
ACCELERATION AND ENERGY EFFICIENCY OF GEOMETRIC ALGEBRA
COMPUTATIONS USING RECONFIGURABLE COMPUTERS AND GPUS

Holger Lange

LOEWE Research Center AdRIA
Technische Universität Darmstadt

email: lange@esa.informatik.tu-darmstadt.de

Florian Stock, Dietmar Hildenbrand, Andreas Koch

Embedded Systems and Applications Group (ESA)
Technische Universität Darmstadt

email: {stock|koch}@esa.cs.tu-darmstadt.de
dhilden@gris.informatik.tu-darmstadt.de

ABSTRACT

Geometric algebra (GA) is a mathematical framework that
allows the compact description of geometric relationships
and algorithms in many fields of science and engineering.
The execution of these algorithms, however, requires signifi-
cant computational power that made the use of GA imprac-
tical for many real-world applications. We describe how
a GA-based formulation of the inverse kinematics problem
from robotics can be accelerated using reconfigurable FPGA-
based computing and on a graphics processing unit (GPU).
The practical evaluation covers not only the sheer compute
performance, but also the energy efficiency of the various
solutions.

1. INTRODUCTION

Geometric Algebra (GA) is a mathematical framework for
the concise description of complex geometrical relationships.
It can be used as the base for compact algorithms in many
fields of science and engineering. However, the execution of
these algorithms is highly compute intensive, which is one of
the reasons that GA has only seen limited use in real-world
applications. Thus, a number of attempts (discussed in Sec.
3) have been made in the past to increase the execution speed
of GAs.

Reconfigurable adaptive computers (ACS) and general
purpose computing on graphics processing units (GPGPUs)
both offer compute performance beyond that of conventional
processors (CPUs), but normally use very different models
of computation. GPUs generally support a coarse grained
SIMD approach [16], while ACSs additionally allow a much
finer parallelism at the instruction- or pipeline level [19].
Other differences include the clock frequencies, which easily
exceed 1 GHz for the GPU but are limited to a few hundred
MHz at best on the often Field Programmable Gate Array
(FPGA)-based ACSs, and the power consumption.

This work will give a short introduction into geomet-
ric algebra and then discuss the classical robotics problem

Fig. 1. Spheres and circles are among the basic entities of
geometric algebra. Geometric operations such as the inter-
section of two spheres are easily expressible.

of inverse kinematics (compute arm swivel angles to allow
the robot’s hand to reach a specific target point). The GA-
based formulation of that problem is significantly shorter and
much more accessible than the traditional one. We will then
use it as a benchmark for acceleration both on an FPGA-
based ACS as well as a current generation GPU. With the
increased importance of power and thermal budgets even in
high-performance computing, especially in embedded envi-
ronments, our experimental evaluation will not just cover
the sheer compute performance, but also extend to energy
efficiency.

2. FUNDAMENTALS OF GEOMETRIC ALGEBRA

GA unifies many other mathematical concepts like imaginary
numbers, quaternions or projective geometry. It is based on
the work of Hermann Grassmann and William Clifford ([3],
[4]). Pioneering work has been done by David Hestenes, who
firstly applied Geometric Algebra to problems in mechanics
and physics [11] [10].

GA is able to easily describe and manipulate high-level
geometric objects like spheres, circles and planes as well as
operations combining objects.

The spheres of Fig. 1 for instance are concisely repre-
sented by the algebraic object

S = P − 1
2
r2e∞ (1)

with a center point P, radius r and the basis vector e∞ (rep-
resenting the point at infinity). Their intersecting circle is
then computed with the help of the outer product operator as

Z = S1 ∧ S2 (2)

By composing additional primitives such as points and
planes, applications from diverse domains are easily for-
mulated. Examples include GA Fourier transforms, or the
classification and clustering of spatial patterns with GA [18],
or the robotics application that will be discussed in Sec. 4.

3. RELATED WORK

Despite the tremendous expressive power of the geometric
algebra (GA), it has only seen very limited practical use.
One of the reasons for this might be that the execution or
evaluation of GA algorithms (actually transforming coordi-
nates) requires significant computational effort. To resolve
this quandary, it is promising to look at dedicated hardware
architectures for the acceleration of this computation. Cur-
rent integrated circuit technology offers a means to achieve
this in the form of FPGAs.

One of the first attempts to accelerate GA computations
is [5]. It proposes to structurally compose hardware blocks
for primitive GA operators using the PROLOG programming
language. However, this work does not contain an experi-
mental evaluation of a nontrivial application.

