
Architecture-Independent Meta-Optimization by
Aggressive Tail Splitting

Michael Rock and Andreas Koch

Tech. Univ. Braunschweig (E.I.S.), Mühlenpfordtstr. 23, D-38106 Braunschweig, Germany
rock,koch@eis.cs.tu-bs.de

Abstract. Several optimization techniques are hindered by uncertainties about
the control flow in a program, which can generally not be determined by static
methods at compile time. We present a novel approach that aims to alleviate this
limitation by explicitly enumerating all control paths through a loop nest, thus
allowing wider and more efficient use of standard optimization passes later. Our
analysis will address the possible explosion in code size, which despite high theo-
retical upper bounds appears to be acceptable in practice, as well as performance
gains both for RISC and CISC target processors.

1 Introduction

The quality of many optimization algorithms is directly dependent on the amount and
accuracy of the information retrieved by prior analysis steps. Despite continuous pro-
gress in the development of such tools, certain program structures invalidate the analysis
efforts: One of these cases is the joining of two or more different flows of execution after
a conditional at a so-called merge point in the control flow graph. At such a point, the
analysis is uncertain which of the multiple paths was actually taken to arrive at the
merge point. Thus, it cannot propagate beyond the merge point any assertions (e.g., on
variable values and memory contents) that are not common to all of the execution paths
arriving at the merge point.

2 Related Work

The criticality of analysis across merge points has been recognized previously. One
technique that is already practically used in many compilers (e.g., using -ftrace for
GCC [1]) is tail duplication [2]. This approach is used for the joining of blocks into
single-entry point hyperblocks by copying a dedicated instance of all shared tail blocks
into each individual hyperblock, thus reducing the number of merge points. The tech-
nique is also commonly used for improving the scheduling of the generated code [3] [4].
Some research has been done in combining loop unrolling and tail duplication [5], but
the algorithm presented there does not re-splice the program as done in our approach.

3 Novel Approach

However, these existing approaches (both for hyperblock construction and scheduling)
limit the scope of their operation to limited areas such as only within loop bodies. The

algorithm presented here has all the advantages of conventional tail splitting and loop
unrolling, but now the back edges are re-spliced between specialized versions of the
loop body and do not lead back to the initial loop header. This unrolling, splitting and
re-splicing operation was termed Aggressive Tail Splitting (ATS). Its effect is to keep
disjunct paths of execution isolated for as long as feasible, thus avoiding the creation of
analysis-impeding merge points. The approach was inspired by the basic use of the tail
splitting transformation in an interpreter [6].

4 ATS Algorithm

We will introduce the algorithm using the trivial example of the C source code fragment
shown in Figure 1.

TYPE b0(TYPE *a) {
TYPE s=0;
int i;
for (i=1; i < SIZE; i++) {

if (a[i] < 0) {
a[i] = 0 ;

}
s += a[i] * a[i-1] ;

}
return s;

}

Figure 1. Initial input source code

Since some of our later analyses of ATS effects will be performed with disabled
compiler optimizations (to focus on ATS itself), we will perform some simple optimiza-
tions such as Common Subexpression Elimination (CSE) manually on b0(), leading to
the version b1() shown in Figure 2.

TYPE b1(TYPE *a) {
TYPE s=0;
int i;
for (i=1; i < SIZE; i++) {

// Block 1
TYPE t=a[i] ; // perform CSE manually ...
if (t < 0) { // ... here ...

// Block 2
a[i] = 0 ;
t = 0 ; // ... here ..

}
// Block 3
s += t * a[i-1] ;// ... and here

}
return s;

}

TYPE b2(TYPE *a) {
TYPE s=0;
int i;
for (i=1; i < SIZE; i++) {

TYPE t = a[i] ;
if (t < 0) {

a[i] = 0 ; // tail split here ...
} else {

s += t*a[i-1] ; // ... and here
}

}
return s;

}

Figure 2. Result of single intra-loop iteration tail splitting

4.1 Tail Splitting the Back Edge

We now begin by splitting all edges arriving at blocks with multiple predecessors, copy-
ing the original block backward along each of the split edges (see Figure 3). Initially,

this occurs only within the loop body (as suggested in [6]), leading to the source code
b2() shown in Figure 2.

b2()b1()

Block 3

Block 2

Block 1 Block 1

Block 2

Block 3Block 3

Block 1

Block 3 Block 3

Block 2

Block 1

Block 3

Block 1 Block 1

Block 3

Block 2

Figure 3. First inter-iteration tail-splitting and beginning of head duplication

At this stage, we have not yet achieved our aim of reducing the number of merge
points. On the contrary, in b1(), Block 1 only had two arriving execution paths, while
in b2(), it now has three arriving paths. To avoid cluttering this figure, an arriving
edge can carry more than one path of execution, the actual number is determined by the
number of originating nodes.

