
Regular Datapaths on
Field-Programmable Gate Arrays

Vom Fachbereich für Mathematik und Informatik
der Technischen Universität Braunschweig

genehmigte Dissertation

zur Erlangung des Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.-Inform. Andreas Koch

Eingereicht am 09.07.1997
1. Referent: Prof. Ulrich Golze
2. Referent: Prof. Rolf Ernst

Mündliche Prüfung am 02.09.1997

For Anja.

Abstract

Field-Programmable Gate Arrays (FPGAs) are a recent kind of programmable
logic device. They allow the implementation of integrated digital electronic
circuits without requiring the complex optical, chemical and mechanical pro-
cesses used in a conventional chip fabrication. FPGAs can be embedded in
traditional system designflows to perform prototyping and emulation tasks.
In addition, they also enable novel applications such as configurable comput-
ers with hardware dynamically adaptable to a specific problem.

The growing chip capacity now allows even the implementation of CPUs
and DSPs on single FPGAs. However, current design automation tools trace
their roots to times of very limited FPGA sizes, and are primarily optimized
for the implementation of random glue logic. The wide datapaths common to
CPUs and DSPs are only processed with reduced performance.

This thesis presents Structured Design Implementation (SDI), a suite of
specialized tools coordinated by a common strategy, which aims to efficiently
map even larger regular datapaths to FPGAs. In all steps, regularity is pre-
served whenever possible, or restored after disruptive operations were re-
quired.

The circuits are composed from parametrizable modules providing a vari-
ety of logical, arithmetical and storage functions. For each module, multiple
target FPGA-specific implementation alternatives may be generated in both
gate-level netlist and layout views.

A floorplanner based on a genetic algorithm is then used to simultaneously
choose an actual implementation from the set of alternatives for each module,
and to arrange the selected module implementations in a linear placement.
The floorplanning operation optimizes for short routing delays, high routabil-
ity, and fit into the target FPGA.

In addition, the coarse granularity of an FPGA as compared to a gate ar-
ray (large logic blocks instead of small transistors as building blocks) neces-
sitates a compaction phase to avoid inefficiencies. Floorplanning takes this
into account by grouping modules amenable to compaction, and prepares for
a merging of their functions across module boundaries.

For each set of compactable modules, structure extraction and regularity
analysis phases search for a common regular bit-sliced structure across all
modules in the set. The new master-slices thus discovered are then processed
using conventional logic synthesis and technology mapping techniques, reduc-
ing both area and delay over their pre-compaction levels.

Since the originally generated module layout is invalidated by the com-

i

paction operation, the mapped logic blocks in each compacted master-slice
have to be re-placed in a regular manner. This microplacement operation
is performance-driven, and optimizes delay, control signal routing and slice
abutment across master-slice boundaries. The compacted modules are then
reassembled from the microplaced master-slices according to the structural
information extracted previously.

The result is the efficient mapping of a regular bit-sliced datapath archi-
tecture to a regular bit-sliced layout. Practical experiments show delay reduc-
tions of up to 33% as compared to layouts produced by conventional tools. The
exploitation of regularity during processing also reduces CAD runtimes by up
to 78%.

ii

Kurzfassung

Field-Programmable Gate-Arrays (FPGAs) sind eine noch junge Art von pro-
grammierbaren Logikbausteinen. Sie erlauben die Implementierung von in-
tegrierten Digitalschaltungen ohne die komplizierten optischen, chemischen
und mechanischen Prozesse, die normalerweise für die Chipfertigung erfor-
derlich sind. FPGAs können im Rahmen konventioneller Entwurfsmethoden
zu Emulationszwecken und Prototyp-Aufbauten herangezogen werden. Sie
erlauben aber auch völlig neue Anwendungen wie rekonfigurierbare Compu-
ter, deren Hardware dynamisch an ein spezielles Problem angepaßt werden
kann.

Die gewachsene Chip-Kapazität erlaubt nun sogar die Implementierung
von CPUs und digitalen Signalprozessoren (DSPs) auf einem einzelnen FPGA.
Die Leistungsfähigkeit der entstandenen Schaltungen wird jedoch durch die
zur Zeit erhältlichen CAD-Werkzeuge limitiert, da diese noch auf stark be-
schränkte FPGA-Größen ausgerichtet sind und primär der platzsparenden
Verarbeitung unregelmäßiger Logik dienen. Die breiten Datenpfade in Bit-
Slice-Struktur, die den Kern vieler CPUs und DSPs darstellen, werden nur
suboptimal behandelt.

Diese Arbeit stellt Structured Design Implementation (SDI) vor, ein Sy-
stem von spezialisierten CAD-Werkzeugen, die auch größere reguläre Daten-
pfade effizient auf FPGAs abbilden. In allen Verarbeitungsschritten wird da-
bei die bestehende Regularität soweit wie möglich erhalten oder nach regula-
ritätsvernichtenden Operationen wiederhergestellt.