A more serious approach is described in [17], even
though that accelerator only realises the geometric product.
It is implemented on a 20 MHz FPGA connected via the
PCI bus to the host computer. Due to the limited capacity
of the FPGA employed, techniques such as wide parallel or
pipelined processing, and the use of fast on-chip memories,
were not exploited. Similarly, subspace coefficients consist
only of 24 bit integers, other fixed or floating point formats
are not supported. The architecture is able to process multi-
vectors of up to eight dimensions, with smaller vectors being
processed faster. While the resulting accelerator does achieve
a speedup over a conventional software programmable pro-
cessor when counting clock cycles, this advantage completely
disappears when considering the actual execution time (wall
clock time): While the software running on the processor
requires many more clock cycles, each of these cycles is only
0.666 nanoseconds long (on the 1.5 GHz processor used for
the evaluation). Each of the FPGA clock cycles, however,
has a duration of 50 ns. This leads to a practical slow-down
by a factor of 50x when using the FPGA-based solution over
simple software running on a conventional computer.

A different approach was presented in [7]: This accelera-
tor supports functions beyond the geometric product, namely,
the outer product, contractions etc., each being implemented
on a dedicated hardware unit. While the architecture is lim-
ited to multi-vectors of three to four dimensions, it is suf-
ficient for many practical applications of GA in computer

graphics. This design decision is reflected directly in the
architecture of the unit: all operations are performed on six
coefficients, with the per-coefficient computations being per-
formed in parallel. As before, the coefficients are limited
to integers, in this case 16 bit wide. The FPGA implemen-
tation of this accelerator achieves a frequency of 50 MHz
and is able to compute the geometric product in 56 clock
cycles. However, 49 of these are required for communicat-
ing with the host computer over the PCI bus. Despite this
inefficiency of the FPGA-attachment, the computation of the
geometric product requires fewer clock cycles than the 249
cycles taken by a conventional processor. But again, when
taking the different clock frequencies into account to com-
pute the real world execution times, this approach also leads
to a slowdown by a factor of 9x.

An update of this work is given in [6]: the operation-
specific hardware units have now been replaced by a variable
number of so-called slices. Each slice is able to compute all
operations of the four-dimensional GA. The coefficients have
now been extended to 32 bit integers. In terms of hardware,
a slice consists of a 32 bit wide arithmetic logic unit capable
of addition, subtraction, multiplication, and logical computa-
tions. The GA operations are decomposed into these prim-
itive calculations, with their execution being orchestrated
step-by-step by on-chip software (microcode). Parallel or
pipelined processing, which lies at the heart of all high-speed
conventional processors, is not employed. The authors argue
that their slice-based architecture achieves better scalability
than the original one with dedicated hardware units. For high-
performance, they suggest using multiple of the slice units in
parallel. However, their experimental evaluation benchmarks
just a single slice: the FPGA implementation achieves a clock
frequency of 45 MHz and runs by a factor 3x to 4x faster than
a software programmable processor when counting cycles.
When actually considering the 2 GHz clock frequency of the
reference processor, the actual execution time again slows
down by a factor of 9x to 12x versus software.

The first coprocessor to lift the integer limitation on co-
efficients is introduced in [14], which allows multi-vectors
with double precision floating-point coefficients. Each core
consists of a floating point adder and multiplier, supported
by smaller hardware units to compute the product of ba-
sis blades. While pipeline-parallel execution is employed
within these compute units, actual GA operations (geomet-
ric product, rotor, etc) are again computed sequentially by
decomposing them into primitive calculations controlled by
microcode. The resulting accelerator was realised not as an
FPGA, but as a custom-fabricated integrated circuit (ASIC)
and thus achieved a higher clock frequency of 130 MHz. The
experimental evaluation of the system in [15] shows a real
wall-clock speed-up of 3x over a software programmable
processor. However, the authors do not state which processor
they used as a reference.

Fig. 2. GA model for inverse kinematic of a robot arm.

4. INVERSE KINEMATICS

One application for which GAs can be used is inverse kine-
matics. The task is to calculate for a kinematic chain (limbs
connected via joints) the angles for the joints to reach a given
end point pw (see Fig. 2). Such an inverse kinematic is used
for controlling robot arms or modelling human movements
in computer animation, which makes it a realistic sample
GA model for the evaluation of acceleration techniques. The
details of the algorithm are discussed in [12]. In contrast, this
work concentrates on the architecture aspects of FPGA and
GPU-based accelerators.

