
Efficient Integration of Pipelined IP Blocks into Automatically Compiled
Datapaths

Andreas Koch
Technical University of Darmstadt

FB20, Embedded Systems and Applications Group
Hochschulstr. 11

D-64289 Darmstadt, Germany
koch@esa.informatik.tu-darmstadt.de

Abstract

Compilers for reconfigurable computers aim to gener-
ate problem-specific optimized datapaths for kernels ex-
tracted from an input language. In many cases, however,
judicious use of pre-existing manually optimized IP blocks
within these datapaths could improve the compute perfor-
mance even further. The integration of IP blocks into the
compiled data paths poses a different set of problems than
stitching together IPs to form a system-on-chip, though: In-
stead of the loose coupling using standard busses employed
by SoCs, the one between datapath and IP block must be
much tighter. To this end, we propose a concise language
that can be efficiently synthesized using a template-based
approach for automatically generating lightweight data and
control interfaces at the data path level.

Keywords: high-level synthesis, interface synthesis, hardware
compiler, IP-based design, datapath, controller

1 Introduction
Automatic high-level language compilers [1] [2] are one

of the prime means to make the compute power of recon-
figurable computers available to developers. However, de-
spite the progress in such compile flows, the generated hard-
ware often does not reach the quality of designs carefully
optimized by an expert designer. Thus, it becomes desir-
able to tightly integrate optimized custom IP blocks with
the compiler-generated datapath.

While this mixed method is still new in the world of
hardware design, it has been established for decades in the
software area. There, it is quite common to call highly op-
timized assembly code libraries (e.g., for math or graphics)
from high-level programming languages. Thanks to well
defined binary interface and calling conventions, cross-ab-
straction level calls are easily performed.

For hardware design, the situation is much more com-
plex. One of the reasons appears to be the increased flex-
ibility of custom hardware compared to a fixed-function
processor: The same functionality can be realized in dedi-
cated hardware in many different ways and thus be perfectly
matched to the rest of the system environment.

However, automatically building a complete system-on-
chip from these disparate components is difficult. While
some attempts have been made to standardize on-chip com-
munications [3] [4] [5], they have not achieved total suc-
cess. Many IP blocks still do not use one of these proposed
standard interfaces, but instead rely on their own custom in-
terfaces, which have to be “wrapped” before connecting to
a standard bus.

Furthermore, when compiling an accelerator unit for a
reconfigurable computer, the generated hardware should
fully exploit the adaptive nature of the target architec-
ture: Reconfigurability allows the use of highly efficient
problem-specific hardware structures, instead of the more
general approaches (e.g., networks-on-chip) that are often
used in the ASIC world.

Thus, instead of using a general-purpose communica-
tions structure to assemble a system-on-chip, we are aim-
ing for the tight integration of a larger number of smaller
IP blocks directly into the compiled datapaths. For this ap-
plications, the standard busses mentioned above are gener-
ally too heavyweight, with specialized high-bandwidth low-
latency point-to-point connections being far preferable.

One of the tasks that has to be performed to achieve
this goal is the creation of interface controllers that trans-
late from the various IP-specific protocols for initializa-
tion, data exchange, etc., to a common protocol compatible
with the central data path controller. Ideally, the creation
of the wrappers should be performed “on-the-fly” during
hardware compilation, without requiring time-consuming
HDL-based synthesis steps. However, the wrappers must

1

be capable of handling even complex control schemes and
pipelined operation. Prior work [6] [7] has already de-
tailed UCODE, a simple language for concisely describ-
ing such interface controllers. We now contribute a novel
way to quickly synthesize hardware from UCODE: A sub-
circuit “template” is associated with each kind of UCODE
instruction; these templates are then composed following
the UCODE description to build the entire interface con-
troller circuit. As will be shown in Section 6, area/time
trade-offs can easily be performed by changing the tem-
plates and mapping rules.

