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Abstract. FLAME, the Flexible API for Module-based Environments, is a proposed standard
interface for the integration of parameterized hardware generators into high-level design tools.
This work introduces two new developments: The FLAME Primitives Catalog describes the
behavior and interface of a set of hardware functions suitable as primitives for automatic com-
pilation. The FLAME Shared Access Conventions define physical connectivity and logical
protocols that allow arbitrary hardware modules to access shared resources (such as memory
or I/O ports) in a coordinated manner.
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1. Introduction

In the quest for ever increasing computing power, many approaches have been
examined beyond the traditional micro-processor. Some keywords include
reduced-instruction set computers (RISC), super-scalar and speculative exe-
cution, very-long instruction-word (VLIW) architectures exposing the under-
lying parallel function units to software, and concepts such as simultaneous
multi-threading (SMT) and chip-level multi-processing (CMP).

In all of these cases, dynamically loadable software executes on fixed
hardware architectures. By allowing an additional degree of freedom, namely
that of dynamicallyadaptablehardware, another approach to computing be-
comes feasible: Here, the hardware architecture itself can be molded to the re-
quirements of the specific algorithm (in some cases even the specific data-set
being processed).

Adaptive computing systems relying on configurable computation units
can thus be customized not only by loading appropriate software, but also by
adapting certain hardware aspects of the system to better handle the current
computational problem. However, even the best hardware architecture needs
to be exploited (programmed) in a user-friendly yet efficient manner. Other-
wise, it will be shunned in favor of other, less powerful, but more accessible
approaches.

To this end, a design flow for an adaptive computer will have to start with
an algorithm described in a language familiar to the potential user base (e.g.,
C, MATLAB, FORTRAN) and then proceed to simultaneously optimize both
soft- and hardware components. We participated in the development of one
such flow, compiling from C to a adaptive hardware, that has been described
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in [6] [7]. In this paper, we focus on the device-specific module generators
that create the actual hardware implementations and their external interfaces.

2. Module Generators

Parameterized module generators [1] [2] [3] are used in many design flows
targeting configurable computing platforms to quickly obtain high-perfor-
mance hardware objects. The mode of use ranges from fully manual [4] to
an integration into automatic flows [5] [6] [7] [8].

However, automatic integration is hindered by two major problems: First,
no standardized interface exists currently that allows the main flow tools
(compiler/synthesis, floorplanning, place and route) to automatically access
a diverse set of generator libraries. Today, each vendor uses its own (often
file-based) control protocols.

Second, even when automatic access is available, it is generally only used
to initiate the creation of a (possibly placed) netlist and (maybe) a simula-
tion model of a parameter-specific module instance. There is no feedback
path from the generators to the main flow tools that allow these to retrieve
informationaboutinstance-specific characteristics (e.g., area, timing, control
interfaces, layout topology) in order to actually make meaningful trade-off
decisions at the architectural level.

A static enumeration of this data (similar to the classic “library files”
describing cells in semi-custom design) is no longer feasible: Modern gen-
erators are able to, e.g., completely restructure a circuit exploiting constant
inputs [3]. This leads to a parameter value-dependence of many cell charac-
teristics that cannot be expressed statically. Instead, an active interface for
their dynamic calculation is required.

3. FLAME

The Flexible API for Module-based Environments (FLAME) solves these
problems with a two-pronged approach. First, it provides a standardized de-
sign data model expressing generator capabilities and module characteristics
to client tools. Second, it replaces the common file-based data exchange by
an active interface (API), allowing an interactive dialog between client to-
ols and module generators. In this manner, a module is instantiated by suc-
cessive refinement: The client tools incrementally tighten constraints, while
the generators reply with increasingly accurate area/time/power/... estimates,
culminating at the highest refinement level in the generation of layout.

Note that FLAMEwrapsexisting module libraries, it has no generation
capabilities of its own. Furthermore, since it aims at the integration of au-
tomatic design flows, it does not contain a GUI. Instead, it defines multiple
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data representations covering a spectrum of efficiency vs. portability for the
exchange of information between EDA tools.

The next few subsections will give a brief general overview of FLAME.
For a more detailed description, see [12]. Recent FLAME developments such
as the Primitives Catalog on and the Shared Access Conventions are presented
in the final two sections.