5. ACCELERATION APPROACHES

When studying the prior attempts, it is obvious that most of
them lead to an application slowdown instead of the hoped-
for acceleration. The major reason for this disappointing re-
sult is due to the architectural choices made. The discrepancy
in achievable clock frequencies of conventional processors
(which are now into multiple gigahertz), and that of FPGAs
(which currently top out at 500-600 MHz), implies the need
for massive parallelism in the FPGA to achieve comparable
or even better performance. In all of the prior approaches,
however, the degree of parallelism was highly limited. In
many cases, software-like sequential processing (e.g., mi-
crocode) was employed instead of pipelining and parallel
vector processing. Furthermore, the decision to treat the
primitive operations of the GA as primitive operations for the
hardware accelerator impedes any attempt at inter-operator
parallelism and the parallel execution of intra-operator com-
putations. Additionally, by treating all of the computation
units as general-purpose black boxes, a very effective opti-
mization, namely the folding of constants directly into the
hardware structures, cannot be performed. As an example,
the addition of the constant value 42 is both smaller and faster
than the addition of a variable factor.

Our first implementation (Sec. 6) is completely different
architecturally from the accelerator approaches described

Operation Original Optimized
Adds/Subs 97 48
Multiplication 168 71
Division 13 11
Square-Root 8 8
Mult/Div by power of 2 31 8

Table 1. Required operations before and after manual opti-
mization.

above. Instead of coarse granular computation units capable
of handling entire GA operators, we decomposed the GA
description into the underlying scalar equations. These equa-
tions, which employ only basic arithmetic operators, were
optimized both manually as well as using automatic tools
such as Maple. The resulting set of equations was then im-
plemented one arithmetic operator at a time. For each of
these arithmetic operators we carefully examined the range
of values to be processed for the specific problem. With this
data, and external requirements on computational precision
(in this case, the positional accuracy of the robot’s hand), we
determined for each operator the optimal numerical represen-
tation (e.g., values in the range of 0 to 100 with 1/16mm of
accuracy would be represented as 11 bit unsigned fixpoint
numbers). The circuits of the operators were then optimally
matched to their representation as well as to one of their
operands being the constant.

The second implementation (Sec. 7), however, trades
fine-grained parallelism and custom arithmetic for the brute-
force SIMD parallelism achievable with a modern GPU.

Before describing the different implementations, we will
discuss the target technology-independent optimizations we
performed when translating the GA expressions to primitive
arithmetic operators. The GA algorithm [12] leads to a set
of equations describing a function f : R3 7→ R6, a mapping
of the 3D coordinates of the target point to the screw and
curl angles of the arm’s shoulder and elbow joints, expressed
as quaternions. These equations were manually optimized
for performance, exploiting algebraic equalities (e.g., the
distributive law) and common subexpressions elimination.
Table 1 shows the number of operations before and after the
optimization.

6. FPGA IMPLEMENTATION

For the FPGA implementation, the optimized equations were
then translated into a dataflow graph (DFG). Fig. 3 shows
the sub-graph for the equation describing the X-coordinate
pex of the location of the elbow joint pe

pex =
PPk · PP−2 − PPj · PP−3 + tmpsqrt · PP−2

einfPP
(3)

6.1. Numerical Optimization

To reduce the required ressources on the FPGA, we use only
fixed point calculations instead of floating point operations
(which is possible but not as efficient as fixed point). As a
side effect of calculating in dedicated arithmetic hardware,
the cost of operations drastically changes: e.g., constant
multiplication and addition need the same calculation time,
whereas reciprocal value, division and square root are more
costly in both execution time and FPGA resources.

For the optimization of numerical types on the FPGA
implementation, we thus analyzed the function domain and
ranges with regard to the required numerical precision. The
modeled robot has a positional accuracy of 1/16 mm (which
thus is the upper bound of the required precision of the result).
For the fitting of word-lengths of individual operators to
achieve this result precision, we employed two methods:

Analytical approach: This propagates the precision and
value ranges of the inputs (the target coordinate in our ex-
ample) forward through the data flow graph and sizes the
operators appropriately to avoid loss of precision for the
result. This generally leads to overly wide operators (the
intermediate results are much more precise than required in
the end). To correct this, we then propagate the required pre-
cision and value ranges backward from the final result. Fig.
3 shows some of the required value ranges annotated to the
operator nodes. Additionally, we exploit knowledge about
the problem domain to further narrow the ranges. Given a
length d1 of the upper part of the robot arm, we know that
each of the X, Y, and Z coordinates can at most be d1 away
from the origin. The ranges computed during the propagation
can thus be narrowed down further (shown in Fig. 3 for the
X-coordinate pex

of the elbow joint.