2 Related Work
Flexibly connecting mismatched interfaces has been the

subject of many research efforts. The approaches range
from constructing product FSMs to build protocol convert-
ers [8] using libraries of interface modules [9] [10] to ex-
tracting event graphs from timing diagrams [11]. A good
overview and a formal model of the problem can be found
in [12].

However, none of of these methods matches our scenario
of tightly integrating pre-existing IP blocks into automati-
cally compiled datapaths. For this tight degree of coupling,
the FIFOs proposed in [13] are inappropriate. In our us-
age scenario, FIFOs for each IP block would inordinately
increase the latency of the entire data path. Thus, our ap-
proach aims to avoid the introduction of additional delay
elements.

Another common approach [13] [14] relies on extract-
ing the interface description from the HDL code of the IP
blocks. With the increasing use of encrypted soft-cores or
netlist-only firm cores, this approach becomes rather im-
practical. To avoid these difficulties, we rely on UCODE as
an IP-external description of interface characteristics.

Pipelining, a feature crucial for high throughput datap-
aths, is also often lacking from the approaches listed here.
There have been some efforts to apply a data-flow based ap-
proach to the problem, but they sometimes lack flexibility.
For example, the technique in [15] can only handle static
data-flow and requires a fixed send-receive protocol. Other
work, such as [16], is more flexible, but does not cover the
direct hardware mapping of the described primitives. In this
text, we extend UCODE as a flexible description for inter-
face protocols with an efficient mapping onto actual hard-
ware.

3 Target Architecture
Our application setting is shown in Figure 1. IP blocks

are to be inserted into compiler-generated datapath by auto-
matically synthesizing a thin wrapper both on the data and
the control sides, connected using dedicated point-to-point
links to the datapath and the global controller. This global
controller is responsible for higher-level control decisions

Control Flow

D
at

a
F

lo
w

Compiled Datapath

IP
Block

Local
Controllers

O
p

er
at

o
r

O
p

er
at

o
r

O
p

er
at

o
r

O
p

er
at

o
r

O
p

er
at

o
r

Global Controller

Wrapper

Figure 1. Application scenario

(e.g., switching an IP block into another operating mode,
starting/canceling speculative execution). The wrapper con-
troller in turn acts on a lower level and orchestrates the
control sequencing and data exchange within a function se-
lected by the global controller. On the data side, the formats
used in the datapath and on the IP block are assumed to be
mostly compatible. However, minor transformations, such
as serial-to-parallel conversions, bus (de)composition, and
physical-logical port renaming are supported in the wrap-
per.

The following sections will discuss how to concisely de-
scribe the wrapper function, the manner of integration with
the global controller, the actual template-based synthesis
and optimized mapping of the abstract circuit to real hard-
ware.

4 Interface Description
Similar to the approach in [14] and [16], we compose the

descriptions of the controller functions from a small num-
ber of primitives. However, we also allow the description
of pipelining, port renaming, and embedded wired logic.
All of our primitives (called UCODEs) have been defined
in terms of underlying abstract hardware functions. These
templates can be composed and then efficiently mapped to
the target architecture (but not necessarily exactly as de-
picted, see Section 6).

When a new IP block is prepared for automatic integra-
tion, it is the task of a human expert to author the corre-
sponding UCODE descriptions for the various capabilities
of the block. These descriptions will generally be manually
extracted from the data sheets and manuals delivered by the
IP vendor.

In this work, we concentrate on the low-level description
and template-based synthesis of the wrapper. The complete
specification [7] also covers higher-level constructs such as
initialization, parallel/serial execution modes etc.

