the scheme of Bell and Garland, which classifies the algorithm
according to matrix storage layout and multiplication method. In this scheme,
CUDPP would be a so-called COO method. As the details on the different groups
and kernels is beyond this paper, we can only refer to the original works.

The group of DIA kernels were left out, as they operate only on diagonal
structured matrices.
Variant Xeon CPU using SSE Vector Instructions. To evaluate the perfor-
mance of our GPU-acceleration against a modern CPU, we also evaluated a very
carefully tuned software SpMV implementation running on a 3.2 GHz Xeon CPU
with 6 MB cache. The software version was written to fully exploit the SSE vec-
tor instructions and compiled with the highly optimizing Intel C compiler.

Kernel Invocation Overhead. As already described in Section 2, we expected
to deal with a long kernel invocation delay. We measured the overhead of starting
a kernel of the GPU as 20µs for an NVIDIA GTS 8800 512 and of 40µs for an
NVIDIA GTX 280. One possible explanation for the increased overhead on the
larger GTX card could be the doubled number of multiprocessors (compared to
the GTS) card and a correspondingly longer time to initialize all of them.

When composing an iteration of the CG algorithm (see Table 1) from kernels
for the operations, there will be 14 kernel invocations per iteration, translating
to 5600 kernel starts over the 400 iterations required to converge. This would
require a total of 0.11s on the GTS-series GPU (one fourth of our entire timing
budget).

To lessen this invocation overhead, we manually performed loop fusion to
merge calls to the same kernels (but operating on different data) into a sin-
gle kernel (e.g. performing two consecutive scalar products not with two kernel
invocations, but with one invocation to a special kernel doing two products).
In addition to reducing the call overhead, we gain additional performance by
loading data, that is used in both fused computations, only once from memory.

In this manner, the number of kernel invocations is reduced from 14 to just
six per iteration, now taking a total of 0.048s.

Resources. All kernels were invoked with at least as many blocks as multipro-
cessors were available on each GPU, and on each multiprocessor with as many
threads as possible to hide memory latencies.

Only the matrix-on-the-fly and the correction term kernels could not execute
the maximum of 512 threads per block due to excessive register requirements.
Nevertheless, even these kernels still could still run 256 threads per block.

3.2 Alternate Implementations - Different Target Technologies

Beyond the GPU, other platforms, namely FPGA and Cell, were considered, but
dismissed in an early stage.

The required compute performance of 15 GFLOPS could easily be achieved
using an FPGA-based accelerator, which would most likely also be more energy
efficient than the GPGPU solution.

However, the required memory bandwidth becomes a problem here. The Vir-
tex 5 series of FPGAs by Xilinx [15] is typical of modern devices. Even the largest
packages currently available have an insufficient number of I/O pins to connect
the number of memory banks required to achieve the memory bandwidth de-
manded by the application: A single 64b wide DDR3 DRAM bank, clocked at
400 MHz, could deliver a peak transfer rate of 6.4 GB/s and requires 112 pins on
the FPGA. A large package XC5VLX110 device can connect at most to six such
banks with a total throughput of < 40 GB/s, which is insufficient. Multi-chip
solutions would of course be possible, but quickly become uneconomical.

Similar bandwidth problems exist when considering IBM’s Cell Broadband
Engine (Cell BE). The Cell BE is a streaming architecture, where eight streaming
Synergistic Processing Elements are controlled by a Power Processor. Memory
IO is here also limited by a theoretical maximum bandwidth of 25.6 GB/s ([14],
which also gives some performance numbers on SpMV).

Again, one could of course use a set of tightly-coupled Cell BEs. But since
even a single Cell blade is considerably more expensive than multiple graphics
cards, such a solution would also be uneconomical in a commercial setting.

4 Experimental Evaluation

We used the following hardware to experimentally evaluate our approach:
– Host CPU, also used for evaluating the software version: Intel Xeon with 6

MB Cache, clocked at 3.2 GHz
– NVIDIA GTX 280 GPU (16 KB shared memory, 30 multiprocessors, 1300

MHz) with GT200 chip.
– NVIDIA 8800 GTS 512 (16 KB shared memory, 16 multiprocessors, 1620

MHz) with G92 chip. Due to power constraints in the embedded system this
was the target platform.

Table 2 shows the run times of the different variants. The measurements were
taken using the NVIDIA CUDA profiler, so the data is only valid for comparison
with other profiled runs.

optimization Ax time [µs] AT y time [µs]

Simple 13,356 1,744

MemoryLayout 1,726 n/a
MemoryLayout & LocalMemory n/a 160

OnTheFly 400 11,292,080
OnTheFly & LocalMemory 807 n/a

Prior Work DIA n/a n/a
Prior Work ELL 606 198
Prior Work CSR 1,183 1,439
Prior Work COO/CUDPP 750 549
Prior Work HYB 793 289

Table 2. Performance of the different SpMV variants, measured for Ax and AT y (A
is 81, 545× 3, 072, containing 854, 129 nonzero elements)

Depending on the SpMV (Ax or AT y), the variants perform differently:
For the transposed matrix multiplication, the best variant is the method

LocalMemory combined with MemoryLayout (not using the OnTheFly technique).
The measurements include the time to transfer the vector prior to the operation
into the shared memory, where it fits completely. Thus, the random accesses into
the vector are not penalized (in comparison to those to global device memory).

For the multiplication with the non-transposed matrix, the variant OnTheFly
computing the whole row (but not using the LocalMemory technique) is most
efficient. The effect of non-coalesced random accesses could be a reduced even
further by utilizing the texture cache (increasing performance by 15%).