Empirical (Monte-Carlo) approach: In some cases the
analytical approach does not yield satisfying results. The
division operator, for example, can lead to a very wide range
for the result. While domain knowledge can be exploited to
narrow it down again (see Fig. 3), this is not always possible.

To handle these cases where no special domain knowl-
edge is available and to verify the analytical approach and to
obtain results it fails, the DFG was implemented in MATLAB
using double precision arithmetic as well as the analytically
determined fixed-point formats. A stream of random, but
valid target positions was then fed into the equations and the
results of both implementations compared and checked for
sufficient precision. In all cases, a total word length of 32
bits (but with varying position of the binary point!) proved
sufficient to perform the calculation.

Note that some attempts at automatically performing this
optimization exist (e.g., [8]), but they are often limited with
regard to the operators supported.

PP
j

PP
k

PP-

2

x x tmp
sqrt

-

PP-

1

+einf_PP

/

PP-

3

x

p
ex

-2816..2816 -6452..6452

-9268..9268 -7480..7480

-16748..16748

-552909930496..552909930496

-1.5..1.5

-d1..d1 = -1.5..1.5

-552909930496..552909930496
Narrowed using domain knowledge

Fig. 3. Dataflow graph for pex

PP
j

PP
k

PP-

2

x x

tmp
sqrt

-

PP-

1

+

einf_PP

/

PP-

3

x

p
ex

P
ip

el
in

e
st

ag
e

1

2

3

4

5

einf_PP 2

einf_PP 3

einf_PP 4

tmp
sqrt

2 PP-

1
2

PP_diff 3

PP_mul1 2 PP_mul2 2

tmp_mul 3

einf_PP 4

PP_div 5

Fig. 4. Pipeline schedule for pex (cf. figure 3)

6.2. Hardware Realization

The DFG was implemented as a fully spatial pipeline in the
hardware description language Verilog. We chose to opti-
mize the pipeline for maximum throughput to demonstrate
the potential of accelerating the algorithm in hardware. Nev-
ertheless other optimization goals (minimum use of hardware
resources/area, low latency, low power consumption) are pos-
sible as well, but not discussed here. The exact pipeline
timing (also known as schedule) for pex (cf. 3) is shown in
Figure 4. The pipeline was carefully balanced (equal path
lengths from a given inputs/intermediate result to all uses of
that value) by inserting registers (shown as rectangles) for
einf PP, tmpsqrt and PP−1 .

When synthesizing the Verilog description using Synplify
Premier 9.4, the registers are automatically mapped to flip-
flops or shift-register primitives as appropriate for the delay
depth.

Consider the high degree of parallelism in this fully spa-
tial pipeline: When it is filled in steady-state, all 140 opera-
tors in all 365 pipeline stages compute in parallel. This far
exceeds the capabilities even of modern super-scalar proces-

sors which can handle about half a dozen parallel operations
per clock cycle [9, Chapter 3.6].

7. GPGPU IMPLEMENTATION

FPGAs, being available as off-the shelf PCI/PCIe expansion
cards for standard PCs, are no longer the only easily acces-
sible way to exploit parallelism. In recent years, not only
has the compute power of GPUs significantly improved, but
their architecture has advanced from mostly fixed-function
graphics pipelines to increasingly flexible processor arrays.
The latter now allows general purpose computing on GPUs
using dedicated languages (which in some cases resemble
traditional high-level languages) such as Brook+ [2], Rapid-
mind [13], CUDA [16] and Stream [1]. The first two are
portable, the latter two are specific to GPU vendors.

For our experiments, we used the Compute Unified De-
vice Architecture (CUDA) from NVIDIA Inc., which extends
the C language by constructs to annotate, e.g., function calla-
bility from the host CPU or the GPU, or which memory
resource should hold a data structure. Furthermore it pro-
vides a library for standard tasks, e.g., determining GPU
characteristics or performing memory transfers.

NVIDIA refers to the CUDA compute model as SIMT:
Single Instruction Multiple Threads. It addresses a device
as an array of processing elements (30 on the card we used)
operating in a SIMD manner, thus called multiprocessors.
Each multiprocessor has eight eight scalar datapaths (all
executing the same instruction) that share access to a fast but
small (just 16 KB on our GPU) on-chip memory.