Beyond conventional tail-splitting, ATS now continues this process along the back-
edges, thus crossing loop iteration boundaries. This step is shown in Figure 3: The two
back edges have been tail split and replaced by copies of the loop header Block 1. As
before, however, the number of execution paths arriving at merge points has increased.
Blocks 2 and 3 now both have three arriving paths. Due to the increasing convolution of
the structure at this point, we will no longer show the source code of these intermediate
steps.

Undeterred by the temporary decrease in solution quality, ATS continues in the same
fashion. Later on, it generates the structure shown in Figure 4.a: Now, three distinct
copies exist of the loop body. The entire first iteration has been peeled off and serves as
a dispatcher to the specialized loops lower in the hierarchy. At this stage of the process,
a specialized loop exists for each execution path arriving there. In the example, the
loop B was created for the case that the condition in b2() was true during the previous
(peeled-off) iteration, and the loop A for the inverse case.

4.2 Termination Conditions for the Tail Splitting Process

At this stage in the discussion, we have to address the question of when to stop splitting
edges. Even with the structure shown in Figure 4.a, we could continue the process.
It is thus useful to step back from the algorithm itself and re-examine the aim of our
methods.

The main goal of ATS is to enable more aggressive optimizations inside of loop
bodies. The manner in which this should be achieved is by providing other optimization
passes with accurate information (assertions) about the execution path that lead to a

A B

(a)

L

L

L R

R

R

A B

(b)

Figure 4. (a) Loop unrolling and tail spliting, (b) ATS

given node (history). Based on these assertions, these optimizations can then perform
their own transformations or scheduling decisions.

Thus, to arrive at the termination condition of the tail-splitting phase, we need to
determine the minimal required length of the history. It turns out that for loops, this
length depends on the distance vectors for loop-carried dependencies. In our example,
b0() has a distance vector of d : {0,1}, indicating that a calculation at a[i] depends
on a[i-0] and a[i-1]. This implies that in this case, there is no need to keep track of
data or control flow beyond the previous loop (the one that computed a[i-1]). Thus,
the length of the history required is the maximum range of the distance vectors for loop
carried dependencies.

By closely examining the digraph we use to represent the program structure (Figure
3 and 4.a), it can be determined that during the tail-splitting phase, this digraph will
always have the same tree-like nature: The root and inner nodes serve as dispatcher to
specialized loops represented by the leaf nodes (here A and B), with the only back-edges
occurring at the leaf-level.

It is thus obvious that the depth of the digraph (the longest path from the root to
a node) is limited by the length of the history: Each level of the graph represents a
loop-carried dependency on a previous iteration.

4.3 Inter-Leaf Node Re-Splicing

Thus far, our approach relied on repeatedly applying a well-known technique to trans-
form the program. But now that we have determined when to terminate this process, we
can transform the leaf-level edges to accurately encode the histories without further ex-
pansion of the digraph. This is achieved by connecting each of the back-edges leaving
a leaf-level node to the leaf-level node (same or different) that was specialized for that
specific intra-loop execution path.

The method will become clearer when illustrated using the example in Figure 4.a.
As stated previously, there are only two history-specific back-edges out of the loop
bodies1, depending on the condition P ≡ if (t<0)

For the example, we will thus ensure that all paths R which had P = true during the
previous iteration will lead to the loop specialized for this case, namely B. Analogously,
all paths L that had P = false in the previous iteration will be processed in the specialized
loop A. The result of this transformation is shown in Figure 4.b. The histories leading
to a loop body are thus encoded in the selection of which specific specialized leaf-level
loop is executed. As a result, a later optimizer processing the loop bodies A or B can
now be certain which assertions can be exploited. For brevity, the actual source code
for this structure, termed b3() in the following text, is omitted here.

5 Performance

To evaluate the performance of code subjected to ATS, we compiled the the processing
stages b1() to b3() of our example onto the UltraSPARC III+ and Athlon XP targets.
For the SPARC, we used the Sun Workshop C Compiler 5.3 with maximum optimiza-
tion effort (option -fast). On the Athlon, we employed GNU GCC 3.2 with the -O3
option. The results are summarized in Table 1.