2

//UCODE for cache_write operation

Seq ucwrite = new FSeq(); // create empty sequence of UCODE objects

ucwrite.cat(// combinationally apply data and control signals
new Level(
new FSeq(

new PortValue(CACHE_OE, 0),
new PortValue(CACHE_WE, 1),
new PortPort(CACHE_ADDR, addr),
new PortPort(new BusPort(CACHE_WIDTH_16BIT), new BusPort(width, 0)),
new PortPort(new BusPort(CACHE_WIDTH_8BIT), new BusPort(width, 1)),
new PortPort(CACHE_WRITE, datain))));

ucwrite.cat(// wait for cache port ready
new Continue(new PortValue(CACHE_STALL, 0)));

ucwrite.cat(// signals must be kept stable to next edge for sampling by cache port
new PosEdge(new FSeq(
new PortValue(CACHE_OE, 0),
new PortValue(CACHE_WE, 1),
new PortPort(CACHE_ADDR, addr),
new PortPort(new BusPort(CACHE_WIDTH_16BIT), new BusPort(width, 0)),
new PortPort(new BusPort(CACHE_WIDTH_8BIT), new BusPort(width, 1)),
new PortPort(CACHE_WRITE, datain))));

Figure 2. Example for UCODE embedded in Java

4.1 Compute Model
Despite the hardware-centric formulation of our con-

troller behavior, the underlying model of computation has
formal roots in Petri nets: The presence of a token (logic
’1’) indicates an active state, multiple states may be active
at the same time, and tokens may be created, deleted, and
rerouted during the controller execution. All of our prim-
itives accept a token, many also propagate it (possibly af-
ter modification). The global controller activates a wrapper
controller by injecting an initial token into the first state. In
a similar fashion, a token leaving the final state can indicate
completion of the wrapper operation and transfer control
back to the global controller. Pipelining, however, requires
additional infrastructure (described in Section 5).

4.2 Input/Output
Compared to [14], I/O has been been unified here (no

distinction is made between control and data) and extended
(we explicitly model time, currently defined by edges of a
single clock domain).

The I/O operations shown in Figure 3 are initially dis-
tinguished by whether they operate combinationally or se-
quentially. In the first case, the UCODE statement LEVEL is
used, in the second one, the POSEDGE and NEGEDGE statements
will be employed. The latter differentiate between synchro-
nizing to the rising or falling edge of the central clock.

Note that the textual syntax shown here is purely a
human-readable convenience. After it has been written to
describe a specific IP block, UCODE is only handled within
design tools, and can thus be represented more efficiently in
binary form. For example, our current implementation of
a UCODE-based tool flow actually uses Java object graphs
for efficient storage and manipulation of the UCODE de-

io := iomode [{ portmap }];
iomode := io_comb | io_seq ’;’ ;
io_comb := ’LEVEL’;
io_seq := (’POSEDGE’ | ’NEGEDGE’) [repeat];
repeat := ’*’ count;
count := cardinal;
portmap := ’(’ physport logport ’)’;
physport := port | literal ;
logport := port | literal ;
literal := cardinal;
port := name [’[’ [msb ’:’] lsb ’]’];
msb := cardinal;
lsb := cardinal;

Figure 3. Input/Output primitives

scriptions: The programs are stored as sequences of state-
ment objects, and textual references, e.g., to I/O ports, have
been replaced by direct references to the corresponding de-
sign database objects. Figure 2 shows an example for such a
UCODE fragment embedded in Java. The fragment shown
describes the memory write operation of a value datain to
address addr via a cache interface [17].

As primary arguments, each of the primitives takes a set
of portmap pairs, each pair associating a physical port with
a logical port on a bus or sub-bus basis. Such a pair rep-
resents a permanent (wire) or temporary (muxed/demuxed)
connection between the two ports. Alternatively, one of the
ports may be replaced by a constant literal. This indicates
the application of the literal value to the remaining port of
the pair.