A multiprocessor can schedule instructions from up to
512 different threads on its internal datapaths, aiming to
hide long latencies (e.g., accesses to external memory). Be-
tween multiprocessors, all communication (data transfers,
synchronization) occurs through the relatively slow global
chip-external memory. Accesses to this memory should be
performed in some regular patterns, otherwise each access
will incur very high latencies. Other restrictions due to bank
assignments and data alignment also exist, but these are not
relevant for our implementation of the inverse kinematics
application.

Since the SIMT model precludes the fine-grained spatial
parallelization we performed for the FPGA, we use a multi-
threaded approach that executes independent computations
(for different target points) in parallel.

We implemented a GPU kernel which computes the in-
verse kinematics function f . As it is pure data flow and
contains no control flow the computation requires no thread
synchronization (neither within nor between multiproces-
sors). By passing the three input parameters and the six
output parameters as separate arrays (struct of arrays instead
of array of structs) the parallel threads access sequential
memory addresses. Thus coalesced, memory accesses can

be efficiently performed in streaming mode. The kernel uses
31 registers per kernel, so with the 16384 registers available
per block (in the NVIDIA GTX 280 we employed), we can
actually start threads up to the device limit of 512 threads per
block. Neither local memory nor shared memory is accessed
while computing, the global memory is only accessed at the
beginning of the computation to read the parameters in, and
at the end to write the result back.

h o s t d e v i c e s t r u c t s i n g l e c o m p u t a t i o n r e s u l t
g e o m e t r i c a l g e b r a c o m p u t a t i o n (

f l o a t pwx , f l o a t pwy , f l o a t pwz , / / i n p u t params
f l o a t phi , f l o a t d1 , f l o a t d2 / / r o b o t spec .
)

{ . . . }

/∗ Head o f compute k e r n e l ∗ /
g l o b a l void

c o m p u t e p o i n t s o n g p u (
i n t n u m b e r p o i n t s ,
f l o a t ∗d x , f l o a t ∗d y , f l o a t ∗d z , / / i n p u t params
f l o a t ∗d qe1 , f l o a t ∗d qe2 , / / o u t p u t params
f l o a t ∗d qs1 , f l o a t ∗d qs2 , / / o u t p u t params
f l o a t ∗d qs3 , f l o a t ∗d qs4 , / / o u t p u t params
f l o a t phi , f l o a t d1 , f l o a t d2 / / r o b o t params
)

{
i n t s t a r t I d = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
s t r u c t s i n g l e c o m p u t a t i o n r e s u l t r e s u l t ;
i n t i ;

f o r (i = s t a r t I d ;
i < n u m b e r p o i n t s ;
i += blockDim . x ∗ gridDim . x)

{
r e s u l t = g e o m e t r i c a l g e b r a c o m p u t a t i o n f a s t

(d x [i] , d y [i] , d z [i] , phi , d1 , d2) ;
d qe1 [i] = r e s u l t . qe1 ;
. . .

/∗ i n v o c a t i o n o f t h e k e r n e l ∗ /
c o m p u t e p o i n t s o n g p u <<<n r b l o c k s , 512 > > > (. . . .) ;

Listing 1. Excerpt from computation kernel and its invoca-
tion.

Listing 1 gives the an outline of the computa-
tion routine. It shows the interface of the routine
geometric_algebra_computation which performs the com-
putation of f , the attribute __device__ marks the function as
code which should be run on the GPU. The __host__ enables
the additional generation of code for the host platform. This
is used for later benchmarking on the CPU (it uses the same
C code).

The per-thread processing is described in its caller func-
tion compute_points_on_gpu. Each individual thread is
uniquely identified by the special variables blockIdx and
threadIdx. They are used in a for-loop to have each thread
process only a sub-region of the input data, beginning at
index startId and then processing every n-th point of the
data.

The n is determined from the special variables
blockDim.x and gridDim.x (our problem just uses a 1-D
vector of input data). These are set when actually invoking
the function in a thread-parallel fashion using the CUDA-
specific <<<, >>> notation: The first parameter indicates into
how many blocks the data input should be partitioned (this
will become gridDim.x), the second one how many parallel
threads should execute for each block (blockDim.x). This
organization leads to high bandwidth streaming accesses to
global device memory.

The high-end NVIDIA GTX 280 card we used has 30
multiprocessors of eight scalar datapaths each. Each of the 30
multiprocessors handles one block of data, and can schedule
instructions from one of 512 threads on its datapaths. Thus,
the GTX 280 executes our application in 15360 independent
threads, each processing 1/15360th of the total input data set.

