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Comparison of ParadigmsComparison of Paradigms

❏❏ Conventional compute unitConventional compute unit
❍ Temporal distribution of computation

❍ Reuse of area for different operations

❍ Only one operation per time step

❍ Controlled by variable software

❍ Universal

❏❏ Reconfigurable compute unit (RCU)Reconfigurable compute unit (RCU)
❍ Spatial distribution of computation

❍ Dedicated area for each operator

❍ Multiple operations per time step

❍ Controlled by fixed controller

❍ Made universal only by ability to reconfigure

4

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

Temporal versus Spatial ComputationTemporal versus Spatial Computation
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Continuum of ArchitecturesContinuum of Architectures

❏❏ Many architectural choices betweenMany architectural choices between
❍ Pure temporal distribution

❍ Pure spatial distribution

❏❏ ExamplesExamples
❍ Superscalar processors

� Multiple compute units per time step

� Increased degree of parallelism

❍ Area-constrained reconfigurable processors
� Reuse of area by reconfiguration

� Reuse of area by shared operators

� Non-pipelined multi-cycle operations

� Decreased degree of parallelism
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Terminology ITerminology I

❏❏ ConfigurabilityConfigurability
❍ Ability to structurally adapt compute unit to specific

problem(s)

❍ Increased spatial distribution of computation
� Hardware accelerators for software operations

❍ Includes configurable processors (extensible ISA)
� Tensilica Xtensa and ARC ARCtangent cores

❏❏ ReconfigurabilityReconfigurability
❍ Ability to configure after hardware has been deployed

❏❏ Dynamic reconfigurationDynamic reconfiguration
❍ Reconfiguration during algorithm execution

❍ Also called run-time reconfiguration (RTR)
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Terminology IITerminology II

❏❏ ProgrammingProgramming
❍ Vary behavior while preserving structure

❍ Example: Writing parameters to HW registers

❏❏ DiscussionDiscussion
❍ FPGAs generally support only reconfigurability

� No dynamic reconfiguration (far too slow)

❍ Hybrid approaches in practice
� Configurable processors may have an RCU

� Experimental ST device with Xtensa + FLEXEOS

� Hardwired ASICs may allow reconfiguration of
individual logic elements

� eASIC’s eASICore with vCells

� Program new data values into RCU registers
� Often much faster than reconfiguration
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Terminology IIITerminology III

❏❏ GranularityGranularity
❍ Extent of the functionality of individually

configurable elements
� Transistor pairs (rare, was Crosspoint)

� Lookup-Tables (very common)

� PLD-like (e.g., Altera, Lattice)

� ALUs
� 4b (Elixent)

� 8b (MIT MATRIX)

� 24b (PACT)

� 32b (Chameleon)

� Complete processors
� 16b (picoChip)

� 32b (MIT RAW)

fine

coarse

“FPGAs”

“network processors”
“adaptive processors”
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Terminology IVTerminology IV

❏❏ Binding intervalBinding interval
❍ Shortest interval between changes in function

� May be theoretical (e.g., infinity for ASIC)
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Granularity and BindingGranularity and Binding

❏❏ Binding interval often depends on granularityBinding interval often depends on granularity
❍ Coarser granularity

➨ Shorter binding interval (less configuration data)

❏❏ Shorter binding intervalsShorter binding intervals
❍ Better reuse of reconfigurable resources

� Allow spatial implementation of more kernels

❍ Continuous single cycle reconfiguration
� Tricky: Millions of CMOS transistors switching

simultaneously  Poof!

❏❏ But match both to application (domain)But match both to application (domain)
❍ Single large kernel  reconfigure just at start-up

❍ Bit-oriented cryptography  use fine granularity
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Terminology IV Terminology IV cont’dcont’d..
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MotivationMotivation

❏❏ Today’s CPUs and Today’s CPUs and DSPs DSPs seem pretty ...seem pretty ...
❍ fast

❍ cheap

❍ low-power

❍ easy to program

��So why consider anything else?So why consider anything else?
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RCU PerformanceRCU Performance

❏❏ Early success: gene sequence matchingEarly success: gene sequence matching
❍ 1993: SPLASH-2 beats MasPar MP-1 by 1300x

❏❏ Many successes in cryptographyMany successes in cryptography
❍ 1999: IDEA encryption 12x CPU, 1.4x ASIC

❍ 2001: World record RSA decryption (600Kb/s)

❍ 2001: DES encryption 2x ASIC (13.3 Gb/s)

❏❏ Digital signal processingDigital signal processing
❍ “10x-1000x practically achievable over DSPs”

--  Ray Andraka, FPGA DSP Guru

❍ FPGA vs DSP
� Altera Stratix @ 250 MHz: 56.0 GMACs

� TI 32064Cx @ 600 MHz:   4.8 GMACs

� But raw performance numbers may be misleading!

14

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

Performance Performance cont’dcont’d..

❏❏ Application-level cost-performanceApplication-level cost-performance
❍ Full analysis available from BDTI

❏❏ OFDM receiverOFDM receiver

❏❏ Motorola MSC8101 DSP @ 300 MHzMotorola MSC8101 DSP @ 300 MHz
❍ << 1 channels, $140 ➧➧➧➧ ~$500 per channel

❏❏ Altera Stratix Altera Stratix 1S20-6 FPGA1S20-6 FPGA
❍ >12 channels, $325  ➧➧➧➧ ~$10 per channel

IQ
Demodulator

Viterbi
DecoderSlicerFFTFIR
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Performance Performance cont’dcont’d

❏❏ Sample applicationSample application
❍ Label objects in

b/w images

❍ Scan image using
operator window

❏❏ Student designStudent design
❍ CS undergraduate

❏❏ Tool flowTool flow
❍ Verilog HDL

❍ C
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Performance Performance cont’dcont’d..

❏❏ Application fits in XC2S100E: US$ 23 partApplication fits in XC2S100E: US$ 23 part
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RCU Power ConsumptionRCU Power Consumption
❏❏ “Power-dissipation of a well-executed FPGA design“Power-dissipation of a well-executed FPGA design

is typically about 20% of the power consumption ofis typically about 20% of the power consumption of
a software-based system operating at the samea software-based system operating at the same
sample rate”sample rate”
  -- Ray   -- Ray AndrakaAndraka, EDN Oct 3, 2002, EDN Oct 3, 2002

❏❏ Experimental low-power FPGAs do betterExperimental low-power FPGAs do better
❍ BWRC LP_PGAII: up to

70x reduction in energy

over equivalent Xilinx XC4005XL part

❍ In reconfigurable SoC Maia for VSELP encoding:

~20x reduction in energy

over 2.5V ARM8@120MHz
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Power Power cont’dcont’d..