Figure 4 shows the underlying hardware templates of the
sequential operators. When the state is activated by an arriv-
ing ’1’ token, the associated action occurs: In the input case
(a), the selected logical input port is applied to the specified
physical port of the IP block in time to be sampled for the
next clock edge. In the control case (b), the presence of the

3

QD

Datapath
Register

QD

CE

log out
phys out

token in token out

(c) Data output Interface

QD

log in
log in

log in
phys in

token in token out

(a) Data input Interface

QD

IP Block

token in token out

(b) Control Interface

Select Logic

Select Logic Literal Logic

Figure 4. Sequential I/O templates

token indicates the application of a literal value (generated
by the Literal Logic) to one or more physical ports of the
IP Block. Finally, in the output case (c), the given physi-
cal output port is applied to the selected logical output to
be sampled into a datapath register at the next clock edge.
After the clock edge indicated by the UCODE, the token is
then propagated.

The combinational I/O operations depicted in Figure 5
operate similarly. The crucial difference is the now purely
combinational nature of the operation (no time steps as de-
fined by clock edges pass).

It is obvious, that the final Logic blocks controlling the
multiplexers and the datapath control inputs must be com-
posed by merging the Logic blocks of all UCODEs that ap-
ply to the same port.

Consider the following example: Assume that an IP
block implements the logical behavior mul(prod,a,b). The
physical interface, however, has a single input port D

through which to load the multiplicator and multiplicand
sequentially on successive clock cycles. The loading pro-
cess must be started by raising the control input S. After
accepting the multiplicand, the result becomes valid on the
physical output port Y four clocks later and can then be sam-
pled back into the datapath on the following clock edge.

Figure 6 shows the UCODE description of both the con-
trol and data interfaces in the wrapper. The abstract (tech-
nology independent) circuit for this description can be gen-
erated simply by composing the templates and merging the

Logic blocks (Figure 7). Due to the simplicity of the ex-
ample, the Logic blocks are trivial or have even been op-
timized away entirely (e.g., since there is a 1-1 mapping
of the physical port Y to the logical port prod, no demulti-
plexer and associated control logic are required). The hard-
ware was composed by chaining the circuits underlying the
UCODE primitives via their token inputs and outputs. For
each primitive, the form appropriate for data (ports D, Y) or
control (port S) manipulation is employed.

The shift and wired logic operations mentioned in Sec-
tion 4 are realized by offsetting the msb and lsb indices of
physical and logical ports against each other. The UCODE
in Figure 8.a sign-extends the 4b physical port D to map to
the 8b logical port x. In a similar fashion, split ports may
be handled. The code in Figure 8.b assembles two physical
ports to map to a wider logical port. The expression in Fig-
ure 8.c converts a 22b word address on PA to a byte-oriented
address addr.

4.3 Control Flow
While the I/O primitives can already handle simple IP

blocks on their own, many blocks have more complex in-
terfacing requirements. Two of the most common ones are
handshaking and (closely related) variable execution times
(latencies). For these cases, the straightline execution of
the I/O UCODEs no longer suffices. The CONTINUE UCODE
shown in Figure 9 is similar to the wait for event primitive
in [14], but extends the concept by allowing logical expres-
sions in a sum-of-products form.

Each portequals states that the indicated physical port

Datapath
Register

QD

CE

log out
phys out

token in token out

(b) Data output Interface

token in token out

(a) Control Interface

IP Block

token in token out

log in
log in
log in

phys in

(a) Data input Interface

Select Logic

Literal LogicSelect Logic

Figure 5. Combinational I/O templates

4

(or bit sub-range thereof) must be equal to the given lit-
eral value. The UCODE waits in the current I/O state until
all conditions within a CONTINUE become true (logical prod-
uct), or that any of a group of successive CONTINUE primitives
match (logical sum).

The hardware templates underlying this UCODE are
shown in Figure 10. The Condition Logic is derived by
ANDing the conditions within each CONTINUE and ORing
these separate outputs for successive CONTINUE statements.

The statement operates by routing an incoming token
back to the last active I/O statement. Only if the joint con-
dition of all successive CONTINUE statements becomes true,
will the token continue past the UCODE to the next state-
ment. The CONTINUE itself is purely combinational. A syn-
chronous mode of execution can be achieved by follow-
ing the CONTINUE with one of the sequential I/O statements
POSEDGE or NEGEDGE.

