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Abstract 
The Comrade flow compiles ANSI-C without restrictions or 
annotations into combined HW-SW-solutions for 
reconfigurable adaptive computers, exploiting both a 
conventional CPU and a reconf. compute unit. 
 
1. Compile Flow 
 
The compiler front-end, based on the Stanford SUIF2 
framework, creates a control flow graph (CFG) intermediate 
representation. A HW-SW partitioning pass then identifies 
compute-intense kernels (generally loops, Sec. 2) for 
possible hardware realization. This pass considers execution 
frequencies obtained by dynamic profiling, HW feasibility 
(floating point computations and library calls stay on the 
CPU due to excessive area requirements) and estimated 
speedup w.r.t. execution on the CPU. Meta information 
about candidate HW operations is obtained from our 
generic hardware module library GLACE (Sec. 3). 

Each HW kernel, potentially consisting of multiple basic 
blocks, is then converted to a static single assignment 
(SSA) form, from which a control memory data flow graph 
(CMDFG, Sec. 4) is extracted. The CMDFG combines the 
pure data flow part with additional control and memory 
dependence information, extracted from the CFG. From 
each CMDFG, a controller is generated. 

The controllers support dynamic scheduling for variable 
latency operators as well as speculative execution (Secs. 4, 
5). The operation nodes of the CMDFGs are compiled into 
optimized pre-placed netlists, created by the GLACE 
generators; each controller is realized as a Verilog module. 

Multiple HW kernels can be merged into a single FPGA 
configuration in order to reduce reconfiguration time. Each 
configuration is equipped with a technology-independent, 
configurable multi-port memory access core [1], providing 
cached and streaming memory accesses as well as an 
interface between CPU and HW kernels. 

At this point, the operation of the HW kernels can be 
visualized by postprocessing the output of a Verilog 
simulation. An automatic floorplanner back-end providing a 
regular layout of the various components on the FPGA is 
already under development. It will complete the entire 
design flow, ranging from C to actual hardware/software 
co-implementations. 
 
2. Loop Duplication 
 
For identifying compute-intense kernels, we do not limit 
hardware execution to inner loops or predefined loop 
structures. Comrade duplicates arbitrarily nested loops in 

the CFG to analyse all reasonable HW/SW partitioning 
combinations of each loop nest. 
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Figure 1: Partitionings for a loop nest of depth two 
 
Fig. 1 shows the three different HW/SW partitionings from 
all SW to all HW for two nested loops. 
 
3. Module Generators 
 
The actual hardware circuits underlying the CMDFG 
operators are handled by the GLACE module library [2]. It 
provides a parametrizable generator for each basic operator 
that can supply the circuit appropriate for the exact operand 
bit-widths, data types, and throughput required. In addition 
to the creation of target-technology optimized macros,  
GLACE also offers meta-information about each operator 
instance (area requirements, estimated clock frequencies, 
latency etc.) that are used as the basis for the HW/SW trade-
offs in the partitioning algorithm. 
 
4. Control Memory Data Flow Graphs 
 
The CMDFGs are generated from the SSA-converted CFG 
of the hardware candidates. A CMDFG consists of nodes 
for arithmetic, logic, memory access, and I/O registers (for 
communication with the CPU), connected by data, control 
and memory dependence edges. 

Each SSA phi node is translated into a multiplexer in the 
CMDFG. The multiplexer inputs are connected to control 
dependence edges originating from the associated condition 
(Fig. 2b). I. e., not the beginning of a data flow path is 
controlled by a condition, but its end, which is essential for 
speculative computation (Sec. 5). 



Memory accesses (MA), however, are not executed 
speculatively: a control edge is connected to each MA node. 
Furthermore, MA nodes are connected by memory edges to 
guarantee correct order of execution (e.g., WAW, WAR). 
 
5. Fast Speculation with Down Tokens 
 
Speculation is a well-known method for increasing 
computational performance. The CMDFG in Fig. 2b results 
from the example C code in Fig. 2a. In this example, 
speculative computation means that both branches of the if 
condition are precomputed in parallel, before the actual 
value of the condition c is known. As soon as c is 
evaluated, one of the precomputed values for r is passed on 
through the multiplexer. 
 

*

for (...) {
    ...
    if (c) {
        tmp = x * y;
        r = tmp - z;
    } else {
        tmp = x + y;
        r = tmp + z;
    }
    ...
}

if (c)
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Figure 2: Example C code and resulting CMDFG 
 
Unfortunately, when using this concept in loops, 
conditionals that need a different number of cycles in each 
branch of computation can lead to a mix-up of the 
precomputed results of different iterations. To overcome 
this issue, different approaches have been proposed. 

The Pegasus [2] concept in practice requires all 
conditional branches to complete before the next iteration 
can start. FIFOs can be used to overcome this restriction, 
but only if all operations in the branch are pipelinable. 
Random memory accesses, for example, are not pipelinable. 

Another approach is to use sequence tokens [3] for each 
precomputed value, which give a clear mapping to the 
associated loop iteration. The drawback is a greater amount 
of required space to save the sequence tokens for each basic 
block. 

Comrade uses a different approach: computations in non-
taken branches are explicitly cancelled. Example: Assume 
that the precomputation of both branches in Fig. 2 starts 
before cycle 1, while c is still unknown. The 
precomputation of the right branch is finished after 2 
cycles; the left branch needs 9 cycles. Now if c is ready 
after cycle 2, the computed result of the right branch will 
immediately be used for consecutive computations, while 

the left branch of the computation for the current iteration 
will be cancelled. We use special tokens, called down 
tokens, to cancel operations. 

For each multiplexer, a down token is assigned to each 
input port that corresponds to a non-taken branch. Down 
tokens move in the CMDFG backwards along data edges 
until they collide with an up token, which is the standard 
type of token, representing a finished computation. 
Colliding up and down tokens vanish. In this manner, all 
computations in non-taken branches are cancelled. 

Using down tokens, our CMDFG implementations take 
advantage of speculative computation while the required 
additional storage is just a single down token bit for each 
registered operation. 
 
6. Configuration Scheduling 
 
In this fashion, we generate one compute unit (CU) for each 
of the hardware partitions. However, since we are 
compiling from standard C instead of a dedicated parallel 
programming language, the available ILP generally leads to 
CU sizes of less than 200 operators. This is only a fraction 
of the available logic capacity even of low-cost 
reconfigurable devices such as FPGAs. Thus, we employ 
this surplus of area to pack multiple CUs into each actual 
device configuration, reducing the time spent on 
reconfiguration. Based on a dynamic execution profile and 
the CU area requirements, we can compute the optimal 
packing [5]. 
 
7. Conclusion and Future Work 
 
While additional work is required in the back-end to 
complete the flow down to actual hardware netlists, the  
tools are already able to create simulatable Verilog models 
of the final RCUs. These results can be used to guide 
further research in optimizing and refining the currently 
employed techniques. Among the improvements planned 
are a higher-performance module library as well as support 
for parallel memory accesses, which are already 
implemented in MARC [1]. 
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