❏❏ QCELP encoder on QCELP encoder on QuickSilver QuickSilver ACMACM

33 MHz

4 MHz

Courtesy QuickSilver Tech.
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RCU FlexibilityRCU Flexibility

❏❏ Reconfigurability allows early implementation startReconfigurability allows early implementation start
❍ Despite fluid standards

❏❏ “Interoperability insurance”“Interoperability insurance”

❏❏ Improve performance after deploymentImprove performance after deployment
❍ Experience gained from field use

❏❏ Allow use of completely new algorithmsAllow use of completely new algorithms
❍ Limited only by RCU capabilities (area, speed)

➨➨ Reconfigure to new application versionsReconfigure to new application versions

❏❏ Even better than configurable CPUs/Even better than configurable CPUs/DSPsDSPs
❍ Have to get custom instructions right the first time
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Flexibility Flexibility cont’dcont’d..

❏❏ ExampleExample

❏❏ TSI TSI TelSysTelSys equipment for satellite  equipment for satellite commcomm..
❍ High-rate communications

❍ Signal processing

❍ Multiple
� Network protocols

� Data formats

➨➨ Use standard hardware platformUse standard hardware platform
❍ ACEcard

� Sun uSPARCIIep RISC +  2x Xilinx XC6264 FPGAs

❍ ACE2card
� Sun uSPARCIIep RISC + 2x Xilinx XC4085XL FPGAs
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Architectural EfficiencyArchitectural Efficiency

❏❏ Moore’s Moore’s Law still holds:Law still holds:

2x transistors / 18 months2x transistors / 18 months

❏❏ Unfortunately, this does Unfortunately, this does notnot guarantee: guarantee:

2x performance / 18 months2x performance / 18 months

❏❏ Example: Intel Pentium III CPUExample: Intel Pentium III CPU
❍ 1999: 500 MHz, 9.5M transistors, ext. L2 cache

� 20.6 SPECint95, 14.7 SPECfp95

❍ 2000: 1000 MHz, 28M transistors, int. L2 cache
� 46.8 SPECint95, 32.2 SPECfp95

❍ Sounds good: 2.3x int, 2.2x fp, but ...
� 2x clock freq and 3x transistors to get there
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EfficiencyEfficiency

❏❏ Current Current fab fab processes: 300 M transistorsprocesses: 300 M transistors

❏❏ What to do with this much real estate?What to do with this much real estate?
❍ Larger caches

� HP PA-RISC 8700: 1.5MB L1 cache on-chip

� SPEC benchmarks execute completely in cache

❍ Higher integration
� On-chip memory controllers

❍ Multiple processors on-chip
� HP PA-RISC 8800: 2x PA-RISC 8700

✗✗ ... but not much architectural innovation... but not much architectural innovation

❏❏ Idea: Spend some transistors on RCUIdea: Spend some transistors on RCU
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Efficiency Efficiency cont’dcont’d..

❏❏ Transistor budgetingTransistor budgeting
❍ Example: Xilinx Virtex 1000 FPGA

� 75 M transistors / 1 M gates RCU capacity

❍ Much denser architectures exist

❏❏ But even smaller But even smaller RCUs RCUs can still be usefulcan still be useful
❍ B/W image labeling: ca. 100 K gates

❍ From EEMBC benchmarks:
� Add custom instructions to Tensilica Xtensa

� Use 22K gates: 37x performance “telecom”

� Use 200K gates: 23x performance “consumer”

� Add custom instructions to ARCcore ARCtangent
� Use 58K gates: 40x performance “telecom”

� Use 113K gates: 18x performance “consumer”
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Economics of FabricationEconomics of Fabrication

❏❏ More transistors per chip, but ...More transistors per chip, but ...
❍ Tool flow challenged (timing closure etc.)

❍ Fab on advanced process extremely expensive
� Higher cost of masks, more masks per chip, ...

❏❏ Advanced Advanced fabfab technology only for technology only for
❍ Cost-insensitive applications

� Requirements dominate, “it just has to work”

❍ High-volume applications: CPUs and DSPs
� Multiple uses for each device are a must

� But reduced performance, power, efficiency, ...

❏❏ RCUs might fill the gapRCUs might fill the gap
❍ FPGAs already act as process drivers
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System ArchitectureSystem Architecture

❏❏ How to integrate an RCU into a system?How to integrate an RCU into a system?

❏❏ RCU does RCU does notnot automatically imply FPGA! automatically imply FPGA!
❍ FPGAs have been around longest

✗ ... but are far from perfectly suited as RCU:
� Fine granularity ./. word-oriented applications

� Glacial configuration speed
� Order of 100ms for large devices

� Precludes dynamic reconfiguration

❍ Recent improvements
� Heterogeneous blocks (RAMs, multipliers)

� On-chip processors

➨ ... aid in improving system integration, but not the
idea of dynamic reconfiguration

� Inefficient use of silicon area
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Stand-Alone RCU

16b @ 20 MHz

Workstation

Based on figure by Scott Hauck

Stand-Alone RCUStand-Alone RCU

❏❏ Example: ASIC EmulationExample: ASIC Emulation
❍ Attached via SCSI

❍ 112 M gates reconfigurable capacity
� RCU weighs 1.1t

� 12KW 350V three-phase power

❏❏ Very limited set of suitable applicationsVery limited set of suitable applications
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Attached RCU

32b @ 33 MHz 64b @ 266 MHz 128b @ 500 MHz
32b @ 1000 MHz

$

CPU Core

Based on figure by Scott Hauck

Attached RCUAttached RCU

❏❏ Attached to peripheral bussesAttached to peripheral busses
❍ PCI, VME, SBus, ...

❍ Standard busses, RCU easy to deploy

❍ Most common method of RCU integration

❏❏ Better than stand-alone, but still slowBetter than stand-alone, but still slow
❍ PCI write latency: 10 clocks, read: 30 clocks
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RCU Peer Processor

32b @ 33 MHz 64b @ 266 MHz 128b @ 500 MHz
32b @ 1000 MHz

$

CPU Core

Based on figure by Scott Hauck

$

RCU Peer Processor (“SMP”)RCU Peer Processor (“SMP”)

❏❏ Equal partner to CPU (SMP-like)Equal partner to CPU (SMP-like)
❍ Much higher bandwidth, lower latency

❍ RCU implementation of multi-processor bus
protocols (133 MHz should be achievable)

� Interrupt handling, cache coherency, ...