The variant LocalMemory in itself performs poorly for our application, due
to the very specific structure of the matrix A: Although the number of nonzero
elements is uniform, i.e. approximately the same in each row, their distribution is
different. If A was subdivided into s sub matrices with at most as many columns
as elements in the partial vector in the shared memory, the number of nonzero
elements in the rows of the sub matrices would not be uniform. The longest
path for our SIMD computation on a multiprocessor is determined by the largest
number of nonzero values in a row processed by one of the threads. Since this
may be a different row in each of sub matrices, the worst case execution time of
this variant may be s times as long than without the LocalMemory modification.

The last block of results in Table 2 shows the different runtimes of the
CUDPP kernel and the kernels from [2]. For each group, we show the best time
from all kernels of this group.

As the numbers indicate, our best implementations are faster than these
others kernels. This is due to our algorithm being specialized for the given matrix
structure.

In addition to the profiler-based measurements reported above, we also eval-
uated the performance of our GPU implementation of the complete CG on the
system level, comparing to the SSE-optimized software version. As further con-
tender, the GTX 280 GPU was used. These tests also encompass the time to
transfer the data/matrix from host memory to the GPU device memory. Since
only limited amounts of data have to be exchanged during an iteration, these
transfers are relatively short.

ti
m

e
 [

s]

GTX 280
GTS 8800

SSE

Fig. 3. Execution time of different implementations as function of the number
of nonzero elements.

Figure 3 shows the system-level computation time for different image sizes
(expressed as number of nonzero elements). For very small matrices, the SSE
CPU does actually outperform the GPU (due to data transfer and kernel invo-
cation overheads). However, as soon as the data size exceeds the CPU caches
(the knee in the SSE-line at ca. 450K nonzero elements), the performance of the
CPU deteriorates significantly.

Remarkably, the G92-class GPU actually outperforms its more modern GT200-
class sibling. Only when the matrices get much larger (and exceed the size of the
images required by our application) does the GT200 solve the problem faster.
We trace this to two causes: First, the G92 is simply clocked higher than the
GT200, and the larger number of multiprocessors and increased memory band-
width on the GT200 come into play only for much larger images. Second, the
G92 spends just 10% of its total execution time in kernel invocation overhead,
while the GT200 requires 20%.

Going back to the requirements of our industrial application: Our aim of
reconstructing images of the given size in just 0.44s was not fully achievable
on current generation GPUs. However, our implementation managed to restore
images at 70% of the initially specified resolution in time, which proved sufficient
for practical use. In this setting, the GPU achieves a peak performance of 1
GFLOPS and 43 GB/s memory bandwidth. The used GTS has a max. memory
bandwidth of 48 GB/s (measured on system with bandwidth test included in
the CUDA SDK), so we reach 87% of the maximum.

5 Conclusion

We have shown that a GPGPU approach can be viable not only on huge high-
performance computing problems, but also on practical embedded applications
handling much smaller data sets. The advantage of the GPU even over fast CPUs
continues to grow with increasing data set size. Thus, with the trend towards
higher resolutions, GPU use will become more widespread in embedded practical
applications.

Apart from our concrete application, we implemented very efficient sparse
vector matrix multiplication for both non-transposed and transposed forms of a

matrix, outperforming reference implementations for a GPU as well as a highly
optimized SSE software version running on a state-of-the-art processor.

It is our hope that future GPUs will reduce the kernel invocation overhead,
which really dominates execution time for smaller data sets, and also introduce
atomic update operations for floating point numbers. The latter would allow new
data and thread organization strategies to further reduce memory latencies.

Acknowledgements

Thanks to our industrial partner for the fruitful cooperation.

References

1. ATI. AMD Stream Computing - Technical Overview. ATI, 2008.
2. Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on

CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, Decem-
ber 2008.

3. Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. Sparse matrix solvers
on the gpu: conjugate gradients and multigrid. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, pages 917–924, New York, NY, USA, 2003. ACM.

4. Luc Buatois, Guillaume Caumon, and Bruno Levy. Concurrent number cruncher:
a gpu implementation of a general sparse linear solver. Int. J. Parallel Emerg.
Distrib. Syst., 24(3):205–223, 2009.

5. Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: Stream computing on graphics hard-
ware. ACM Transactions on Graphics, 23:777–786, 2004.

6. Khronos Group. OpenCL Specification 1.0, June 2008.
7. Jens Krüger and Rüdiger Westermann. Linear algebra operators for gpu imple-

mentation of numerical algorithms. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pages 908–916, New York, NY, USA, 2003. ACM.

8. E. Scott Larsen and David McAllister. Fast matrix multiplies using graphics hard-
ware. In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), pages 55–55, New York, NY, USA, 2001. ACM.

9. Michael D. McCool. Data-Parallel Programming on the Cell BE and the GPU
using the RapidMind Development Platform. Rapidmind, 2006.

10. NVIDIA Corp. NVIDIA CUDA Compute Unified Device Architecture – Program-
ming Guide, June 2007.

11. François-Xavier Roux. Acceleration of the outer conjugate gradient by reorthogo-
nalization for a domain decomposition method for structural analysis problems. In
ICS ’89: Proceedings of the 3rd international conference on Supercomputing, pages
471–476, New York, NY, USA, 1989. ACM.

12. Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

13. Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
primitives for gpu computing. In GH ’07: Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 97–106,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

14. Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing. In
CF ’06: Proceedings of the 3rd conference on Computing frontiers, pages 9–20, New
York, NY, USA, 2006. ACM Press.

15. Xilinx. Virtex 5 Family Overview. Xilinx, 2008.