3.1. Active Interface

A sample for a dialog between client tools and generators is shown in Fig.
3.1. Computation times can be reduced since results need only be computed
to the abstraction level of the current query. E.g., when requesting area and
delay estimates for synthesis, it is not necessary to place and route the circuit
down to the layout level.

operand width=16?

1x carry-init, 16x add-2

cout = a b + a cin + b cin
s = a ^ b ^ cin

addsub, add, inc

17 cells, 10.1ns
control=0 for add, =1 for sub

Size, speed, and usage of addsub
for 16-bit operands?

Bit-sliced structure of addsub,

Netlist of add-2 slice in EQN format?
Floorplan

Synthesis

Library

Functions available for Virtex-II?

Figure 1. Sample dialog

This dialog can be carried out in a number of data representations ranging
from a highly efficient binary format to a human-readable textual represen-
tation. Furthermore, it is independent of the transport mechanism and allows
for monolithic (all components linked into a single executable) as well as
distributed (e.g., IP accessed over the Internet) systems.

3.2. Views

The concept of a “view” is used in FLAME to group related data. For exam-
ple, a client only has to query for a “synthesis” view to receive a collection
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of characteristics such as timing, area, control interface, and power estimates.
It is the view mechanism that is used to restrict the scope of generator com-
putation to the information that is needed at a single step in the design flow.
This avoids computingall data, and only have most of it discarded when the
module is not selected early on in the compilation process.

3.3. Design Hierarchy and Regularity

The amount of data exchanged between clients and servers is also controlled
by strictly following a hierarchy of design entities (Figure 3.3), where lower
levels (more detail) are only accessed when required. The explicit repre-
sentation of regularity (e.g., the iteration of bit-slices) also serves to limit
the amount of data exchanged and can reduce the computation times when
exploited by the tools.
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Figure 2. FLAME design entities

To illustrate the hierarchy, consider the following example: A genera-
tor arith might provide the cellsaddsub(switchable adder-subtracter),sub
(subtracter),add-csa(adder), andadd-rpl (adder). The adder-subtracter is
available in three implementations (linear-1bpc, linear-0.5bpc, and folded-
uni-1bpc) that realize it in different physical layout styles. In the implemen-
tation linear-1bpc, the circuit consists of a single stackaddstackdefining two
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zones,bottom and rplup. The zonebottom holds a single iteration of the
master-slicecinit (carry initialization), while the zonerplup contains mul-
tiple (up to the desired operand width) iterations of the master-sliceadd2
(full-adder bit-slice).

3.4. Target Technology

The capabilities of storage elements and tri-state buffers as well as available
routing and logic resources are abstracted by FLAME in a portable man-
ner. Design tools are thus presented with a uniform view of the different
underlying FPGA architectures, allowing both the easy re-targeting of de-
signs between architectures as well as the development of portable CAD tools
supporting multiple technologies.

Despite the abstraction, all commonly used features are modeled: This
includes the polarities and presences of control inputs such as clock-enable,
the storage element type (edge vs. level triggered), and reset behavior (sync
vs. async, set vs. reset).

3.5. Parameters

The generator clients in the main design flow create a module instance by
imposing constraints on a wide spectrum of parameters. Standard parameters
for cells include the bit widths and data types of operands as well as the pres-
ence of constant operands (which can be folded directly into the generated
circuit). For efficient synthesis, outputs can also be optionally registered or
made tri-stateable. In addition to this standard set, an arbitrary number of
user-defined parameters can be passed. E.g., a FIR filter might also accept a
list of coefficients as parameter.

3.6. Cell Characteristics

Given a set of parameter constraints, the generator can then proceed to cal-
culate a large number of characteristics specific for that set of constraints
(“dynamic data book approach”).

3.6.1. Function
The function(s) of a cell in FLAME are described using either an expression
in infix notation (such asY = A&B for a bitwise AND), or using a procedure
prototype (e.g.,FIR(Y,A,COEFFS) for a FIR filter). It is assumed that prim-
itive modules (AND, ADD, MUX,: : :) will be instantiated automatically by
the compiler, while complex modules (e.g., FIR/IIR, FFT, DCT, SKIPJACK,
: : :) must be explicitly instantiated by the user as a function call. Section 4
describes module functions in greater detail.
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3.6.2. Interface
In addition to the cell function, FLAME describes its logical and physical
interfaces. E.g., while the logical interface of a serial adder might just list the
operand inputs and the sum output, the physical interface could also reveal
the clock and Start (=clear stored carry) inputs. Special module requirements
(such as access to external memory or peripheral devices) are also specified
here. These capabilities are discussed in Section 5.

