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We present a brief overview over multi-year research dealing
with heterogeneous reconfigurable systems After discussing
architecture issues, we show some initial results of work on a
compiler automatically mapping ANSI C to a heterogeneous
reconfigurable target system.

1 Introduction

In the endless quest for increasing computing power, re-
configurable (sometimes called adaptive) architectures are
a promising addition to conventional processors. Adaptive
computers exploit the capability to mold part of their under-
lying hardware specifically to the needs of individual algo-
rithms [1][2]. In contrast to ASICs, they retain the high de-
gree of flexibility required by today’s short time-to-market
windows and fluid standards. Additionally, some experi-
ments suggest that reconfigurable logic might be consider-
ably more power-efficient than standard solutions [3].

Often, the configurable unit augments a standard proces-
sor, which still performs general system control tasks [4] [5]
[6] [7] [8]. Only the compute-intensive parts of an applica-
tion (called kernels) are implemented in configurable hard-
ware. On a system-on-chip (SoC), a much higher degree of
integration between these components can be achieved than
with the currently prevailing board-level solutions. To sim-
plify building such a device, IP blocks for reconfigurable ar-
rays are already available [9] [10] [11]. Section 2 discusses
some of the issues that need to be considered when designing
a heterogeneous reconfigurable SoC.

One of the reasons that adaptive processors are still not
in widespread use (despite their demonstrated performance
potential) is the difficulty of programming them: In many
cases, the design flows used require familiarity with hard-
ware design techniques and architectures. Combined, these
demands act as a severe obstacle, rendering the systems in-
accessible to developers only having experience in program-
ming conventional (pure software) computers.

Considerable effort has thus been expended to overcome
these problems and raise the abstraction level of program-
ming an adaptive processor closer to that of a conventional
one. Examples include translating traditional languages such
as C or even higher-level descriptions such as MATLAB
into efficient hardware/software solutions. Our work aims at
compiling standard dusty deck C to heterogeneous reconfig-
urable systems. Using such a tool set, only minimal effort is
required for porting old code or developing new applications
for a reconfigurable platform. A first prototype (Section 3)
of such a flow has been implemented in cooperation with the
Synopsys Advanced Technology Group, the BRASS project
at the UC Berkeley, and Lockheed-Martin Advanced Tech-
nology Laboratories [12] [13].

2 Architecture Discussions

Given that we are considering heterogeneous systems con-
sisting of one or more fixed and/or configurable parts, a
broad spectrum of possible architectures and interfaces be-
tween components needs to be evaluated. For example, it is
possible to integrate a reconfigurable function unit directly
into the CPU. While this can be used to efficiently pack sim-
ple CPU instruction sequences (especially logical operations
as occurring in crypto applications) into a single hardware
function, the speed-up here is limited by the communications
bandwidth (just the CPU register file) and the low degree of
exploitable parallelism. Another approach attaches a recon-
figurable co-processor (RC) to the processor bus and uses it
to consume and produce data streams which are directed by
the CPU or DMA engines. This architecture can efficiently
exploit pipeline parallelism and is very well suited for appli-
cations such as filtering (audio/video) and sequence match-
ing. However, when desiring to shift general-purpose algo-
rithms to an RC, it becomes necessary to allow the unit full
random access to the main memory, e.g., to perform indepen-
dent table lookups and pointer operations. One of the more
important choices to be made for this approach is whether
and how to share caches between the CPU and and the RC.

The architecture of the RC itself also needs to be consid-
ered carefully. The size of the basic compute elements must
be matched to the native size of the data to be processed and
the processing style. E.g., for most compute-bound applica-
tions, the single-bit logic blocks of many FPGA architectures
are rather inefficient. A better match for these algorithms
might be achieved by composing 8b-wide operators into the
8b,16b,24b and 32b operand sizes commonly used. Alterna-
tively, narrower blocks (such as 4b) might be used in a serial
fashion.

The reconfiguration characteristics strongly influence the
possible usage of the reconfigurable unit: Very slow rates
suffice for “hardware” update/upgrade operations or global
mode switches (e.g., the RC implements different communi-
cation protocols in different service areas). To better exploit
the silicon area sacrificed to achieve reconfigurability, short
configuration times are desirable. In some cases, this can
be achieved by realizing a configuration cache that allows
rapid switching between a small number of configurations.
Note that continuous single-cycle configuration switching is
unrealistic for large devices due to the amount of power con-
sumed for each switch (and the corresponding cooling prob-
lem).

After introducing these basics, we can now characterize
the target architecture for our design flow: We are aiming for
an RC closely coupled to a conventional CPU. The RC has
a dedicated memory interface offering access to main mem-
ory in both regular (streaming) and irregular (cached) access
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patterns. This is required by our goal of compiling the full
C language (including pointers etc) into software-hardware
combinations. Following the size of C’s most common data
types, our logic block size is assumed to be 32b. Further-
more, we expect short configuration times to enable us to
employ a specialized configuration for each kernel (gener-
ally a loop nest). The compiler prototype has two hardware
targets: The GARP architecture [4] adds a configurable data
path of 32b operators to a MIPS core. It comes very close to
our wishlist, but is only available as a cycle-accurate simu-
lator. For more precise measurements in the real world, we
use the ACE-V [14] board-level platform that combines a
microSPARC-II RISC processor with a Xilinx Virtex FPGA
acting as RC. While the ACE-V also has all of the abilities
required, the slow configuration speed and memory access
limit the system to real-world tests instead of realizing ac-
tual speedups (as can be shown for GARP).

3 Tool Flows

The structure of the design flow of the prototype NIMBLE
compiler is shown in Figure 1. Note that the compiler is
mostly target-technology independent (the target is charac-
terized by a configuration file). An input program is read
by the front-end and analyzed to isolate the performance-
critical and hardware-feasible parts of the applications (by
various dynamic profiling mechanisms). Certain constructs
cannot (e.g., printf) or can only be very inefficiently (e.g.,
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Figure 1: NIMBLE Compile Flow

floating-point operations) mapped to the RC. If they occur
sufficiently rare (e.g., only for error handling), the kernel is
partially executed on the RC: When the hardware-infeasible
operation occurs, this exceptional case in handled by seam-
lessly switching back to software execution. In this manner,
the program is partitioned between hardware and software
components. Over a wide range of real-world applications
analyzed in this manner, an average of 78% of the origi-
nal software execution time can thus be handed over to the
RC and potentially be accelerated. The software parts are
then extended with automatically generated interfaces to the
hardware components and processed by a normal software
flow. The hardware parts are compiled into data flow graphs
which are then mapped to the target device. A final link step
merges both types of components into a single executable
image, ready for execution either in the GARP simulator or
the ACE-V adaptive computer. On a suitable architecture
such as GARP, even the prototype compiler can accelerate a
wavelet image compression program by a factor of 3 over an
optimized MIPS software implementation [4].

We are now working on a second generation compiler sys-
tem that builds on our experiences gained with NIMBLE,
which served to validate our initial assumptions and acted as
a proof-of-conceptprototype. The new compiler is built from
the beginning to support many powerful optimization (loop
transforms, pipelining, speculative execution) that were not
considered in the previous demonstrator. Subsystems such
as the technology mapping, module generators and interface
blocks have already been completed. Other research deals
with automatically integrating other IP blocks with the au-
tomatically compiled data paths to reuse existing blocks or
perform manual optimization for high-performance opera-
tion.
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