Version SPARC Athlon
Time [s] Speedup Time [s] Speedup

plain b1 6.71 1.00 3.07 1.00
tail-split b2 6.55 1.02 2.53 1.21

ATS b3 5.90 1.13 1.95 1.57
Table 1. Performance for the example code

So even for this trivial example, some modest performance gain (up to 57% on the
Athlon) was realized. Before analyzing a larger, more meaningful application in Section
5.2, we will consider the effects of ATS on later optimization passes.

5.1 Increased Optimization Opportunities

As seen in Figure 4.b, even the post-ATS version b3() contains hyperblocks with mul-
tiple predecessors. However, now all paths even through different predecessors keep
track of the same history (and thus assertion sets), increasing the opportunities for stan-
dard optimization techniques. Thus, constant propagation or CSE can now be applied
across iteration boundaries. This is not possible when the loop is not tail split because
of the uncertainty of the execution path leading to a block. Another technique that al-
lows such inter-iteration optimization is loop unrolling. However, even here the path
uncertainty problem remains and limits the applicability of the standard optimizers.

1 Since the center edge is not a back-edge (loop exit), it is disregarded here.

5.2 Effect of ATS on Control Flow

To evaluate the effect of ATS on a more meaningful program, we now consider a de-
coder for fixed-table Huffman codes. Since this algorithm actually contains a substantial
control-content in its loops (in contrast to many DSP codes), it is a good candidate for
ATS. Due to the size of the intermediate and final stages, we will only list the original
source program in Figure 5.

void huffDec(char* src, char* dst, int limit) {
int i;
int pos = 1<<7 ;
for (i=0; i < limit; i++) {

int index =0;
int max ;
/* Maximum bit length*/
for (max=0; max < 6; max++) {

if (*src & pos) {
index++;

}
pos >>= 1 ;
if (!pos) {

pos = 1<<7 ;
src++ ;

}
index = table[index] ;
if (index & 1) {

*dst++ = index>>1 ;
break ; /* ready, early exit*/

}
}

}
}

Figure 5. Huffman decoder source

As before, the code is evaluated on the SPARC and Athlon targets. For each target,
Table 2 shows three versions: The original, a fully-expanded ATS variant, and finally
an optimized ATS version. The latter was subjected to agressive propagation, replacing
constant accesses to constant memory locations with their contents. In both ATS cases,
the inner loop has been completely unrolled to remove all internal merge points. The
size given is the size of the compiler generated object code (.text segment).

The Huffman decoder has a theoretical upper bound of growth 2 in the number
of instructions by a factor of 299593. However, the maximum observed growth fac-
tor of the optimized ATS digraph is only 56. More aggressive compiler optimization
options (-fast and -O3) exploit the ATS’ed structure even further, leading to a maxi-
mum growth of only 16.01. This is well within the practical limits established by other
techniques such as aggressive loop unrolling (e.g., by a factor of 96 in [7]).

In terms of performance gain, on the SPARC target, at best 52% were achieved
(interestingly not at the highest compiler optimization level). On the Athlon however,
the highest speedup was over 350%.

When examining the final assembly code, it becomes apparent that its post-ATS
structure is completely different from the original source code: Now, the entire fixed
Huffman table has been inlined into the program, resulting in an actual FSM for de-
coding the bit stream. This was possible due to the fact that the index variable now was
subject to constant propagation, making the value constant for all reads. This reduces

2 Due to space limitations, the relevant analyses cannot be shown here.

Compile Stage Size [B] Time [s] Growth Speedup

SunCC base code 164 6.08 1.00 1.00
-O1 complete ATS 480 9.65 2.93 0.63
SPARC optimized ATS 1300 3.99 7.93 1.52
SunCC base code 168 2.79 1.00 1.00
-fast complete ATS 1600 6.1 9.52 0.45
SPARC optimized ATS 1560 2.47 3.29 1.13

gcc base code 103 1.78 1.00 1.00
-O1 complete ATS 193867 1.46 1882.20 1.23
Athlon optimized ATS 5795 0.93 56.26 1.91
gcc base code 109 1.59 1.00 1.00
-O3 complete ATS 30052 0.69 275.70 2.30
Athlon optimized ATS 1745 0.45 16.01 3.53

Table 2. Results of the HuffDecode benchmark on Sparc and Athlon, time and growth

the number of memory accesses considerably, since the table walk is now encoded into
the program’s control flow. By lowering the pressure on the memory, more ILP can be
exploited.

