
Comrade - A Compiler for Adaptive Systems

Hagen Gädke

gaedke@eis.cs.tu-bs.de
E.I.S. - Tech. Univ. of Braunschweig – Germany

http://www.eis.cs.tu-bs.de

Andreas Koch

koch@esa.informatik.tu-darmstadt.de
ESA - Tech. Univ. of Darmstadt – Germany

http://www.esa.informatik.tu-darmstadt.de

Abstract
The Comrade flow compiles ANSI-C without restrictions or
annotations into combined HW-SW-solutions for
reconfigurable adaptive computers, exploiting both a
conventional CPU and a reconf. compute unit.

1. Compile Flow

The compiler front-end, based on the Stanford SUIF2
framework, creates a control flow graph (CFG) intermediate
representation. A HW-SW partitioning pass then identifies
compute-intense kernels (generally loops, Sec. 2) for
possible hardware realization. This pass considers execution
frequencies obtained by dynamic profiling, HW feasibility
(floating point computations and library calls stay on the
CPU due to excessive area requirements) and estimated
speedup w.r.t. execution on the CPU. Meta information
about candidate HW operations is obtained from our
generic hardware module library GLACE (Sec. 3).

Each HW kernel, potentially consisting of multiple basic
blocks, is then converted to a static single assignment
(SSA) form, from which a control memory data flow graph
(CMDFG, Sec. 4) is extracted. The CMDFG combines the
pure data flow part with additional control and memory
dependence information, extracted from the CFG. From
each CMDFG, a controller is generated.

The controllers support dynamic scheduling for variable
latency operators as well as speculative execution (Secs. 4,
5). The operation nodes of the CMDFGs are compiled into
optimized pre-placed netlists, created by the GLACE
generators; each controller is realized as a Verilog module.

Multiple HW kernels can be merged into a single FPGA
configuration in order to reduce reconfiguration time. Each
configuration is equipped with a technology-independent,
configurable multi-port memory access core [1], providing
cached and streaming memory accesses as well as an
interface between CPU and HW kernels.

At this point, the operation of the HW kernels can be
visualized by postprocessing the output of a Verilog
simulation. An automatic floorplanner back-end providing a
regular layout of the various components on the FPGA is
already under development. It will complete the entire
design flow, ranging from C to actual hardware/software
co-implementations.

2. Loop Duplication

For identifying compute-intense kernels, we do not limit
hardware execution to inner loops or predefined loop
structures. Comrade duplicates arbitrarily nested loops in

the CFG to analyse all reasonable HW/SW partitioning
combinations of each loop nest.

1

2

3 4

SW to HW

HW to
SW

1

2

HW to
SW

4

SW to
HW

3

1

2

3 4

Hardware

HW/SW transition
Software

Figure 1: Partitionings for a loop nest of depth two

Fig. 1 shows the three different HW/SW partitionings from
all SW to all HW for two nested loops.

3. Module Generators

The actual hardware circuits underlying the CMDFG
operators are handled by the GLACE module library [2]. It
provides a parametrizable generator for each basic operator
that can supply the circuit appropriate for the exact operand
bit-widths, data types, and throughput required. In addition
to the creation of target-technology optimized macros,
GLACE also offers meta-information about each operator
instance (area requirements, estimated clock frequencies,
latency etc.) that are used as the basis for the HW/SW trade-
offs in the partitioning algorithm.

4. Control Memory Data Flow Graphs

The CMDFGs are generated from the SSA-converted CFG
of the hardware candidates. A CMDFG consists of nodes
for arithmetic, logic, memory access, and I/O registers (for
communication with the CPU), connected by data, control
and memory dependence edges.

Each SSA phi node is translated into a multiplexer in the
CMDFG. The multiplexer inputs are connected to control
dependence edges originating from the associated condition
(Fig. 2b). I. e., not the beginning of a data flow path is
controlled by a condition, but its end, which is essential for
speculative computation (Sec. 5).

Memory accesses (MA), however, are not executed
speculatively: a control edge is connected to each MA node.
Furthermore, MA nodes are connected by memory edges to
guarantee correct order of execution (e.g., WAW, WAR).