Since the GPU executes single-precision floating point as
quickly as integer operations, the fixed-point optimizations
we performed for the FPGA are thus not necessary. We do,
however, use the target-independent optimizations described
at the end of Sec. 5.

8. EXPERIMENTAL RESULTS

In this section, we evaluate the performance and power con-
sumption not only of the FPGA and GPU implementations,
but for completeness also cover software running on conven-
tional processors.

8.1. FPGA

The Verilog HDL description of the DFG was mapped to a
Xilinx Virtex 5 LX155 FPGA [22] using Synplify Premier
9.4 and the Xilinx ISE 10.1.03 tools. For synthesis, we
generated dedicated dividers and square-root cores using the
Xilinx Core Generator (part of the ISE tools). Multiplications
were automatically mapped to DSP48E blocks, which are
fast hardwired units on the FPGA that can be configured as
25x18 multipliers. At the time of this writing, no specialized
CORDIC cores (needed for the square-root) were available
for Virtex 5, hence we had to use a Virtex 4-version CORDIC
on the Virtex 5. Table 2 shows the mapping and performance
results for the complete DFG.

The power consumption of the FPGA, shown over time in
Fig. 5, was estimated with the Xilinx XPower Analyzer using
a complete signal change dump from post-layout simulation.
In this scenario the FPGA is first reset, shown as time interval
a in the Figure. The clock is stopped since the clock manager
is being held in reset, yielding a quiescent power of ≈ 2 W.
In interval b, the pipeline gradually fills when random values
are applied to its inputs. Hence, an increasing number of
flip-flops toggle, manifesting in a rise of power consumption.
Interval c shows the device in steady-state operation with
the whole pipeline calculating in parallel. Here, the power

Number of LUTs 34912 (35% of max.)
Number of FFs 49938 (51% of max.)
Number of DSP48Es 74 (57% of max.)
Clock frequency 170 MHz
Throughput 1 set of results / cycle
Latency 365 cycles

Table 2. Hardware mapping results on XILINX 5VLX155

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

Time (µs)

P
ow

er
 (W

)

a b c d e

Fig. 5. Power consumption of the FPGA implementation

consumption peaks at 8.3 W. In interval d the pipeline is
drained, with inputs held constant. Most of the flip flops now
gradually stop toggling, contributing to a declining power
intake. Power consumption drops further to 4.5 W afterwards
(in interval e), but remains higher than in the reset-state since
the clock net is still active. The steep gradients in intervals
b and d are attributable to the I/O pins starting/stopping to
toggle and driving output loads.

8.2. GPU

Our GPU implementation performs the complete calculation
for all target points as one kernel on the GPU to avoid the
high overhead of a CPU-GPU function invocation (≈ 40 µs
per call).

Power measurements are more difficult in this setting,
since we did not want to interfere with the GPU’s PCIe con-
nection by directly inserting a watt meter into the GPUs
power supply lines. We thus used an indirect approach, mea-
suring the power drawn between mains and the host PCs
power supply. We first established a baseline by measuring
the power for an idle system, and then measure the power
drawn when the benchmark is actually running. This set-
up was validated on two different host PCs, in both cases,
the power difference between idle and computing states was
identical. To reduce measurement errors, we processed a
large data set (109 target points) and let the GPU warm-up
with dummy computations to ensure that its fan was running
on the otherwise idle system. Total energy for the GPU is
then estimated as the product of peak power (which remained

almost constant during the computation) and run-time.

8.3. CPU

The C implementation of the inverse kinematic computation
is the same code as the GPU code (sans the GPU-specific
attributes). To achieve maximum performance, we experi-
mented with both icc and gcc compilers and multiple opti-
mization options. In the end, gcc with the options -O3 -lm
-ffast-math -fstrict-aliasing -fwhole-program -combine
proved to be fastest targeting a 2.4 GHz Intel Core 2 Quad
Q6600 running an otherwise idle Linux system. All four
cores were used by executing the computation in four paral-
lel threads.

Power and energy measurement was done in the same
manner as for the GPU: The peak difference between idle
and computing states of the system was used. In our case the
system was an Intel QuadCore Q6600 clocked at 2.6 GHz.

8.4. Comparison

In all cases, we ensure that the required data is available in
local memory (i.e. on-card on the GPU and FPGA, in the
cache on the CPU). Furthermore, we made the assumption
that the accelerators are placed in a host system and are not
running stand-alone (as would be possible with the FPGA).