As an example, reconsider the integration of the
Mult16x16 IP block of the previous section. But here, in-
stead of the fixed latency of four clock cycles, the IP block
indicates the availability of a result in time for the next ris-
ing clock edge using a ’1’ on the physical port R. The cor-
responding UCODE fragment is shown in Figure 11, the
corresponding hardware in Figure 12.

The back-edge of the CONTINUE statement routes the token
to the input of previous I/O statement (the second POSEDGE

of the fragment). Due to the trivial condition, the Condi-
tion Logic collapses to a single wire from R to the CONTINUE

hardware. In a more complex application, the Logic would
hold the sum-of-products realization of the intra- and inter-
statement conditions.

4.4 Pipelining
For our application of tightly integrating an IP block into

a heavily pipelined datapath, it is crucial to be able to de-
scribe pipelining characteristics. Specifically, we want to
be able to model the prologue, the steady-state, and the epi-
logue of a pipelined IP block. START, shown in Figure 13,
separates the prologue from the steady state. It also merges
an incoming token from the back-edge into the forward di-
rection (beginning the next pipeline iteration).

RESTART (Figure 14) indicates the beginning of the epi-
logue and duplicates an incoming token: One copy is passed
forward into the epilogue of the pipeline iteration, the other
copy is passed backward into the START circuitry, beginning
the next pipeline iteration in the steady-state. RESTART ef-
fectively creates a new thread of execution which results in

POSEDGE (S 1) (D[15:0] a[15:0]);
POSEDGE (S 0) (D[15:0] b[15:0]);
POSEDGE; POSEDGE; POSEDGE; POSEDGE;
POSEDGE (Y[31:0] prod[31:0]);

Figure 6. UCODE for multiplier example

QD QD QD QD QD QD QD

QD

CE

start
token

finish
token

S

Mult16x16

D Y
a

b 0

1

Datapath

prod

Figure 7. Wrapper for multiplier IP block

a) POSEDGE (D[3] x[7]) (D[3] x[6])
(D[3] x[5]) (D[3] x[4])
(D[3:0] x[3:0]);

b) POSEDGE (H[15:0] data[31:16])
(L[15:0] data[15:0]);

c) POSEDGE (PA[21:0] addr[23:2])
(0 addr[1:0]);

Figure 8. Wired logic and shifts

continue := ’CONTINUE’ { portequals } ’;’ ;
portequals := ’(’ physport literal ’)’;

Figure 9. Flow control

token out
token in

Condition Logic

control in

token out
to last I/O
statement

Figure 10. Control flow templates

POSEDGE (S 1) (D[15:0] a[15:0]);
POSEDGE (S 0) (D[15:0] b[15:0]);
CONTINUE (R 1);
POSEDGE (Y[31:0] prod[31:0]);

Figure 11. UCODE for variable latency multi-
plier

QD

QD

CE

QD
QD

start
token

finish
token

Mult16x16

D Y
a

b 0

1

Datapath

prod

S R

Figure 12. Wrapper for variable latency multi-
plier

5

token in from
RESTART

token in
token out

Figure 13. Pipeline steady-state join template

token in token out

token out
to START

Figure 14. Pipeline steady-state fork template

multiple states becoming active in parallel (Petri net-like).
Figure 15 shows the pipeline modeled by these UCODEs.

Only one START/RESTART combo may exist within a
UCODE program. This construct is the only way to actually
iterate within the wrapper controller. All other loops must
be realized in the global controller by repeatedly activat-
ing the wrapper controller. Furthermore, exploiting pipeline
parallelism requires additional circuitry around the wrapper
controller for cleanly terminating (draining) the pipeline.
This will be discussed in Section 5.

To give an example on the use of pipelining, we will
stay with our regular multiplier, but posit this time that it
has a total latency of seven cycles (including loading the
operands) and allows pipelined operation with an initia-
tion interval of four cycles (then the next operands can be
loaded). The UCODE description in Figure 16 models this
behavior.