❍ RCU could be retrofitted into standard SMP boards

❍ No practical realization yet (?)
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RCU Co-Processor

32b @ 33 MHz 64b @ 266 MHz 128b @ 500 MHz

$

CPU Core

Based on figure by Scott Hauck

32b @ 1000 MHz

RCU Co-ProcessorRCU Co-Processor

❏❏ Attached to internal processor busAttached to internal processor bus
❍ Shares cache with processor (possibly only L2)

❍ No (or fewer) coherency issues

❍ More bandwidth, less latency

❏❏ Implementation based on standard coresImplementation based on standard cores
❍ UCB GARP (=custom RCU + MIPS core)
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RC Function Unit

32b @ 33 MHz 64b @ 266 MHz 128b @ 500 MHz

$

CPU Core

32b @ 1000 MHz

Based on figure by Scott Hauck

RC Function UnitsRC Function Units

❏❏ RCU as function unitRCU as function unit
❍ Directly integrated into the processor datapath

❍ Very low latency

❍ Generally: Limited bandwidth (data starvation)
� Operates only on 2-3 registers per instruction

� Some exceptions: OneChip-’98 has memory port

� Can still be useful: PRISC-1 gains 22% on SPECint92

❏❏ Needs custom or configurable processor coreNeeds custom or configurable processor core
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1Mx8b Flash

512Kx32b ZBT SSRAM 

512Kx32b ZBT SSRAM 

512Kx32b ZBT SSRAM 

512Kx32b ZBT SSRAM 
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General Purpose I/O

64b PCI

512x8b SSRAM

512x8b SSRAM

RCU

I/O and MemoryI/O and Memory

❏❏ Heterogeneous memoriesHeterogeneous memories
❍ On-chip / off-chip

❍ Multi-bank / multi-type

❏❏ Configurable I/O systemConfigurable I/O system
❍ Sometimes expandable by daughter board
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Effect on ApplicationsEffect on Applications

         Application
RCU Type

Minimal effective
computation time

Data I/O
rate

Stand-Alone Very long (~10s) Very low
Attached Long (~10ms) Medium
Peer Processor Medium (~100us ?) High
Co-Processor Short (~1us) High
Function Unit Very short (~10ns) Low

❏❏ Suitable applications depend strongly on degreeSuitable applications depend strongly on degree
of couplingof coupling

❍ Table shows typical RCU execution times
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Device ArchitectureDevice Architecture

❏❏ General ideaGeneral idea
❍ Configurable interconnection network

❍ Configurable function blocks

❏❏ Many variations possible!Many variations possible!

❏❏ Example: Interconnection networksExample: Interconnection networks

Symmetric
Array

Hierarchical
Array

Crossbar
Interconnect
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Fine-Grained BlockFine-Grained Block

❏❏ Xilinx XC6200 logic blockXilinx XC6200 logic block

❏❏ RealizesRealizes
❍ Any 2-input function

❍ Some 3-input functions
Figure from Xilinx Datasheet
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Medium-Grained BlockMedium-Grained Block

❏❏ Xilinx XC4000 blockXilinx XC4000 block
❍ Two arbitrary 4-input functions

❍ Some wider functions (e.g., 2b add/sub)
Figure from Xilinx Datasheet
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Coarse-Grained BlockCoarse-Grained Block

❏❏ HP Labs CHESS (now HP Labs CHESS (now Elixent Elixent D-D-FabrixFabrix))
❍ 4b ALU

❍ Logic and simple arithmetic (add, sub)

❍ Function controllable by another block at run-time

❍ Example: JPEG encoder takes 512 ALUs of area

A in

B in

Function
Unit

Gen.
Sum

Gen.
Carry

Reg
F out

C in

C out

4

4
<3>

<3>

4

<3>

4x
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Very Coarse-Grained BlockVery Coarse-Grained Block

❏❏ PACT XPP ALU blockPACT XPP ALU block
❍ 24b and (12b, 12b) split-operation

❍ Logic, arithmetic including multiplication

❍ Automatic synchronization for
� Data flow

� Partial run-time reconfiguration

ALU CtrlALU
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Classic
Homogeneous

Array

Homogeneous ArraysHomogeneous Arrays

❏❏ Traditional FPGAs areTraditional FPGAs are
homogeneoushomogeneous

❍ Single type of configurable
element

� Possibly multi-functional
� Logic or RAM mode

� Composed to assemble any digital
function

✔ Advantages
� Simpler tools

� Simpler device layout

✗ But may be very inefficient, for
� Multipliers

� Larger memories

Configurable Block
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Heterogeneous ArraysHeterogeneous Arrays

❏❏ HeterogeneousHeterogeneous devices devices

❏❏ Embedded hardwired blocksEmbedded hardwired blocks
❍ Fast multipliers

❍ Larger memories

❍ Even complete processor(s)

❍ Clock Management

❍ Specialized I/O interfaces

✔✔ Higher performanceHigher performance

✔✔ More efficient area usageMore efficient area usage
✗ Only when blocks are used!

✗✗ Increased tool complexityIncreased tool complexity
❍ Must obey additional

constraints

Modern
Heterogeneous

Array

Configurable
Block

Memory
Block

Multiplier
Block
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Architecture TrendsArchitecture Trends

�� With this prior development, what’s next?With this prior development, what’s next?

❏❏ Three broad approaches have become visibleThree broad approaches have become visible

	 System FPGAs


 Reconfigurable Systems-On-Chip (rSoC)

� Specialized devices for adaptive computation
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System FPGAsSystem FPGAs

❏❏ Higher capacity reduces number of devices on boardHigher capacity reduces number of devices on board
❍ Xilinx XC2V8000: 8 M configurable logic gates

❏❏ On-chip features for improved system-level densityOn-chip features for improved system-level density
❍ Integrated processor(s)

� Up to 4x PowerPC 405 cores in Xilinx Virtex II Pro devices

❍ Digitally controlled impedance
� Replaces board-level termination resistors

✘✘ But reconfiguration is still rather slowBut reconfiguration is still rather slow
❍ At best ~50ms for large devices

➨➨ Not really aimed at Not really aimed at reconfigurablereconfigurable computing computing
❍ Infrequent mode switches

❍ Soft-hardware updates
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Reconfigurable SoCs (Reconfigurable SoCs (rSoCrSoC))

❏❏ Heterogeneous SoCsHeterogeneous SoCs
including RCU(s)including RCU(s)

❍ Customized for application
domain(s)

� But still flexible to handle
new developments

❏❏ True reconfigurableTrue reconfigurable
computing possiblecomputing possible

❍ High on-chip bandwidth
allows fast configuration

� 500us for 200 K gates on
fine-grained fabric

� M2000’s FLEXEOS IP

� 33us for 128 ALUs on a
very coarse-grained fabric

� PACT’s XPP128-ES, core now
available as IP

BWRC Maia

Figure from Varghese George
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Adaptive Computing DevicesAdaptive Computing Devices

❏❏ Specifically built toSpecifically built to
efficiently efficiently computecompute

❏❏ Single clock cycleSingle clock cycle
reconfigurabilityreconfigurability

❏❏ Ultra low powerUltra low power

❏❏ Heterogeneous arrayHeterogeneous array

❏❏ Example: Example: QuickSilver QuickSilver ACMACM
❍ >57.000 reconfigs/s for

CDMA2000 Rake finger

❍ 200 MHz ACM vs ASIC
� CDMA2000 searcher

�  108x

� CDMA2000 pilot search
� 108x

� W-CDMA searcher
� 74x

Arithmetic Node

Bit-Manipulation
Node

Scalar Node

FSM Node

QuickSilver ACM

Courtesy of QuickSilver Tech.
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Design Flows for Design Flows for RCUsRCUs