Zur Schaltungseingabe steht eine Bibliothek von allgemeinen Modulen
aus den Bereichen Logik, Arithmetik und Speicherung bereit. Diese können
durch Belegung verschiedener Parameter wie Bit-Breiten und Datentypen an
aktuelle Anforderungen angepaßt werden. Für jedes der Module können un-
terschiedliche Implementierungsalternativen in Form von Gatternetzlisten
oder Layouts generiert werden.

Ein Floorplanner, basierend auf einem genetischen Algorithmus, wählt an-
schließend, bei gleichzeitiger linearer Plazierung der Module, für jedes Modul
die günstigste Alternative aus. Dabei wird in Hinsicht auf kurze Leitungsver-
zögerung, gute Verdrahtbarkeit und Einpassung in das Ziel-FPGA optimiert.

Die grobe Granularität von FPGAs im Vergleich zu konventionellen Gate-
Arrays (große Logikblöcke statt feiner Transistoren) erfordert eine Kompak-
tierung, um Ineffizienzen zu vermeiden. Dazu werden während des Floor-
planning geeignete Module zusammen plaziert und die Verschmelzung ihrer
Funktionen über Modulgrenzen hinweg vorbereitet.

iii

Aus jeder Gruppe von zu verschmelzenden Modulen wird nun eine modul-
übergreifende reguläre Bit-Slice-Struktur extrahiert und diese auf Regulari-
täten hin untersucht. Die auf diese Weise bestimmten neuen Master-Slices
werden anschließend mittels konventioneller Logiksynthese- und Technolo-
gieabbildungsverfahren in Bezug auf Flächenbedarf und Verzögerungszeit op-
timiert.

Da diese Operationen das ursprünglich generierte Layout ungültig ma-
chen, müssen die Logikblöcke in den optimierten Master-Slices wieder neu
plaziert werden. Diese Mikroplazierung zielt auf die Wiederherstellung ei-
nes regulären Layouts hin und optimiert dabei die Signalverzögerungen, die
Verdrahtung von Slice-übergreifenden Steuerleitungen und die Anreihbar-
keit der Slices. Die kompaktierten Module werden dann entsprechend der
vorher extrahierten Struktur aus den mikroplazierten Master-Slices neu auf-
gebaut.

Das Ergebnis dieser Vorgehensweise ist die effiziente Abbildung eines re-
gulären Datenpfades auf ein reguläres Layout unter Erhaltung der Bit-Slice-
Struktur. Praktische Experimente haben eine Verminderung der Schaltungs-
verzögerung um bis zu 33% im Vergleich zu konventionell berechneten Lö-
sungen ergeben. Die konsequente Ausnutzung der Regularität führt auch zu
einer Verkürzung der CAD-Rechenzeiten um bis zu 78%.

iv

Acknowledgments

I would like to thank my thesis advisor Prof. Ulrich Golze, known to me since
my first semester at Braunschweig, for many fruitful discussions, and giv-
ing me the freedom to explore and develop a broad range of CAD techniques.
He also provided the hard- and software infrastructure indispensable for the
success of my work.

Furthermore, I am grateful to Prof. Rolf Ernst for acting as a co-referee for
this thesis.

The legibility of the text was markedly improved by considering the com-
ments offered by Andrea Gondring and Ulf Bahrenfuss.

PARAMOG was made possible by the efforts of Holger Sadewasser and
Jens Dittmer. It was their perseverance in reverse-engineering the XC4000
FPGA that allowed the exploitation of highly chip-specific structures during
module generation.

The implementation of my SDI tool set was enabled by the free access
to high-quality tools from other institutions. The well-documented and ro-
bust UCB SIS was used as framework for integrating my own functionality,
as well as for providing logic optimization and technology mapping opera-
tions. For further experiments, Jason Cong (FlowMap) and Klaus Eckl (TOS-
TUM) made their technology mapping tools available. Peter Barth supplied
the OPBDP solver used as a first step of the hybrid ILP solving approach.

I am indebted to my parents for laying the groundwork that allowed me to
successfully complete this and many of the other endeavors I have undertaken
thus far.