Specifying the control interface completes the information required to au-
tomatically use a cell in a synthesized circuit. Control specifications might
range from a simple addition/subtraction switch by changing the value of a
control input from 0 to 1, to complex multi-cycle sequences of simultaneously
loading and unloading data into and from a computation unit that signals its
completion after a variable number of cycles. FLAME relies on six control
instructions to provide the information required by synthesis to create the
appropriate FSM.

3.6.3. Timing
Timing characteristics can be described in FLAME using both path- and
slack-based models. They cover not only combinational delays, but also la-
tency values for pipelined execution. For units with variable (data-dependent)
execution times, best-case, average-case, and worst-case timing can be indi-
cated to guide the module selection by the compiler.

3.6.4. Area
The resource requirements of a module instance are modeled as a vector
reflecting the heterogeneous nature of units on an FPGA (e.g., logic blocks,
memory, DLLs,: : :). Since the performance of FPGA-based circuits is highly
dependent on a good routing solution, the routing requirements and character-
istics of the generated circuit can also be described at multiple levels of detail.
Tools can use this data, e.g., for managing congestion by placing densely
routed modules at the edges of the datapath.

3.6.5. Layout Topology
For regular logic optimization and floorplanning [10], the FLAME design
data model supplies constructs to describe a regular composition (e.g., bit-
sliced) as well as topological information such as the port location and pitch,
and shape of the final layout.

4. Primitive Functions

While the FLAME specification itself covers the inter-tool communication
protocols and the model (meta data) for circuit parameters and characteris-
tics, it does not define the actual behavior and interface of concrete modules.
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Table I. Basic library functions

Description

simple arithmetic (addition, subtraction, negation)

comparison (magnitude and equality)

boolean logic

multiplexing

negation

RAM

registers

ROM

shifting (arithmetic and logical)

Since these are often application-domain specific, it is expected that they are
detailed in separate documents.

The first of these documents, the FLAME Primitives Catalog (FPC), con-
centrates on describing a set of basic circuits usable as translation targets
(“hardware op-codes”) for a general-purpose high-level hardware compiler.
It contains behavioral and interface descriptions for 19 functions from the
areas shown in Table 4.

Each of these functions can be implemented in one or more cells. Con-
versely, each cell may implement one or more of these functions. Note an
important difference between this effort and previous ones such as LPM
[11]: The FPC describesbehaviors, not actual hardware realizations. E.g.,
while LPM contains anLPM_ADD_SUBcircuit that defaults toADDwhen
theAdd_Sub control input is unused, the FPC simply definesadd andsub
behaviors that may be provided in any combination by various cells. For
example, in FLAME, the function ofLPM_ADD_SUBwould be expressible
by attaching bothadd andsub to the same cell (as well as a control input for
selecting the actual operation at run-time). However, in FPC these behaviors
could also be used in conjunction with the behaviorlogic to describe an
ALU module, a circuit which is not contained in LPM at all.

The FPC defines a variety of rules and guidelines for the interface to these
functions. Specifications cover the minimum operand widths, the minimum
set of data types to be supported, port naming conventions, default values for
optional inputs, rules for matching the widths of operands, suggested area
units for the Xilinx XC4000 and Virtex FPGA series, and the idioms for
accessing technology-specific features on these targets.

Each of the individual functions is then described in a manner similar to
the following example treating “addition”.
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add(sum, [cout,] [ovfl,] a, b [, cin])

“Add the two input operandsa andb producing a resultsum. The addition
may optionally take a carry inputcin and produce a carry outputcout and
overflow outputovfl .”

Name Description Kind Width Type Usage

sum result out 1 : : : 32+ uint+ data

cout carry result out 0; 1 uint control

ovfl overflow out 0; 1 uint control

a first operand in 1 : : : 32+ uint+ data

b second operand in 1 : : : 32+ uint+ data

cin carry operand in 0; 1(0) uint control

In the ‘Width’ column, ‘1 : : : 32+’ indicates that a generator must support
operand widths at least in the range of 1 to 32 bits (but possibly wider). ‘0; 1’
signifies an optional port (having a width of 0 or 1 bits). In the case of an
input (e.g., ‘0; 1(0)’), this can be extended with a default value when the port
is unused. ‘uint’ declares a data type as unsigned integer, ‘uint+’ states that at
least the unsigned integer data type must be supported.