5. Fast Speculation with Down Tokens

Speculation is a well-known method for increasing
computational performance. The CMDFG in Fig. 2b results
from the example C code in Fig. 2a. In this example,
speculative computation means that both branches of the if
condition are precomputed in parallel, before the actual
value of the condition c is known. As soon as c is
evaluated, one of the precomputed values for r is passed on
through the multiplexer.

*

for (...) {
 ...
 if (c) {
 tmp = x * y;
 r = tmp - z;
 } else {
 tmp = x + y;
 r = tmp + z;
 }
 ...
}

if (c)

+

- +

x y x y

z z

r

true false

Loop

(a) (b)

Figure 2: Example C code and resulting CMDFG

Unfortunately, when using this concept in loops,
conditionals that need a different number of cycles in each
branch of computation can lead to a mix-up of the
precomputed results of different iterations. To overcome
this issue, different approaches have been proposed.

The Pegasus [2] concept in practice requires all
conditional branches to complete before the next iteration
can start. FIFOs can be used to overcome this restriction,
but only if all operations in the branch are pipelinable.
Random memory accesses, for example, are not pipelinable.

Another approach is to use sequence tokens [3] for each
precomputed value, which give a clear mapping to the
associated loop iteration. The drawback is a greater amount
of required space to save the sequence tokens for each basic
block.

Comrade uses a different approach: computations in non-
taken branches are explicitly cancelled. Example: Assume
that the precomputation of both branches in Fig. 2 starts
before cycle 1, while c is still unknown. The
precomputation of the right branch is finished after 2
cycles; the left branch needs 9 cycles. Now if c is ready
after cycle 2, the computed result of the right branch will
immediately be used for consecutive computations, while

the left branch of the computation for the current iteration
will be cancelled. We use special tokens, called down
tokens, to cancel operations.

For each multiplexer, a down token is assigned to each
input port that corresponds to a non-taken branch. Down
tokens move in the CMDFG backwards along data edges
until they collide with an up token, which is the standard
type of token, representing a finished computation.
Colliding up and down tokens vanish. In this manner, all
computations in non-taken branches are cancelled.

Using down tokens, our CMDFG implementations take
advantage of speculative computation while the required
additional storage is just a single down token bit for each
registered operation.

6. Configuration Scheduling

In this fashion, we generate one compute unit (CU) for each
of the hardware partitions. However, since we are
compiling from standard C instead of a dedicated parallel
programming language, the available ILP generally leads to
CU sizes of less than 200 operators. This is only a fraction
of the available logic capacity even of low-cost
reconfigurable devices such as FPGAs. Thus, we employ
this surplus of area to pack multiple CUs into each actual
device configuration, reducing the time spent on
reconfiguration. Based on a dynamic execution profile and
the CU area requirements, we can compute the optimal
packing [5].

7. Conclusion and Future Work

While additional work is required in the back-end to
complete the flow down to actual hardware netlists, the
tools are already able to create simulatable Verilog models
of the final RCUs. These results can be used to guide
further research in optimizing and refining the currently
employed techniques. Among the improvements planned
are a higher-performance module library as well as support
for parallel memory accesses, which are already
implemented in MARC [1].

8. References

[1] H. Lange, A. Koch, “Memory Access Schemes for
Configurable Processors”, Intl. Conf. on Field
Programmable Logic and Applications (FPL), 2000.
[2] T. Neumann , A. Koch, “A Generic Library for Adaptive
Computing Environments”, Intl. Conf. on Field
Programmable Logic and Applications (FPL), 2001.
[3] M. Budiu, S. Goldstein, “Pegasus: An Efficient
Intermediate Representation”, School of Computer Science,
Carnegie Mellon Univ., 2002.
[4] H. Styles, W. Luk, “Branch Optimization Techniques
for Hardware Compilation”, Intl. Conf. on Field
Programmable Logic and Applications (FPL), 2003.
[5] N. Kasprzyk, J.C. van der Veen, A. Koch,
“Configuration Merging for Adaptive Computer
Applications”, Intl. Conf. on Field Programmable Logic and
Applications (FPL), 2005.