6 Interpreting the Benchmark Results

Since ATS itself is no optimization, the origin of the performance gains should be ex-
amined. In the initial example (b1(). . .b3()), the speed-up was realized by removing
multiplications by zero after constant propagation.

The Huffman decoder of Figure 5 is more complex. A GCC-compiled version was
analyzed in greater detail using processor-internal performance counters on both plat-
forms. These measurements are shown in Table 3. Of interest are the actual number of
instructions executed and the number of cycles stalled due to branch mispredictions.

Stage Instructions [109] Mispredicts [106 Cycles] Rel. Insts Rel. Stalls

base code SPARC 3.85 12.11 1.00 1.00
complete ATS SPARC 3.58 72.25 0.93 5.96
optimized ATS SPARC 1.50 50.29 0.39 4.15

base code Athlon 5.04 73.04 1.00 1.00
complete ATS Athlon 2.30 63.95 0.46 1.03
optimized ATS Athlon 2.00 58.17 0.37 0.93

Table 3. Results of the HuffDecode benchmark on Sparc and Athlon-XP, instructions and stalls

Since the ATS operation imposes a more complex control structure on the program
(multiple value-specialized versions for each execution path), the quality of the pro-
cessor’s branch prediction logic becomes crucial. In the numbers shown above, it is
obvious that the unit in the SPARC is not able to cope with the increase in complexity

(more mispredict cycles) of the complete ATS form. The Athlon’s predictor, however,
can easily handle that version (only minimal increase in mispredict cycles).

The performance gains of ATS are mainly due to the reduced number of instructions
actually executed (see Table 3). E.g., for the Athlon, only 30% of the original number
of instructions is executed after ATS. This reduction is achieved by giving the later op-
timization stages (in this example: especially the constant propagation step) a larger set
of assertions to work with. Since the constant propagation in the ‘optimized’ versions
extends to removing references to the constant Huffman table, 71.9% of all memory
accesses are eliminated in the post-ATS code (on both platforms).

7 Future Work

We are currently integrating an automatic ATS pass into a complete compile flow, thus
allowing a more thorough experimental evaluation in the future. Furthermore, the ATS
digraph itself is amenable to high-level minimization techniques which we expect to
limit the practical code growth even further.

8 Conclusion

The ATS transformation can considerably increase the opportunities for applying stan-
dard optimization techniques to inner loops. In practice, the excessive theoretical growth
in code size can often be avoided. By selectively applying the transformation, the
growth penalty need only be accepted when economical (e.g., in the range of 100-200
and only for time-critical inner loops).

References

1. Cohn, R., Lowney P.G., “Design and Analysis of Profile-Based Optimization in Compaq’s
Compilation Tools for Alpha”, Journal of Instruction-Level Parallelism, May 2000

2. Gregg, D., “Comparing Tail Duplication with Compensation Code in Single Path Global In-
struction Scheduling”, in Proceedings of the 9th International Conference on Compiler Con-
struction (CC 2001), pp. 200-212, LNCS 2027, Genoa, April 2001

3. Gao, G.R., Amaral, J.N., Dehnert, J. , Towle, R., “The SGI Pro64 Compiler Infrastructure”,
Intl Conference on Parallel Architectures and Compilation Techniques (PACT), tutorial, 2000

4. Huiyang, Z., Jennings, M.D., Conte, T.M. “Tree Traversal Scheduling: A Global Technique
for VLIW/EPIC Processors”, Proc. 14th Workshop on Languages and Compilers for Parallel
Computing (LCPC), LNCS, Springer Verlag, August 2001

5. Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A., Ouellette,
R.G, Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., and Lavery, D.M. “The superblock: an
effective technique for VLIW and superscalar compilation.” The Journal of Supercomputing
7, 1/2 (May 1993), 229-248.

6. Bala, V., Duesterwald, E., Banerjia, S., “Dynamo: A Transparent Dynamic Optimization Sys-
tem”, ACM SIG-PLAN Notices, vol. 35, pp. 1-12, 2000.

7. Lowney, P.G., Freudenberger, S.M., Karzes, T.J., “The Multiflow Trace Scheduling Com-
piler”, The Journal of Supercomputing, vol. 7, number 1-2, pp. 51-142, 1993

