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We present a standardized interface for the integration of
high-performance module generators into automatic FCCM
compilation flows. An API and a common data model allow
the compiler to retrieve module characteristics and instantia-
tions in an efficient and vendor-independent manner.

1 Introduction

High-performance design flows for FPGAs rely on automatic
module generation [1] [2] [3] to quickly create fast and dense cir-
cuits. This structured circuit generation becomes even more cru-
cial when FPGAs are used as compute elements in configurable
computing machines (FCCM), instead of just implementing glue
logic. Many research efforts on automatic compilation to FCCM
targets include module generation as a fundamental step [4] [5]
[6].

However, no standardized interface currently exists that allows
the main flow tools (compiler/synthesis, floorplanning, place and
route) access to generator libraries. With the flexibility of today’s
generators that are, e.g., able to restructure a circuit exploiting
constant inputs [3], the total number of design alternatives covered
by a single generator makes the simple static enumeration of all
variations (e.g., in a file) infeasible.

2 FLAME

The Flexible API for Module-based Environments (FLAME)
solves these problems with a two-pronged approach. First, it pro-
vides a standardized design data model expressing generator ca-
pabilities and module characteristics to client tools. Second, it
replaces the common file-based data exchange by an active in-
terface (API), allowing an interactive dialog between client tools
and module generators. In this manner, a module is instantiated
by successive refinement: The client tools incrementally tighten
constraints, while the generators reply with increasingly accurate
area/time/power/... estimates, culminating at the highest refine-
ment level in the generation of layout.

Note that FLAMEwraps existing module libraries, it has no
generation capabilities of its own. Furthermore, since it aims at
the integration of automatic design flows, it does not contain a
GUI. Instead, it defines multiple data representations covering a
spectrum of efficiency vs. portability for the exchange of informa-
tion between EDA tools.

3 Active Interface

A sample for a dialog between client tools and generators is
shown in Fig. 1. Computation times can be reduced since re-
sults need only be computed to the abstraction level of the current
query. E.g., when requesting area and delay estimates for synthe-
sis, it is not necessary to place and route the circuit down to the
layout level.

Figure 2 shows the internal FLAME architecture. The Man-
ager collects queries from clients and distributes them among the
servers (generators). Replies are routed in the reverse direction.
Additional functions can include the automatic translation be-
tween different FLAME representations and gatewaying between
various communication mechanisms. The latter allows design
flows that are wholly or partially distributed over a network.

The communications overhead is reduced by a memoization
(caching) mechanism in the Manager. Previously encountered
queries (e.g., for the same 8-bit AND) are directly answered from
this cache without consulting the original generator again.

4 Data Representations

FLAME data can be represented in multiple formats to match
the specific environment. A human-readable text version is easi-
est to process for simple tools (e.g., Perl scripts). A pre-tokenized
format can be processed and transferred more efficiently between
tools, but still remains portable (machine and language indepen-
dent). For use in tightly integrated flows, an implementation
language-specific pointer-based representation (e.g., [7]) offers
the highest performance, but has only limited portability. All three
representations have the capability to wrap existing formats. E.g,
for netlists, simulation models, or layout, existing descriptions in
EDIF, Verilog, or XNF can be encapsulated in FLAME.

5 Views

The concept of a “view” is used in FLAME to group related
data. For example, a client only has to query for a “synthesis”
view to receive a collection of characteristics such as timing, area,
control interface, and power estimates. It is the view mechanism
that is used to restrict the scope of generator computation to the
information that is needed at a single step in the design flow. This
avoids computingall data, and only have it discarded when the
module is not selected early on in the synthesis process.
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6 Design Hierarchy

The amount of data exchanged between clients and servers is
also controlled by strictly following a hierarchy of design enti-
ties (Figure 3), where lower levels (more detail) are only accessed
when required.
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Fig. 3: FLAME design entities

To illustrate the hierarchy, consider the following example: A
generatorarith might provide the cellsaddsub(switchable adder-
subtractor),sub(subtractor),add-csa(adder), andadd-rpl (adder).
The adder-subtractor is available in three implementations (linear-
1bpc, linear-0.5bpc, andfolded-uni-1bpc) that realize it in differ-
ent physical layout styles. In the implementationlinear-1bpc, the
circuit consists of a single stackaddstackdefining two zones,bot-
tom and rplup. The zonebottomholds a single iteration of the
master-slicecinit (carry initialization), while the zonerplup con-
tains multiple (up to the desired operand width) iterations of the
master-sliceadd2(full-adder bit-slice).

7 Target Technology

The capabilities of storage elements and tri-state buffers as well
as available routing and logic resources are abstracted by FLAME
in a portable manner. Design tools are thus presented with a uni-
form view of the different underlying FPGA architectures, allow-
ing both the easy retargeting of designs between architectures as
well as the development of portable CAD tools supporting multi-
ple technologies.

8 Cell Characteristics

The function(s) of a cell in FLAME are described using either
an expression in infix notation (such asY = A& B for a bitwise
AND), or using a procedure prototype (e.g.,FIR(Y,A,COEFFS)
for a FIR filter). Primitive modules (AND, ADD, MUX,. . .)
will be instantiated automatically by the compiler when covering
the user program’s data-flow graph, while complex modules (e.g.,
FIR/IIR, FFT, DCT,. . .) must be explicitly instantiated by the user
as a function call.

In addition to the cell function, FLAME describes its logical
and physical interfaces. E.g., while the logical interface of a se-
rial adder might just list the operand inputs and the sum output,
the physical interface could also reveal the clock and Start (=clear
stored carry) inputs.

Specifying the control interface completes the information re-

quired to automatically use a cell in a synthesized circuit. Con-
trol specifications might range from a simple addition/subtraction
switch by changing the value of a control input from 0 to 1, to
complex multi-cycle sequences of simultaneously loading and un-
loading data into and from a computation unit that signals its com-
pletion after a variable number of cycles. FLAME relies on six
control instructions to provide the information required by syn-
thesis to create the appropriate FSM.

Timing characteristics can be described in FLAME using both
path- and slack-based models. They cover not only combinational
delays, but also latency values for pipelined execution. For units
with variable execution times, best-case, average-case, and worst-
case timing can be indicated to guide the module selection by the
compiler.

For regular logic optimization and floorplanning [8], the
FLAME design data model supplies constructs to describe a regu-
lar composition (e.g., bit-sliced) as well as topological information
such as the port pitch and shape of the final layout.

9 Results

FLAME currently consists of a comprehensive specification [9]
and a technology demonstrator [7] containing the base library and
a sample FLAME Manager. It offers unified access to generators
both developed ad-hoc as well as to modules in the Xilinx Core-
Gen package [10].

10 Summary

We presented a brief overview of the capabilities of FLAME,
a new method for tool integration in generator-based compilation
flows for FCCMs. By allowing the compiler to automatically ac-
cess powerful module libraries, the full flexibility of a generator-
based implementation method may be harnessed to create highly
optimized circuits without human intervention.
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