The target-independent optimizations yield a speed-up of
≈ 2x over the initial equations on the CPU and GPU. Due
to the increased design effort, only the optimized version
was implemented on the FPGA. Note that, with the lack of
dynamic scheduling and out-of-order execution on the GPU,
static optimizations are even more important than for conven-
tional CPUs (which often have these dynamic optimization
features to compensate for sub-optimal code). As an exam-
ple, if the GPU-compiled code would require more registers
for a thread, fewer threads could be spawned and memory
latencies no longer be fully hidden.

Table 3 shows the results for the three different platforms
when computing 109 function evaluations of the inverse kine-
matic function. The table shows the number of million func-
tion evaluations per second (abbreviated MEPS) and the
smallest achievable latency for a single computation. On the
GPU, which incurs the high call overhead as described above,
short-running functions (such as the inverse kinematics for a
single point) will be very expensive and should be avoided
in practice.

When deviating from the ideal condition that all data is
available in local memory, the performance advantage of the
GPU dwindles: Today’s GPUs are generally connected to the
rest of the system (and thus main memory) by PCI Express
(PCIe). With PCIe 2.0 having a maximum transfer rate of
500 MB/s per lane and modern GPUs generally having 16
lanes, this would yield a maximum rate of 8 GB/s. This
becomes the bottle neck when the data is not resident in GPU

on-board memory and has to be fetched over PCIe from main
memory (shown in Table 3 as “GPU (bus limited)” where
the data is copied parallel to the computation over the PCIe
bus). One computation requires 24 bytes of I/O bandwidth
(three floats input, six floats output, performed full-duplex in
parallel). Thus, with PCIe 2.0, the inverse kinematic could
be computed at 333 MEPS, a 75% drop in throughput.

The software solution on the CPU is less affected when
the data exceeds the cache size. The processor and chip-
set memory systems employ mechanisms such as intelligent
prefetching and manage to match the data rates required
by the slow (compared to the GPU) software computations
running on the CPU. A PCIe-attached attached FPGA ac-
celerator would fare similarly: It also computes sufficiently
slowly to avoid data starvation, even when having to transfer
data over the PCIe bus.

The GPU performance is also degraded by the high com-
munications latency. Note that a single computation in itself
just takes 146ns on the GPU (and is thus almost 15 times
than on the FPGA). However, it takes 40µs to start the GPU
and to exchange data and results with the host computer.

The power numbers shown reflect the power drawn dur-
ing computation minus the system idle power. They were
measured for the CPU and GPU as described above, and sim-
ulated for the FPGA (the maximum steady-state consumption
of Fig. 5.d was used).

Execution times and power consumption are combined in
the energy required to perform the 109 computations. Here,
we show both the active energy consumption for the com-
putation itself (sans system idle power) as well as the total
system energy consumption (standard PC, one hard disk, idle
power drawn is 110 W). Note that the FPGA could execute
stand-alone, while the GPU and CPU require host systems.
We show both scenarios for the FPGA: Running in a PC
host (110 W idle power) and running as a stand-alone em-
bedded platform (requiring 5 W for memories and network
interface).

Finally, we considered implementation time. Program-
ming the GPU for such a straightforward application is as
simple as normal software development for the CPU. Note
that this does not always hold true, in some cases, the het-
erogeneous memory architecture of the GPU requires very
careful design of algorithms and data structures. Even for a
highly experienced designer, the FPGA implementation, with
its steps of DFG building, fixpoint conversion, scheduling,
Verilog coding and performance optimization, took signifi-
cantly more effort. This might be alleviated to some extent
by starting from more abstract descriptions than a HDL, such
as Simulink or MATLAB, and compiling these into an FPGA
[20] [21]. We experimentally evaluated a MATLAB to RTL
flow for this application, but were unable to generate viable
hardware in this fashion.

Implementation Throughput Latency Power Energy System HW Cost Impl.
106 evals/s [µs] [W] [Ws] Energy [EUR] Effort

[MEPS] [Ws] [Days]
CPU 24.5 0.163 32 1304.80 5830.82 150 < 1
GPU 1366.0 40.146 170 124.50 210.05 400 < 1
GPU (bus limited) 333.0 40.146 170 510.51 840.84 400 < 1
FPGA (in host PC) 170.0 2.147 7 41.18 688.23 2000 10
FPGA (embedded) 170.0 2.147 7 41.18 70.59 2000 10

Table 3. Comparison of the different implementations for a data set with 109 points. All used the optimized equations. Power
is the difference of active power - idle power. System energy includes the host system.