❏❏ How to program these contraptions?How to program these contraptions?
❍ Quickly

❍ Efficiently

❍ Correctly

❏❏ Three variablesThree variables
❍ Cover only hardware or hard- and software

❍ Degree of tool support
� Fully manual ↔↔↔↔ fully automatic

❍ Input format of algorithm description
� Related to computation model used

� Data flow-oriented (many variations)

� State machines (e.g. Harel diagrams)

� Imperative (common software languages)

� Structural (schematics or some HDL style)
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Hardware and/or Software?Hardware and/or Software?
❏❏ Depends on application areaDepends on application area

❏❏ ScenarionsScenarions for pure hardware for pure hardware
❍ High-speed interfaces

� Possibly with pre-processing: Collider event detection

❍ Glue logic

❍ Simple state-machines
� Traffic lights, vending machines, ... :-)

❏❏ Scenarios for combined hardware/softwareScenarios for combined hardware/software
❍ Compute kernels in hardware

� Small blocks of compute-intensive code
� Loop nests

� Often streaming code
� Array/matrix operations

❍ Complex irregular control in software
� Application and system-wide control

� Operating system
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Fully ManualFully Manual

❏❏ Very rare in this extreme form!Very rare in this extreme form!

❏❏ Relaxed form sometimes usedRelaxed form sometimes used
❍ For high-performance designs

� “John Henry” approach

❍ Finely tuned hard IP blocks

❍ Generally relies on automatic
routing

Algorithm

Gate
Netlist

Mapped
Netlist

Placed
Layout

Routed
Layout

Bitstream

Automatic
Routing

Bitstream

M
a
n

u
a
l
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Fully Automatic FlowsFully Automatic Flows

❏❏ Translate algorithmTranslate algorithm
❍ ... pure HW (limited!)

� HDL synthesis, Forge

❍ ... into HW and SW
� GarpCC, Nimble-C

❍ Often:
� Manual partitioning

Algorithm

Technology
Mapping

Place &
Route

Compile to 
HW Netlist

Bitstream
Pure HW Flow

Algorithm

HW/SW
Partitioning

Compile SW
Technology

Mapping

Place &
Route

Compile to 
HW Netlist

Bind

ExecutableHybrid HW/SW Flow

Add HW/SW
Interface
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Graphical EntryGraphical Entry

❏❏ Compose blocksCompose blocks
❍ Hierarchical, parameterized

❍ Ptolemy, SPW, Simulink, ...
� Also circuit schematics

❏❏ Fractionally Spaced EqualizerFractionally Spaced Equalizer
❍ Simulink representation

❏❏ Suitable for DSP+telecommSuitable for DSP+telecomm
❍ Or low-level design entry

Figure by C. Dick, H.M. Pedersen
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Textual DescriptionTextual Description

❏❏ Very high-level languages: MATLABVery high-level languages: MATLAB

❏❏ Conventional high-level languages: C, JavaConventional high-level languages: C, Java

❏❏ Specialized RC languages: TDFC, Specialized RC languages: TDFC, HandelHandel-C, -C, SilverCSilverC,,

❏❏ Hardware description languages: Verilog, VHDLHardware description languages: Verilog, VHDL

fir( int input[], 
int coef[], int nCoef, 
int output[], int nOut )

{
int i, j;
int  sum;

 
for (j =  0; j < nOut; j++) {

sum =  0;
for (i =  0; i < nCoef; i++){

sum +=  input[j+i] * coef[i];
}
output[j] =  sum >> 15;

}
}

Code courtesy of QuickSilver Tech.

void run (void)
{

fract16 sum;
loop (int l=0; l<nOut; l++) dataflow { 

sample = input.read();
sum = 0.0;
unroll (int i=0; i<nCoef; i++) {

sum = sum + coefReg[i] * sample[nCoef-i];
}
output.write(sum);

}
} 

FIR in ANSI C FIR in SilverC
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HDL-based ProgrammingHDL-based Programming

❏❏ Currently the most common way to program Currently the most common way to program RCUsRCUs

❏❏ Use HDL to formulate the hardware partsUse HDL to formulate the hardware parts
❍ Generally at register-transfer level (RTL)

❍ Some structural parts to access special RCU hardware
� Multipliers, multi-port memories, DLLs, ...

❏❏ Software parts in high-level programming languageSoftware parts in high-level programming language
(HLL)(HLL)

❍ C, C++, some Java

❏❏ Reasonably robust tool support forReasonably robust tool support for
❍ HLL compilation

❍ HDL synthesis

❍ Technology mapping, placement & routing

❍ Simulation
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Target Environment: ACE-VTarget Environment: ACE-V

❏❏ Attached RCUAttached RCU

❍ CPU: 100MHz microSPARC-IIep RISC

❍ RCU: Xilinx Virtex XCV1000-4 FPGA

❏❏ 64MB DRAM (shared), 4MB SRAM (RC-local)64MB DRAM (shared), 4MB SRAM (RC-local)

❏❏ On-board Bus: 33MHz 32b PCIOn-board Bus: 33MHz 32b PCI

❏❏ Custom port of RTEMS 4.0.0 as operating systemCustom port of RTEMS 4.0.0 as operating system
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Sample ApplicationSample Application
❏❏ Practical examplePractical example

❍ Software development

❍ Hardware development

❍ Hardware/software interfaces

❏❏ Application: Reversal of bit order in 32b wordApplication: Reversal of bit order in 32b word

❏❏ Three stagesThree stages
	 Pure software solution


 Slave-mode RCU
� CPU controls data transfer

� Master-mode RCU
� RCU controls data transfer

Bit

Bit

Input

Output

31 30 29 28 3 2 1 0

313029283210
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Tool FlowTool Flow

❏❏ Manual algorithm descriptionManual algorithm description

❏❏ Manual HW/SW partitioningManual HW/SW partitioning

❏❏ Manual HW descriptionManual HW description

❏❏ Manual HW/SW interfacingManual HW/SW interfacing

❏❏ Standard SW flowStandard SW flow

❏❏ Standard RTL-FPGA flowStandard RTL-FPGA flow

❏❏ Custom binding phaseCustom binding phase

Algorithm
in C

HW/SW
Partitioning

Compile SW
RTL

Synthesis

Place &
Route

Describe HW
in Verilog

Bind

Executable

Add HW/SW
Interface
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Pure Software VersionPure Software Version

❏❏ Compute Compute kernelkernel of the pure software version of the pure software version
❍ See Listing 1 in your handouts

❏❏ Performance: 512 Performance: 512 Kw Kw in 1449623us = ~1.5sin 1449623us = ~1.5s

...
// Kernel to process all data words
  for (m=0; m < NUM_WORDS; ++m) {
    inword  = inwords[m];
    outword = 0;
    mask    = 1;
    set     = 1 << 31;