The moral support by Anja Teske proved to be invaluable in the hectic final
phase of this thesis’ gestation.

v

vi

Contents

1 Introduction 1

2 Overview of Structured Design Implementation 11
2.1 Xilinx XC4000 FPGAs . 12

2.1.1 Logic Block Architecture 12
2.1.2 Routing Architecture . 14

2.2 Structured Design Entry . 17
2.3 Target Topology . 19

2.3.1 Datapath Topology . 19
2.3.2 Chip Topology . 24

2.4 Module Generation . 26
2.5 Module Selection and Floorplanning 28
2.6 Compaction . 29

2.6.1 The Need for Compaction 31
2.6.2 Soft- and Hard-macros . 31
2.6.3 Preserving Module Placement 32
2.6.4 Extracting and Exploiting Regularity 33
2.6.5 Logic Optimization and Mapping 35

2.7 Microplacement . 35
2.7.1 Congestion Handling . 36
2.7.2 Pre-placement Activities 36
2.7.3 Regularizing Logic Blocks 38
2.7.4 Two-Phase Placement . 40

2.8 Design Integration . 45

3 Module Generators and Library 47
3.1 Previous Work . 47

3.1.1 Generating Modules for Macro-Cells 48
3.1.2 Generating Modules for FPGAs 48
3.1.3 Module Templates . 49

3.2 Anatomy of an SDI Module . 49
3.2.1 Classes of Regularity . 50
3.2.2 Geometric Hierarchy . 50
3.2.3 Structural Modules . 52

3.3 Module Generation in SDI . 53
3.3.1 Paramog Architecture . 53
3.3.2 Design Cycle . 53

vii

Contents

3.3.3 Module Parameters . 54
3.3.4 Design Alternatives . 54
3.3.5 Generator Output . 57
3.3.6 XC4000-specific Features 58
3.3.7 Implementation Details 59

4 Module Selection and Floorplanning 63
4.1 Optimization by Genetic Algorithms 63
4.2 Problem Description . 63
4.3 Solution Representation . 64
4.4 Genetic Crossover Operators . 64

4.4.1 Uniform Crossover . 65
4.4.2 One-Point Crossover . 65
4.4.3 Two-Point Crossover . 66

4.5 Genetic Mutation Operators . 66
4.5.1 Allel Mutation . 67
4.5.2 Position Mutation . 67
4.5.3 Translocation Mutation 67
4.5.4 Reversal Mutation . 68

4.6 Genetic Inversion Operator . 68
4.7 Multi-Criteria Evaluation . 68

4.7.1 Net Delays . 69
4.7.2 Compactibility . 69
4.7.3 Fit into Target FPGA . 70
4.7.4 Routability . 70

4.8 Selection . 70
4.8.1 Elite Selection . 71
4.8.2 Expected Value Selection 71
4.8.3 Fitness Selection . 72
4.8.4 Random Selection . 72

4.9 Parameters and Dynamic Fuzzy-Control 72
4.10 Capabilities and Limitations . 73

5 Fundamentals for Compaction and Microplacement 75
5.1 Basics . 75
5.2 Structure and Behavior of Digital Circuits 76

5.2.1 Hierarchy . 76
5.2.2 Regularity . 78
5.2.3 Grouping Bits . 79
5.2.4 Structure of Circuits: Network Skeleton 80
5.2.5 Behavior of Circuits: Network 83
5.2.6 Master-Slices and Slices 85
5.2.7 V-Zones: Multi-Iteration Circuits 89
5.2.8 Stacks: Multi-v-zone Structures 91
5.2.9 H-Zones: Multi-Stack Structures 93
5.2.10 Modules: Multi-h-zone Structures 95

viii

Contents

5.2.11 Datapaths: Multi-Module Structures 96
5.2.12 Flattening the Hierarchy 97

5.3 Topological and Geometrical Layout 100
5.3.1 Representing Geometrical Layout 100
5.3.2 Representing Topological Layout 101
5.3.3 Describing Regular Bit-Sliced Layouts 101

6 Regular Compaction 105
6.1 Finding Optimizable Areas . 105
6.2 Flattening the Subdatapath . 108
6.3 Structure Extraction . 108

6.3.1 Requirements on Master-Slice Candidates 110
6.4 Regularity Analysis . 112

6.4.1 Building Terminal Graphs 114
6.4.2 Constrained Isomorphism 116

6.5 Logic Optimization and Mapping 119
6.5.1 Tool Integration . 120
6.5.2 Pre- and Post-Compaction Isomorphism 120

6.6 Summary and Relations between Structures 122
6.7 Effects on Placement . 123

7 Microplacement 125
7.1 Vertical Topological Placement 125
7.2 ILP for Horizontal Geometrical Node Placement 127

7.2.1 Determining the Placement Area 128
7.2.2 Node Placement . 129
7.2.3 Control Signal Routing . 129
7.2.4 Critical Path Segment Delay Computation 133
7.2.5 Maximal Critical Path Delay 135
7.2.6 Vertical Inter-omS Alignment 136
7.2.7 Objective Function . 138

7.3 Efficiently Solving 0-1 ILPs . 139
7.3.1 Preprocessing and Constructive Enumeration 139
7.3.2 Pruned Branch-and-Bound 139
7.3.3 Capabilities and Limitations 140