All functions in the FPC are consistently described in this fashion, thus
defining an unambiguous ‘contract’ between module generators and module
users (front-end compiler). Further application domains (e.g., signal process-
ing and cryptography) are expected to be addressed in additional function
catalogs later.

5. Accessing Shared Resources

Despite the efforts working towards fully automatic translation of a high-level
description into efficient hardware, there will always be cases that are handled
better using a carefully tuned manual design. This reflects the current situa-
tion in the software arena, where (e.g. for fast 3D graphics) critical kernels
are still being implemented in highly optimized assembly language. These
manually instantiated modules often implement a complex algorithm (e.g.,
SKIPJACK cryptography, DCT filtering,: : :) and run much faster than if they
were assembled from primitives by the compiler.

While even the base FLAME specification allows the automatic linking
(including control FSM creation) of such manually instantiated modules with
instances requested by the compiler, it does not cover cases in which a module
instance needs access to shared resources such as local or shared memory, I/O
ports, or on-chip peripherals. Especially the last scenario will become more
prevalent with the trend towards system-on-a-chip integration.
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For complex algorithms, the need for storage exceeding a few registers is
currently the most common one. Base FLAME already covers the simple case
in which a module can request to be placed such that it includes an on-chip
memory bank. However, this memory bank (a rare resource on today’s FPGA
architectures) is then lost to other modules. Furthermore, when the module
requires even more storage space, it will need to access the external memory
bus in a manner coordinated with the rest of the datapath.
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Figure 3. Bus architecture taxonomy

The FLAME Shared Access Conventions (SAC) specify a framework that
abstracts the most common bus architectures and protocols in a portable man-
ner. Figure 5 shows a taxonomy of different bus architectures. It covers the
various degrees of directionality and muxing as well as mandatory and op-
tional control signals. The italic labels in the figure indicate the most common
application area for the indicated bus protocol. Table 5 lists the attributes that
can be assigned to FLAME ports which enable these to access an external
resource.

For example, on-chip memory, such as the Xilinx Virtex BlockSelectRAMs,
is often connected using separate busses for data inputDIN, data output
DOUT, and addressADDR. In the simplest case, a programmable-write sig-
nalWRITE (or NWRITE for negative polarity) is all that is needed to access
the memory. Contrast this with external memory, that generally uses a bidi-
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Table II. Interface signal attributes

Name Kind Parameters Description

DIN in rsrcnr Data input port. Data width determined by WIDTH
attribute.

DOUT out rsrcnr Data output port. Data width determined by
WIDTH attribute.

ADOUT out rsrcnr Multiplexed address/data output. Address width de-
termined by WIDTH attribute.

ADDR out rsrcnr Address output port. Address width determined by
WIDTH attribute.

ADIO i/o rsrcnr dwidth Multiplexed address output/data input/output. Ad-
dress width determined by WIDTH attribute, data
width determined bydwidth.

WRITE out rsrcnr Assert to write data. Programmable polarity single-
bit signal.

OE out rsrcnr Assert to enable resource output drivers. Program-
mable polarity single-bit signal.

REQ out rsrscnr Assert to request resource access. Programmable
polarity single-bit signal.

GRANT in rsrcnr Asserted when resource access is granted. Program-
mable polarity single-bit signal.

ADVLD out rsrcnr Assert to load new address for burst-mode. Pro-
grammable polarity single-bit signal.

STALL in rsrcnr Asserted when no data available. Programmable
polarity single-bit signal.

HOLD out rsrcnr Assert to pause burst transfer. Programmable polar-
ity single-bit signal.

rectional (tri-stateable) data busDIO, and thus requires an additional output-
enable signalOE for the external drivers. Another architecture that attempts
to reduce the number of busses while avoiding the need for tristate buffers
(which might also be rare on the FPGA) uses a shared bus for all output
signals, thus combining address and data output intoADOUT and a dedicated
bus for input dataDIN. This approach can be employed to good effect for the
shared datapath-wide on-chip bus. In the extreme case, addresses and both
input and output data are all multiplexed over the same bidirectional bus.
This interface is less common for on-chip use, but might be applicable when
communicating with I/O pin-limited external devices.