    // Bitwise assembly of the processed word
    for (n = 0; n < 32; ++n) {
      if (inword & mask)
        outword |= set;
      mask <<= 1;
      set  >>= 1;
    }

    // Enter the result in the output array
    outwords[m] = outword;
  }

...
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module user(
  CLK,        // System clock
  RESET,      // System-wide reset
  ADDRESSED,  // High when CPU addresses RCU
  WRITE,      // High when CPU writes to RCU
  DATAIN,     // Data written from CPU to RCU
  DATAOUT,    // Data from RCU to be read by CPU
  ADDRESS     // RCU Address of access (ignored for this application)
);

  // Inputs
  input           CLK;
  input           RESET;
  input           ADDRESSED;
  input           WRITE;
  input  [31:0]   DATAIN;
  input  [23:2]   ADDRESS; 

  // Outputs
  output [31:0]   DATAOUT;

Slave-Mode VersionSlave-Mode Version

❏❏ Slave-mode interface to RCUSlave-mode interface to RCU
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Slave-Mode Compute KernelSlave-Mode Compute Kernel
  reg [31:0] result;          // Register for computation result
  reg [31:0] reversed;        // Temporary value

  // Always output the result register (independent of address)
  assign DATAOUT =  result;

  // Compute the bit-reversed version of the current data input value.
  // Note: This is a pure combinational block
  always @(DATAIN) begin: comb_block
    integer n;
    for (n=0; n < 32; n = n + 1) begin
      reversed[n] = DATAIN[31-n];
    end
  end

  // Control
  always @(posedge CLK or posedge RESET) begin
    // Initialize result register to recognizable magic number (for debugging)
    if (RESET) begin
      result  <= 32'hDEADBEEF;
    // When CPU writes data to RCU, store the reversed word as result
    end else if ( ADDRESSED & WRITE) begin
      result <= reversed;
    end
  end
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Accessing the RCU from SWAccessing the RCU from SW

❏❏ RCU APIRCU API
❍ Setup

❍ Clock control

❍ Configuration

❏❏ Memory mappingMemory mapping
❍ Slave-mode

❍ RCU-CPU space

 // Initialize RCU
  acev_init();
  // Run RCU at a 40 MHz clock
  acev_set_clock(40e6);
  // Configure RCU with bit-reversal application
  acev_load_config(&config_reverse);
  // Get pointer to start of RCU address space
  rc = acev_get_s0(NULL);

0x00000000

0xFFFFFFFF

rc 0x000000

0x7FFFFF

CPU Address Space RCU Address Space
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...  
  // Remember start time of actual computation
  start = RTEMSIO_getTicks();
  
  // Kernel to process data
  for (m=0; m < NUM_WORDS; ++m) {
    // Transfer input data word to RCU
    rc[0] = inwords[m];
    // Fetch reversed result from RCU and store in output array
    outwords[m] = rc[0];
  }

  // The core computation is completed, remember the current time
  stop = RTEMSIO_getTicks();
...

Slave-Mode SoftwareSlave-Mode Software

❏❏ CPU controls data transferCPU controls data transfer
❍ Write data word to RCU for processing

❍ Read processed word from RCU

❍ Details see Listing 2 in handouts

❏❏ Performance: 512 Performance: 512 Kw Kw in 825365us = ~0.8sin 825365us = ~0.8s
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EvaluationEvaluation

❏❏ So far, so good:So far, so good:
❍ 40 MHz RCU beats 100 MHz RISC for computation

� ... ignoring RCU configuration overhead of ~0.9s

❏❏ Can we do better?Can we do better?
❍ Computation looks pretty tight already

❍ But how about communications overhead?

❏❏ MeasurementsMeasurements
❍ Shortest time between read and write accesses

� 50 RCU clocks

❍ Longest time between read and write accesses
� 694 RCU clocks

➨ Slave-mode is extremely inefficient!
� Due to PCI sub-system (BIUs in uSPARC and RCU)
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Master-Mode SolutionMaster-Mode Solution

❏❏ IdeaIdea
❍ Avoid quick read/write direction changes

❍ Implement data transfer control in hardware

❍ RCU can now independently access main memory

❏❏ Protocol engine must be implementedProtocol engine must be implemented
❍ Should exploit burst transfers

� Requires local buffering

❍ Buffer architecture depends on access patterns
� Irregular: Cache

� Regular: FIFO

❍ Should be reusable

✘✘ ... the problem is becoming complicated... the problem is becoming complicated
➨ Memory Architecture for Reconfigurable Computers
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MARC IPMARC IP

ModDRAMDRAM

SRAM 0

SRAM n

ModSRAM

BIU ModBus

MARC

core

Arbitration

Streaming

Caching

CAM

RAM

FIFO

CachePort

StreamPort
ModSRAM

CachePort

StreamPort

D
a
ta

 P
a
th

System I/O Bus

.. .

.. .
.. .

.. .
.. .

.. .

Configurable

Back-Ends

Physical Ports

Configurable

Front-Ends

Logical Ports
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MARC Stream InterfaceMARC Stream Interface

❏❏ Number of streams Number of streams configurableconfigurable
❍ Priority arbitration, but no inter-stream coherency

❏❏ Parameters run-time Parameters run-time programmableprogrammable
❍ Start address, length, stride, width, read/write
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Coupling MARC StreamsCoupling MARC Streams

❏❏ IdeaIdea
❍ Link read and write streams

❍ Interpose computation

❏❏ Flow-control mechanism requiredFlow-control mechanism required
❍ Stop read stream if write stream stalls

❍ Stop write stream if read stream stalls

❍ Use forward / backward pressure concept
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Master-Mode HW InterfaceMaster-Mode HW Interface

❏❏ All stream signals aggregated into wide bussesAll stream signals aggregated into wide busses

module user (
             // *** Global signals
             CLK,                 // System clock
             RESET,               // System-wide reset

             // *** Slave interface
             ADDRESSED,           // High when CPU accesses RCU
             WRITE,               // High when CPU writes data to RCU
             DATAIN,              // Data written from CPU to RCU
             DATAOUT,             // RCU output data readable by CPU
             ADDRESS,             // Adress, used both by RCU and CPU 
             IRQ,                 // Set high for RCU to interrupt CPU

             // *** Interface to MARC streams
             STREAM_READ,        // Read data bus from MEM to RCU
             STREAM_WRITE_PROG,  // Write data bus to MEM and MARC programming
             STREAM_STALL,       // Per-stream stall signals
             STREAM_ENABLE,      // Start/stop signals for streams
             STREAM_FLUSH,       // Set high to flush write streams to MEM
             STREAM_PROG         // Set high to switch stream to programming mode
            );
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Master-Mode HardwareMaster-Mode Hardware
❏❏ See Listing 4 (rather long) in your handoutsSee Listing 4 (rather long) in your handouts