This UCODE fragment has an empty prologue, but the
steady-state and epilogue follow the model of Figure 15.
The corresponding hardware is shown in Figure 17.

5 Pipeline Administration
The abstract wrapper circuits created from the UCODE

templates can be modified to optionally provide additional
capabilities for the global controller. These extensions in-
clude cleanly stopping the pipeline and waiting for it to
drain. For clarity of the following figures, we show only
the abstract state flip-flops, but omit the combinational logic
(e.g., for CONTINUE statements) in between.

POSEDGE
POSEDGE

START
POSEDGE
...
POSEDGE
RESTART

POSEDGE
POSEDGE

prologue

steady state

epilogue

Figure 15. Model of pipeline structure

START;
POSEDGE (S 1) (D[15:0] a[15:0]);
POSEDGE (S 0) (D[15:0] b[15:0]);
POSEDGE; POSEDGE;
RESTART;
POSEDGE; POSEDGE;
POSEDGE (Y[31:0] prod[31:0]);

Figure 16. UCODE for pipelined multiplier

QD QD QD QD QD QD QD

QD

CE

start
token finish

token

Y

Datapath

prod

S

D
a

b 0

1

Mult16x16

Figure 17. Wrapper for pipelined multiplier

PipeEmpty

PipeEmpty

QD QD QD QD

QD

CE

(a) (b)

(c)

LastIn

Datapath

start
token

a

b 0

1

Figure 18. Stopping and combinationally
draining the pipeline

6

5.1 Stopping the Pipeline
This functionality is provided by adding a global-

controller manipulated input LastIn into the back-edge from
RESTART to START via an AND with inverted input (Figure
18.a). It is crucial that this gate is inserted directly pre-
ceding the D input of the abstract flip-flop, otherwise the
control signals generated by this POSEDGE or NEGEDGE state-
ment (the mux control in the figure) would become invalid
prematurely. By asserting LastIn simultaneously with the
application of the last set of input data a, the final pipeline
iteration will be started.

5.2 Draining the Pipeline
With variable-latency elements in the pipeline, it be-

comes difficult for the global controller to determine when
the last data item has been completely processed. Two
basic approaches present themselves: One method detects
whether the pipeline is empty by checking that no abstract
flip-flop holds a valid token and asserts the port PipeEmpty

in that case. Depending on the speed/area requirements and
the capabilities of the target technology, this can be realized
either in a serial or in parallel fashion (Figure 18.b and .c).
If any slow-down due to cascaded or very wide logic gates
is unacceptable, the approach shown in Figure 19 can be
used. While it completely avoids long combinational paths,
it requires double the number of abstract flip-flops.

PipeEmptyQD

CE

QD

CE

QD

CE

QD QD QD

QD

CE

QD

CE

QD

Datapath
LastIn

start
token

a

b 0

1

Figure 19. Sequentially draining the pipeline

6 Optimized Mapping
Even though we have expressed the precise semantics

of the individual UCODE statements in terms of composed
abstract hardware templates, this by no means indicates
that the actually implemented hardware must have the same
structure. On the contrary, in many cases it is beneficial to
map only an optimized form of the wrapper to the target
technology. Since our primary target are FPGAs, specifi-
cally the Xilinx Virtex FPGA architectures, we will discuss
some procedures applicable to these devices.