In general, the read/write control signal is always present (exceptions are
ROMs and read-only devices such as temperature sensors). However, a num-
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Table III. SAC resource attributes

Name Parameters Description

READLAT a-d-edges # clock edges from address to read data valid.

WRITELAT a-d-edges # clock edges between write address and write data.

BURSTLAT d-d-edges # clock edges per data item in a burst-transfer.

BUSTURN r-w w-r # clock edges to turn bidirectional bus around
(switch from read-to-write and write-to-read).

MAXBURST size Maximum # words in a burst transfer.

ber of optional signals can be employed to satisfy more complicated interface
needs. If the access requestREQ and grantGRANT signals are not present
in the interface, the central FSM can assume that the module wants control
over the shared resource as long as it executes. Otherwise, control can be
requested from the central FSM on an as-needed basis and granted dynam-
ically. A burst-mode interface (multiple data items transferred per address)
can be implemented using the advance-or-load signalADVLD, that becomes
asserted (=‘load’) when a new address has been put on the bus. When de-
asserted, transfers will proceed ascending from the last loaded addresses.
Some devices (e.g., transfers over the PCI bus) have a variable latency. They
can be accessed using an outputSTALL that allows the device to halt data
transfers initiated by the user circuit. Analogously, the user circuit can use
theHOLD input to pause data transfers initiated by the device (e.g., a burst
transfer in progress).

The actual architecture requested by a module can be inferred from its
physical interface. Ports are flagged with role attributes such as(DIN 0) ,
indicating, e.g., that this port should be the input bus from resource 0. Various
parameters such as address ranges, data width, sub-word write-enables can
be inferred from these and the standard FLAME port parameters (see Section
3.5).

A dedicatedRESOURCEsection in the FLAME “synthesis” view describes
the nature of the specific resource requested (e.g., RAM, ROM, DAC, shared
memory etc.) and its timing parameters on a per-resource number (rsrcnr
in Table 5) basis. These attributes (shown in Table 5) include the latency in
half-cycles (clock edges) for read address-to-data, write address-to-data, burst
data-to-data, and bus turnaround (for bidirectional busses). For burst-capable
resources, the maximum number of words in a burst is also indicated. Edges
are used instead of clock cycles to allow the description of double-data rate
(DDR) resources.
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As an example, a module requesting access to 4K of 16-bit words using
a protocol for synchronous zero-bus turn-around memory could establish the
following physical interface in its “synthesis” view:

(INTERFACE (PHYSICAL
(INOUT (("D") (WIDTH 16) (DIO 0)))
(OUTPUT (("A") (WIDTH 12) (ADDR 0))

(("nE") (WIDTH 1) (NOE 0) )
(("W") (WIDTH 1) (WE 0) ))

...
(RESOURCE ((0) "ram"

(READLAT 2) (WRITELAT 2) (BUSTURN 0 0)))

Note that this resource always has fixed latencies (no flow-control), no
burst-mode (each transfer will provide a valid address), and will be exclu-
sively allocated to the module during the entire time it is executing (no bus
arbitration signals).

Additional features include the automatic conversion between different
access protocols (e.g., burst access to a resource incapable of burst transfers)
and non-unit stride bursts for streaming computations.

Together, these functions are sufficient to portably satisfy a wide spec-
trum of interface needs across different FPGA architectures and enable the
seamless automatic integration of complex hardware objects (e.g., 3rd party
IP blocks) into a synthesized datapath.

6. Status

FLAME currently consists of a comprehensive specification [12] and a tech-
nology demonstrator [9] containing the base library and a sample transport
protocol. A generator library implemented using JHDL [13] providing all of
the functions in the FLAME Primitives Catalog will be released shortly. Re-
search also continues on adding a FLAME interface and the FLAME Shared
Access Conventions to an experimental fully automatic compile flow target-
ing real hardware (based on the Xilinx Virtex FPGA series [14]).

7. Summary

FLAME is a general-purpose method that allows high-level design flows
to evaluate and create hardware objects targeting configurable computing
machines. The FLAME Primitives Catalog formulates a contract between
module users and suppliers that covers the functions and interfaces (but not
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the implementation!) of a basic set of hardware objects. Instances of complex
modules can obtain access to shared resources such as memory by adhering
to the FLAME Shared Access Conventions, which allow for flexible yet stan-
dardized connectivity and bus protocols. In concert, these components enable
the interplay of both software tools and hardware objects to create powerful
configurable computing solutions.
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