❏❏ comb_block inserted into streamscomb_block inserted into streams
❍ Bit-wise reversal of passing data words

❏❏ RCU starts in slave mode to accept parametersRCU starts in slave mode to accept parameters
❍ Start address of input data in main memory

❍ Start address of output data in main memory

❍ Number of words to process

❍ A command to start execution

❏❏ RCU-internal controller FSM takes overRCU-internal controller FSM takes over
❍ MARC streams are appropriately programmed

❍ Streams are started, data is being processed

❍ On end-of-read-stream, flush write stream
� Force internal FIFOs into main memory

❍ Indicate completion by interrupt to CPU

Line 131-139

Line 152-162

Line 168-211

Line 212-234

Line 242

Line 224-229
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Master-Mode SoftwareMaster-Mode Software
...
// Handler for RCU-initiated interrupts
void
irq_handler() {
  // Ask RCU to deassert interrupt (any read to RCU-space will do)
  int volatile foo = rc[0];

  // Mark RCU operation as complete.
  // Execution continues in main() after acev_wait(), Line 83
  acev_mark_done();
}
...
void
main() { 

...
 // Register handler function for RCU-initiated interrupts
  acev_irq_handler(irq_handler, NULL);
 // Mark RCU status as `operation in progress'
  acev_mark_busy();

...
  // Program this run's parameters into RCU
  rc[REG_SOURCE_ADDR] = inwords;    // Start address of input data in memory
  rc[REG_DEST_ADDR]   = outwords;   // Start address for output data in memory
  rc[REG_COUNT]       = NUM_WORDS;  // Number of data words to process
  rc[REG_START]       = 1;          // Send start command to RCU

  // Wait for RCU execution to complete (indicated by interrupt, line 32)
  // CPU could continue operation in parallel
  acev_wait();

...
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EvaluationEvaluation

❏❏ Master-mode is considerably more efficientMaster-mode is considerably more efficient

➨➨ Despite of ACE-V Despite of ACE-V misfeaturesmisfeatures
❍ All memory accesses via PCI

❍ Faulty off-chip handshaking
� Pin not connected on PCB

� Limited burst length

� Limited clock speed

Approach RCU
Clock
[MHz]

RCU
Size
[Slices]

Computation
Time [us]

Speedup vs.
Pure SW

Pure Software 1449623 1.00

Slave-Mode RCU 40 116 825365 1.76

Master-Mode RCU 25 1369 109933 13.19

Slices available on XCV1000: 12228
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Automatic HLL CompilationAutomatic HLL Compilation

HW-Kernels as CDFG

C code

Datapath Synthesis
• Scheduling
• Technology Mapping
• Module generation
• Floorplanning

Datapath Synthesis
• Scheduling
• Technology Mapping
• Module generation
• Floorplanning

Pre-placed Netlist

Module
Generator

Library

Front-End Compiler
• architecture-independent optimization
• dynamic profiling
• analysis and visualization
• automatic HW/SW-partitioning

Front-End Compiler
• architecture-independent optimization
• dynamic profiling
• analysis and visualization
• automatic HW/SW-partitioning

Architecture
Description

Place & Route
Xilinx M4

Place & Route
Xilinx M4

FPGA bit stream

GCCGCC

SW-Part+Interfaces
as C Code

Runtime Lib.
RTEMS OS / API

HW-Environment
„wrapper“

ACE-V
Hardware
ACE-V

Hardware
Figure from Randy Harr
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Example ProgramExample Program

❏❏ Compute j * Compute j * powpow(13, k)(13, k)
❍ Check for an overflow condition, print message

void
main(int argc, char *argv[])
{
  int i, j, k;

  // Integer value of the first command line parameter
  j = atoi(argv[1]);
  // Integer value of the second command line parameter
  k = atoi(argv[2]);

  for (i = 0; i < k; i++)
    {
      j = j * 13; 
      if (j > 1000000)
        printf("j=%d too large in loop i=%d\n", j, i);
    }

  printf("result: j = %d\n", j);
}

$ ./a.out 10 5
j=3712930 too large in loop i=4
result: j = 3712930

Sample execution
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HW/SW PartitioningHW/SW Partitioning

❏❏ Dynamic profiling identifies kernelDynamic profiling identifies kernel
❍ Problem: printf() not realizable in hardware

❏❏ Most tools give up hereMost tools give up here
❍ Maybe inform the programmer to make a change

❏❏ Alternate approachAlternate approach
❍ Determine how often the condition occurs in fact

� Data dependent!

❍ If sufficiently infrequent, hardware execution might
still be useful

� But have to handle case if it does occur

➨ Manage both HW and SW versions of the kernel



36

71

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

HW/SW ExecutionHW/SW Execution
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Control-Data Flow GraphControl-Data Flow Graph
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Hardware MappingHardware Mapping

Controller FSM

Datapath
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HW/SW InterfacesHW/SW Interfaces
// Transfer software variables into RCU register
  rc[2] = j;
  rc[6] = k;
Loophead: // Destination jump label for restarting RCU after exception processing
  rc[4] = i;

  // Start RCU execution and wait for completion indicator (interrupt)
  rc[HW_START_REG] = 1;
  acev_wait();

  // OK, RCU execution stopped. Find out why ...
  if (rc[HW_EXIT_REG] == HW_EXIT_A) { // RCU indicated overflow of temporary value.

    // Fetch current values from RCU registers into software variables
    j = rc[2];
    i = rc[4];

    // Execute rest of this iteration in software
    printf("j=%d too large in loop i=%d\n", j, i);
    i = i + 1;

    // Now execute next iteration
    goto Loophead;
  } else /* HW_EXIT_B: RCU indicated normal exit */ {
    // Fetch final result from RCU register into corresponding variable
    j = rc[2];

    // Finish by executing remaining non-kernel instructions in software
    printf("result: j = %d\n", j);
  }
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DebuggingDebugging

❏❏ Should not be necessary with fully automatic toolsShould not be necessary with fully automatic tools
❍ ... but accidents happen, so:

❏❏ Allow single-stepping of hardwareAllow single-stepping of hardware
❍ Debug control block in hardware “wrapper”

❏❏ RCU registers holding variables are CPU-readableRCU registers holding variables are CPU-readable
❍ Without need for external debug support

� E.g., Xilinx ChipScope

❍ Symbol tables associate register with variable names
� Even more difficult than optimizing compilers

� Consider speculative execution

76

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

Performance OptimizationPerformance Optimization

❏❏ Example application was unspectacularExample application was unspectacular
❍ At best, 3 parallel operations (FSM: 2, 4, 7)

❏❏ Current compiler does not exploit, e.g.,Current compiler does not exploit, e.g.,
❍ Dynamic hardware/software selection

❍ Vectorization of array operations (SIMD)

❍ Multi-threading (cache miss stalls entire datapath)

➨ Much potential for achieving real speed-ups
� Today: On GARP, 4x over MIPS on image compression

❏❏ Much lore from parallel / vector / VLIW compilersMuch lore from parallel / vector / VLIW compilers
❍ Often applicable to hardware compilation

� Huge suite of beneficial loop transformations
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RCU-executable IP BlocksRCU-executable IP Blocks
❏❏ Despite best efforts:Despite best efforts:

❍ Compilers are at best “good enough”

❍ But cannot replace human expert
� Assembly language programming

� Highly optimized libraries for
� Math, DSP, graphics, etc.