9. CONCLUSION

Computing on non-standard processors such as GPUs or
FPGAs allows the use of GA algorithms in practical applica-
tions, these platforms outperform a conventional processor by
one order magnitude. The best specific technology is highly
dependent on the scenario: In a high-performance computing
setting, the GPU provides a tremendous speed-up, especially
when keeping the complete computation on the GPU and not
interacting with the host. This capability, however, requires
a significant power supply and associated cooling, which
might make it less attractive for embedded applications. This
is where the FPGA shines: It is 7x faster than the CPU, but
requires only a fraction of the power.

10. REFERENCES

[1] ATI. AMD Stream Computing - Technical Overview. ATI,
2008.

[2] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, and Pat Hanrahan. Brook for gpus:
Stream computing on graphics hardware. ACM Transactions
on Graphics, 23:777–786, 2004.

[3] William K. Clifford. Applications of grassmann’s extensive
algebra. In R. Tucker, editor, Mathematical Papers, pages
266–276. Macmillian, London, 1882.

[4] William K. Clifford. On the classification of geometric al-
gebras. In R. Tucker, editor, Mathematical Papers, pages
397–401. Macmillian, London, 1882.

[5] D. Crookes, K. Alotaibi, B. Bouridane, P. Donachy, and
A. Benkrid. An environment for generating fpga architectures
for image algebra-based algorithms. In Proc. International
Conference on Image Processing (ICIP), 1998.

[6] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Im-
pastato, F. Sorbello, G. Vassallo, and S. Vitabile. A sliced
coprocessor for native clifford algebra operations. In Eu-
romico Conference on Digital System Design, Architectures,
Methods and Tools (DSD), 2007.

[7] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile,
and V. Vullo. Cliffosor, an innovative fpga-based architecture
for geometric algebra. In International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (ERSA),
pages 211–217, 2005.

[8] Kyungtae Han. Automating Transformations from Floating-
point to Fixed-point for Implementing Digital Signal Process-

ing Algorithms. PhD thesis, Dept. of Electrical and Computer
Engineering, The University of Texas at Austin, 2006.

[9] John L. Hennessy and David A. Patterson. Computer archi-
tecture. Kaufmann [u.a.], Amsterdam [u.a.], 2007.

[10] D. Hestenes. New Foundations for Classical Mechanics.
Dordrecht, 1986.

[11] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric
Calculus: A Unified Language for Mathematics and Physics.
Dordrecht, 1984.

[12] D. Hildenbrand, H. Lange, Florian Stock, and Andreas Koch.
Efficient inverse kinematics algorithm based on conformal
geometric algebra using reconfigurable hardware. In Interna-
tional Conference on Computer Graphics Theory and Appli-
cations (GRAPP), Madeira, 2008.

[13] Michael D. McCool. Data-Parallel Programming on the Cell
BE and the GPU using the RapidMind Development Platform.
Rapidmind, 2006.

[14] Biswajit Mishra and Peter Wilson. Color edge detection hard-
ware based on geometric algebra. In European Conference
on Visual Media Production (CVMP), 2006.

[15] Biswajit Mishra and Peter R. Wilson. Vlsi implementation of
a geometric algebra parallel processing core. Technical report,
Electronic Systems Design Group, University of Southamp-
ton, UK, 2006.

[16] NVIDIA Corp. NVIDIA CUDA Compute Unified Device
Architecture – Programming Guide, June 2007.

[17] C. Perwass, C. Gebken, and G. Sommer. Implementation of a
clifford algebra co-processor design on a field programmable
gate array. In R. Ablamowicz, editor, CLIFFORD ALGE-
BRAS: Application to Mathematics, Physics, and Engineer-
ing, Progress in Mathematical Physics, pages 561–575. 6th
Int. Conf. on Clifford Algebras and Applications, Cookeville,
TN, Birkhäuser, Boston, 2003.

[18] M. Pham, K. Tachibana, E. Hitzer, T. Yoshikawa, and T. Fu-
ruhashi. Classification and clustering of spatial patterns with
geometric algebra. In International Conference on Applica-
tions of Geometric Algebras in Computer Science and Engi-
neering (AGACSE), Leipzig, 2008.

[19] Andre DeHon Scott Hauck, editor. Reconfigurable Comput-
ing: The Theory and Practice of FPGA-Based Computation.
Morgan Kaufmann, 2007.

[20] Xilinx. MATLAB for Synthesis. Xilinx, 2008.
[21] Xilinx. System Generator for DSP. Xilinx, 2008.
[22] Xilinx. Virtex 5 Family Overview. Xilinx, 2008.