While our abstract model of one flip-flop per state (one-
hot encoded) has advantages both in theory (easy modeling
of parallel states) and in practice (distributed controller, less
routing congestion), in certain cases the flip-flop require-

; initialize
POSEDGE (CE 1) (SCALE_MODE 0)

(FWD_INV 1) (START 1)
POSEDGE (START 0)
; start of steady-state
START
; wait for acceptance of first FFT block
CONTINUE (MODE_CE 1)
; write 16 time domain samples
POSEDGE *16 (DI_R[15:0] time_r[15:0])

(DI_I[15:0] time_i[15:0])
; fork control flow for pipelining
RESTART
; wait for transformed data
CONTINUE (DONE 1)
; read 16 frequency domain samples
POSEDGE *16 (XK_R[15:0] freq_r[15:0])

(XK_I[15:0] freq_i[15:0])

Figure 20. UCODE for wrapping 16-point FFT

ments exceed the capabilities even of flip-flop rich archi-
tectures. In these cases, target-specific blocks such as ded-
icated shift registers (SRL16) can be employed. Also, the
presence of the * (repeat) operator indicates that a given de-
lay in itself is not pipelined and can be densely mapped to
a counter. Conventional logic synthesis and mapping al-
gorithms [18] [19] are used in a tightly focused fashion to
minimize and map the various Logic blocks associated with
some UCODE operators.

This composing of templates in UCODE order and the
selective application of limited-scope logic synthesis are re-
quire only short computation times. They can thus be per-
formed “on-the-fly” during the high-level language compile
flow, avoiding a full-scale HDL synthesis step involving
complex external tools.

7 Experimental Results
The UCODE language described here has already been

used for interfacing of simple [20] and larger IP blocks [21]
to automatically generated datapaths.

To show the use of a medium-complexity IP block, Fig-
ure 20 depicts the UCODE for wrapping the Xilinx Logi-
Core 16-Point FFT [22]. After programming the operating
mode, it accepts a 16-sample block of time-domain data.
After the end of the computation is indicated, 16 frequency-
domain samples can be unloaded from the IP block. In a
pipelined fashion, the next set of time-domain can be pro-
vided to the core when it becomes available again.

Table 1 shows the area and time trade-offs when map-
ping the abstract hardware to the Virtex-II architecture
directly one-hot encoded and using architecture-specific
blocks (counters, shift-registers) on a speedgrade -4 device.

8 Future Work
The UCODEs introduced in this work form the core of

the specification. However, for reliably interfacing with
large IP blocks (e.g., media codecs) in context of [21],

7

Synthesis Style Virtex-II Slices Max. Clock [MHz]
One-Hot 25 467
Counter 13 248
SRL16 8 243

Table 1. Results of template-based synthesis

we have defined extensions such as timeouts and exception
handling in the CONTINUE statement that integrate easily and
with only minimal hardware overhead into the existing se-
mantics and template-synthesis framework.

While our applications have not required it to date, ir-
regular schedules could be handled elegantly by extending
the CONTINUE statement with an implicit conflict controller
[23] [24], thus avoiding the need for large Condition Logic
blocks in the wrapper controller.

9 Conclusion
Our lightweight approach (compared to full-scale proto-

col conversion) has proven suitable for practical use. Eas-
ily authored, concise UCODE descriptions allow the tight
integration even of complex IP blocks into compiled datap-
aths with minimal computational effort. Instead of full HDL
synthesis, simple mapping tools aware of some technology-
specific features suffice to implement the actual circuits
from the composed templates. The UCODE language and
underlying compute model are also easily extended to ac-
commodate future integration requirements.

By using UCODE descriptions to automatically generate
efficient interface wrappers, the combination of optimized
IP blocks and automatically created data paths can increase
the performance of a flow targeting an adaptive computer in
a manner similar to transparently calling assembly language
routines from a high-level language. The complexity of the
calling and parameter transfer mechanisms are hidden from
the user by the abstraction of the UCODE description.