� Easy interoperation with compiled code
� Linking of object files

➨➨ Similar capability required for RCU compilersSimilar capability required for RCU compilers
❍ But “linking” is more difficult

� Much more freedom in hardware
� Plethora of custom interfaces and data formats

� Actually exploited for performance / area reasons

❍ Shared resources must be managed (e.g., memory)

❏❏ Ongoing researchOngoing research
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Practical Tips & TricksPractical Tips & Tricks

❏❏ For high-performance solutionsFor high-performance solutions
❍ Don’t just translate a software program

❍ Think “hardware”
� Digital signal processing started in late 1950’s

� Without software programmable processors

� Everything realized in custom hardware

� Many algorithms suited for RCUs buried in dusty tomes

❏❏ ExamplesExamples
❍ Coordinate Rotation Digital Computer (CORDIC)

� Approach to calculate trigonometric and other
transcendental function using just shifts and adds

❍ Vector magnitude of (a,b)
� Expensive: m = sqrt(a*a + b*b)

� If 10% inaccuracy is OK: m’ = max(a,b) + 0.5 min(a,b)



40

79

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

Custom Number FormatsCustom Number Formats

❏❏ Simple: Match operator width precisely to dataSimple: Match operator width precisely to data
❍ Only internally, external I/Os are fixed width

❍ Example: 8b + 12b = 20b instead of 32b ops

❏❏ Medium: Modified standard formatsMedium: Modified standard formats
❍ Custom fixed point formats: 8b.4b

❍ Custom floating point formats
� E.g., increased precision, reduced dynamic range

❍ Match to requirements at specific points in algorithm

❏❏ Complex: Non-standard numerical representationsComplex: Non-standard numerical representations
❍ For Number Theoretic Transforms (can outperform FFT)

� 1’s Complement (Mersenne), Diminished 1 (Fermat)

❏❏ Good overview of techniquesGood overview of techniques
❍ Uwe Meyer-Baese

� Digital Signal Processing with Field Programmable Gate
Arrays, Springer 2001
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Partial EvaluationPartial Evaluation

❏❏ Reduce hardware size by propagating knownReduce hardware size by propagating known
constants through circuitconstants through circuit

❏❏ Occurs when creating circuit structureOccurs when creating circuit structure
❍ Circuit synthesis for HDL-based design flows

❍ Within parameterized module generators

❏❏ Very common use: constant coefficient multipliersVery common use: constant coefficient multipliers
❍ See previous HLL compilation example

❏❏ Other applications:Other applications:
❍ Encryption-key specific RCUs

0
?
1

? 10
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Late BindingLate Binding

❏❏ Limited form of run-time reconfigurationLimited form of run-time reconfiguration
❍ Change circuit function

❍ ... But retain structure of mapped circuit
� Number and interconnection of logic elements constant

❍ Only contents of logic elements are changed

❏❏ More area and delay efficient than reprogrammingMore area and delay efficient than reprogramming

❏❏ Value changes are often slower due to (partial) RTRValue changes are often slower due to (partial) RTR

Q

Q
SET

CLR

D

Reprogrammable
Comparator

input = “1”?

input = “0”?

LUT

Late Bound
Comparator
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Multi-Bank MemoriesMulti-Bank Memories
❏❏ RCUs RCUs often have dedicated memory banksoften have dedicated memory banks

❍ On-chip memory blocks

❍ External memories

❍ In general fast SRAM

❏❏ Allows multiple simultaneous memory accessesAllows multiple simultaneous memory accesses
❍ Can greatly improve throughput

❏❏ When programming for micro-processorsWhen programming for micro-processors
❍ Homogeneous memory space

❍ At best: Consider locality (cache characteristics)

❏❏ Using multi-bank memory systemUsing multi-bank memory system
❍ Organization exposed to programmer

❍ Data distribution across banks crucial
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Off-the Shelf TechnologiesOff-the Shelf Technologies

❏❏ System FPGAsSystem FPGAs

❏❏ Adaptive Computing DevicesAdaptive Computing Devices

❏❏ Reconfigurable IP BlocksReconfigurable IP Blocks

❏❏ (Configurable Processors)(Configurable Processors)
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System FPGAsSystem FPGAs

❏❏ Altera ExcaliburAltera Excalibur

❏❏ TriscendTriscend A7/E5 A7/E5

❏❏ Xilinx Virtex II ProXilinx Virtex II Pro
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Altera ExcaliburAltera Excalibur

❏❏ ARM922T core @ 200MHzARM922T core @ 200MHz

❏❏ Max ~ 1 MMax ~ 1 M config config gate capacity, up to 256 KB RAM gate capacity, up to 256 KB RAM

❏❏ DRAM memory controller (SDR and DDR)DRAM memory controller (SDR and DDR)

❏❏ UART, IRQ controller, timer, watchdog, ...UART, IRQ controller, timer, watchdog, ...
Figure from Altera Corp.
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Triscend Triscend A7/E5A7/E5

❏❏ A7: ARM7TDMI @ 60 MHz, E5: 8051 @ 40 MHzA7: ARM7TDMI @ 60 MHz, E5: 8051 @ 40 MHz

❏❏ ~25 K configurable gate capacity~25 K configurable gate capacity

❏❏ 16 KB internal RAM16 KB internal RAM

❏❏ DRAM memory controller (SDR and DDR)DRAM memory controller (SDR and DDR)

❏❏ UART, IRQ controller, timer, watchdog, ...UART, IRQ controller, timer, watchdog, ...
Figure from Triscend Corp.
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Xilinx Virtex II ProXilinx Virtex II Pro

❏❏ 1-4x PPC405 @1-4x PPC405 @
300+ MHz300+ MHz

❏❏ Max 4 M gatesMax 4 M gates
capacitycapacity

❍ Up to 216
18bx18b
multipliers

❍ No hardwired
interfaces/periphe
rals

❏❏ 486KB RAM486KB RAM

Figure from Xilinx Corp.
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Node

Matrix Interconnect
Network (MIN)

Quicksilver ACMQuicksilver ACM

❏❏ HeterogeneousHeterogeneous
architecturearchitecture

❏❏ HierarchicalHierarchical
(fractal)(fractal)
interconnectioninterconnection
networknetwork

❏❏ DistributedDistributed
memoriesmemories

❏❏ Single cycleSingle cycle
configurationconfiguration

Courtesy QuickSilver Tech.

Arithmetic Node

Bit-Manipulation
Node

Scalar Node

FSM Node
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Courtesy QuickSilver Tech.

Quicksilver ACM Quicksilver ACM cont’dcont’d..

❏❏ Arithmetic nodeArithmetic node
� Implements different, linear, variable-width, arithmetic

functions clock-cycle-by-clock-cycle

� Implements different, non-linear, variable-width,
arithmetic functions clock-cycle-by-clock-cycle

❏❏ Bit-manipulation nodeBit-manipulation node
� Implements different, variable-width, bit-manipulation

functions clock-cycle-by-clock-cycle

❏❏ Finite state machine nodeFinite state machine node
� Implements different, high-speed, complicated, finite-

state machines clock-cycle-by-clock-cycle

❏❏ Scalar nodeScalar node
� Implements different, complicated control sequences

❏❏ Configurable input/output nodeConfigurable input/output node
� Implements different interfaces to external interfaces

such as buses
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Courtesy QuickSilver Tech.

Quicksilver ACM Quicksilver ACM cont’dcont’d..

CU
type 1

DAG

CU
type 1

CU
type 1

CU
type 1

CU
type 1

CU
type 1

CU
type 1

CU
type 2

DAG

CU
Type

iMemory

DAG DAG

CU
Type

iMemory

M
in

i-
M

at
ri

x 
C

on
tr

o
lle

r

mini-matrix
Interconnection

Networkdma
engines

mini-matrix
Interconnection

Networkdma
engines

RAM
Highway

Level 0
Highway

Level 1
Highway

Level 2
Highway

Boolean
Highway

+ x+

E=(A+B)*(C+D)
Distributed

configuration memory

Arithmetic Node Structure
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Reconfigurable IP BlocksReconfigurable IP Blocks

❏❏ Actel VariCoreActel VariCore

❏❏ eASICeASIC

❏❏ ElixentElixent D- D-FabrixFabrix

❏❏ IBM/XilinxIBM/Xilinx

❏❏ IP FlexIP Flex

❏❏ Leopard LogicLeopard Logic

❏❏ M2000 FLEXEOSM2000 FLEXEOS

❏❏ PACT XPPPACT XPP

❏❏ picoChippicoChip

❏❏ Can be combined with configurable processorCan be combined with configurable processor
❍ Tensilica Xtensa

❍ ARC ARCtangent

➨➨ Reconfigurable custom instructionsReconfigurable custom instructions

92

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

Actel VariCoreActel VariCore

❏❏ Building blocksBuilding blocks
❍ PEG Blocks: 8x8 4x Logic Unit

❍ RAM Blocks: 512x 18b RAMs

❏❏ Sizes: 2x1 ... 4x4 Sizes: 2x1 ... 4x4 PEGsPEGs, 0 ... 8 , 0 ... 8 RAMsRAMs

* 0.18um technology
- CMOS SRAM

* Max. 250 MHz operation
* Uses 5 metal layers
* GDSII deliverable
* 5K - 40K ASIC gates

Figure from Actel Corp.
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Actel VariCore cont’dActel VariCore cont’d..

Figure from Actel Corp.

❏❏ Dual-pronged tool flowDual-pronged tool flow

ASIC RCU

94

V L S I 

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03

M2000 FLEXEOSM2000 FLEXEOS

MFC MFC

Local Network

Cluster

Global Network

IPad

In

IPad

In

IPad

In

OPad

Out

OPad

Out

OPad

Out

Program & Test
I/F

Control Bus

LUT

I1

I2

I3

I4

FF/LAT
S

D

Ck

Q

I

L

1

Ce

Global CEN

Global INIT

Global CLK

0

MFC

Figure from M2000 S.A.R.L
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M2000 FLEXEOS M2000 FLEXEOS cont’dcont’d..

❏❏ Equivalent ASIC gate capacity Equivalent ASIC gate capacity up toup to 25 K gates 25 K gates
❍ 200K FPGA equivalent gates

❍ Example configuration: 3,000 MFCs

❏❏ Size of 8 Size of 8 sqsq. mm on ST HCMOS8, 0.18. mm on ST HCMOS8, 0.18µmµm

❏❏ Programmability:Programmability:
❍ Configuration size 48KB

❍ Loading time: <500 µs at 100MHz
� Suitable for dynamic reconfiguration!

❏❏ Maximum measured frequency is 340MHzMaximum measured frequency is 340MHz
❍ Typical system clock 120MHz

❏❏ Very low power requirements:Very low power requirements:
❍ Standby current less than 100µA

❍ 100mW power consumption for 120 counters at
66MHz
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Elixent Elixent D-D-FabrixFabrix

❏❏ Based on HP Labs CHESSBased on HP Labs CHESS
arrayarray

❍ Max. 2048 ALUs, 256KB RAM
� Other configurations possible

❍ Fast reconfiguration
� 32b,64b configuration ports

❍ GDSII for CMOS SRAM
� 0.18um

� 0.13um

❏❏ Programmable inProgrammable in
❍ Verilog, VHDL

❍ Handle-C, MATLAB

R
A

M

AHB Interface

R
A

M

High-
speed
 I/O

D-Fabrix
Array

4b ALU +
Registers
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PACT XPPPACT XPP

❏❏ Array of multi-bit Array of multi-bit ALUsALUs

❏❏ Embedded RAM blocksEmbedded RAM blocks

❏❏ High-speed interfaces for streaming I/OHigh-speed interfaces for streaming I/O

I/O ALUs RAM

Figure courtesy PACT XPP
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PACT XPP PACT XPP cont’dcont’d..

❏❏ Delivered in RTL HDL as Delivered in RTL HDL as synthesizablesynthesizable soft-core soft-core
❍ Targetable to 0.13um and 0.09um processes

❏❏ ParametersParameters
❍ Array size

❍ ALU word width

❍ Routing channels

❍ RAM block size

❏❏ Wrapped in 1 ... 2 external AHB interfacesWrapped in 1 ... 2 external AHB interfaces
❍ Connect to XPP-internal I/O streams

❏❏ Fast run-time-reconfigurationFast run-time-reconfiguration
❍ 43b wide configuration bus

❍ Multiple parallel configuration busses possible

❍ 15us configuration time for 8x8 array
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ConclusionsConclusions

❏❏ Reconfigurable computing has much potentialReconfigurable computing has much potential
❍ Performance

❍ Power

❏❏ TrendsTrends
❍ Higher integration density

❍ Exploitable dynamic reconfiguration

❍ Tool support for higher-level programming

❏❏ Wide range of architecturesWide range of architectures
❍ Match to specific application (domain)

❏❏ Most important recent developmentMost important recent development

ReconfigurableReconfigurable Systems-on-Chip Systems-on-Chip
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Color Slides in Soft-CopyColor Slides in Soft-Copy

❏❏ http://www.http://www.cscs..tutu--bsbs.de/.de/eiseis//kochkoch//kochkoch-date03.-date03.pdfpdf