References
[1] Li Y.B., Harr R., et al. “Hardware-Software Co-

Design of Embedded Reconfigurable Architectures”,
Proc. Design Automation Conference, 2000

[2] Kasprzyk N., Koch A. “High-Level-Language Com-
pilation for Reconfigurable Computers” Intl. Conf. on
Reconfigurable Communication-centric SoCs, Mont-
pellier (F), 2005

[3] VSI Alliance, “Virtual Component Interface Standard
Version 2”, www.vsia.org, 2001

[4] ARM Ltd., “AMBA Specification Rev 2.0”, http://

www.arm.com/products/solutions/AMBA_Spec.html, 2001

[5] IBM Corp., “Core Connect Bus Architecture”,
http://www-3.ibm.com/chips/techlib/techlib.nsf/

productfamilies/CoreConnect_Bus_Architecture,1999

[6] Koch A., “On Tool Integration in High-Performance
FPGA Design Flows”, Intl. Workshop on Field-
Programmable Logic and Applications, Glasgow
(Scotland), 1999

[7] Koch A., “FLAME: A Flexible API for Module-
based Environments”, E.I.S. Technical Report 2004-
01, Tech. Univ. Braunschweig (Germany), 2004

[8] Passerone R., Rowson J.A. et al., “Automatic Syn-
thesis of Interfaces between Incompatible Protocols”,
Proc. Design Automation Conference, 1998

[9] Sun J.S., Brodersen R.W., “Design of System Inter-
face Modules”, Proc. Intl. Conf. on CAD, 1992

[10] Lin B., Vercauteren S., “Synthesis of Concurrent Sys-
tem Interface Modules with Automatic Protocol Con-
version Generation”, Proc. Intl. Conf. on CAD, 1994

[11] Chou P., Ortega R.B., Boriello G., “Interface Co-
Synthesis Techniques for Embedded Systems”, Proc.
Intl. Conf. on CAD, 1995

[12] D’silva V., Sowmya A. et al., “A Formal Approach
to Interface Synthesis for System-on-Chip Design”,
UNSW-CSE-TR-304, U New South Wales, 2003

[13] Smith J., DeMicheli G., “Automated Composition
of Hardware Components”, Proc. Design Automation
Conference, 1998

[14] Narayan S., Gajski D.D., “Interfacing Incompatible
Protocols using Interface Process Generation”, Proc.
Design Automation Conference, 1995

[15] Jung H., Lee K., Ha S., “Efficient Hardware Controller
Synthesis for Synchronous Dataflow Graph in System
Level Design”, Intl. Symp. on System Synthesis, 2000

[16] Teifel J., Manohar R., “Static Tokens: Using Dataflow
to Automate Concurrent Pipeline Synthesis”, Symp.
on Adv. Rsrch. in Async. Circuits and Systems, 2004

[17] Lange H., Koch A. “Memory Access Schemes
for Configurable Processors”, Workshop on Field-
Programmable Logic and Applications, Villach (A),
2000

[18] Sentovich E.M. et al., “SIS: A System for Sequential
Circuit Synthesis”, UCB/ERL M92/41, Dept. of EE
and CS, UC Berkeley 4 May 1992

[19] Cong J., Ding Y., “FlowMap: An Optimal Technol-
ogy Mapping Algorithm for Delay Optimization in
Lookup-Table Based FPGA Designs”, IEEE Trans. on
CAD, Vol. 13, No. 1, January 1994, pp. 1

8

[20] Neumann T., Koch A. “A Generic Library for Adap-
tive Computing Environments”, Workshop on Field-
Programmable Logic and Applications, Belfast (UK),
2001

[21] Lange H., Koch A. “Hardware/Software-Codesign by
Automatic Embedding of Complex IP Cores” Intl.
Conf. On Field-Programmable Logic (FPL), Antwerp
(BE), 2004

[22] Xilinx Inc., “High-Performance 16-Point Complex
FFT/IFFT V1.0”, product specification, 2001

[23] Davidson E.S., Shar L.E., Thomas A.T., Patel J.H.,
“Effective Control for Pipelined Computers”, Proc.
COMPCON, 1975

[24] Schaumont P., Vanthournout B., Bolsens I., DeMan
H., “Synthesis of Pipelined DSP Accelerators with
Dynamic Scheduling”, Proc. Intl. Symp. on Systems
Synthesis, 1995

9