7.4 Heuristic for Horizontal Geometrical Node Placement 140
7.4.1 Ensemble-Based Annealing 140
7.4.2 Optimization Cost Function 140
7.4.3 Capabilities and Limitations 141

7.5 ILP for Vertical Geometrical Node Placement 141
7.5.1 Node Placement . 142
7.5.2 Vertical Distance in CLBs 142
7.5.3 Recognizing Linear Horizontal Placement 143
7.5.4 Recognizing Horizontally Abutting Cells 144
7.5.5 Recognizing Vertically Abutting Cells 144
7.5.6 Vertical SM Distance in a Single Column 146

ix

Contents

7.5.7 Arc-Based Unit-to-Cell Assignment 146
7.5.8 SM Distance in Adjacent Columns 147
7.5.9 Computing Net Delay in SMs 148
7.5.10 Computing Path Delay in SMs 149
7.5.11 Computing Maximal Critical Path Delay 149
7.5.12 Objective Function . 150
7.5.13 Solving the Vertical Microplacement 0-1 ILP 150

7.6 Handling Sequential Elements 150
7.6.1 Placing Bound Flip-Flops 151
7.6.2 Placing Floating Flip-Flops 152

7.7 Design Integration . 153

8 Experimental Results 155
8.1 Tools Used . 156
8.2 Generic 16-bit Datapath . 157

8.2.1 Circuit . 157
8.2.2 Processing . 157
8.2.3 Performance . 158
8.2.4 Comments . 160

8.3 74181-based 32-bit ALU . 160
8.3.1 Circuit . 160
8.3.2 Processing . 160
8.3.3 Performance . 160
8.3.4 Comments . 163

8.4 Address Generator for DES Encryption 163
8.4.1 Circuit . 163
8.4.2 Processing . 165
8.4.3 Performance . 166
8.4.4 Comments . 166

8.5 Logic Unit of RISC CPU . 166
8.5.1 Circuit . 166
8.5.2 Processing . 166
8.5.3 Performance . 169
8.5.4 Comments . 169

8.6 Discussion . 169

9 Summary and Future Work 173

Bibliography 176

Abbreviations 188

Index 190

x

List of Figures

1.1 Conceptual FPGA architecture 5
1.2 Logic block architectures . 7
1.3 Routing architectures . 8

2.1 SDI overview . 11
2.2 Xilinx XC4002 FPGA . 13
2.3 Xilinx XC4000 configurable logic block 14
2.4 XC4000 switch matrix . 14
2.5 XC4000 single and double length lines 15
2.6 Connecting to long lines . 16
2.7 Signal delays on different routing resources 16
2.8 Enlarged section of Figure 2.7 . 17
2.9 Example datapath providing simple arithmetic functions 18
2.10 Classic datapath structures . 19
2.11 Folding modules jutting out of the placement area 20
2.12 Extents of datapaths and modules 21
2.13 Matched and mismatched bit-slice pitch 22
2.14 Examples for BPLB values . 23
2.15 On-chip topology . 24
2.16 SDI topology as used on the Sparxil processor 25
2.17 Regular structure of a module . 26
2.18 Examples for module layouts . 27
2.19 Multiple BPLB values in a single datapath 29
2.20 Compaction . 30
2.21 Wasted space in a module-based layout 31
2.22 Hard-macros as boundaries of compaction areas 32
2.23 Sample datapath segment . 33
2.24 H-zones and v-zones in a stack 35
2.25 Floorplan context of an unplaced, compacted module 36
2.26 LUT pin arrangement and configuration 37
2.27 Back-annotation of timing into optimized master-slice 38
2.28 XC4000 CLB and corresponding regular cells 39
2.29 Interchangeable netlist cells in CLBs 39
2.30 Cell-based placement matrix . 40
2.31 Horizontal placement model . 41
2.32 Vertical placement model with example TTN routing lengths dSM 43
2.33 Real CLB routing structure (a) and abstract model (b) 44

xi

List of Figures

2.34 Design integration . 45

3.1 Geometric regularities in a module 51
3.2 Circuit and underlying module topology 52
3.3 Paramog architecture . 54
3.4 Physical extents of a module and signal alignments 55
3.5 Layout styles for shift registers 56
3.6 Effects of different pin assignments for logic function ab+ c . . 57
3.7 Effects of different pin assignments for FFs 58
3.8 Basic tile for layout generation 59
3.9 Sample layout for a 6x6-bit multiplier 61

4.1 Decaying population size during optimization 73
4.2 Increasing mutation rate after reaching local optimum 73

5.1 (a) Graph hierarchy T and (b) hierarchy tree TG 77
5.2 Regularity tree RG. 79
5.3 Network skeletons . 83
5.4 Iterating a master-slice to obtain slices 86
5.5 Logical completeness and abutment in an alternately folded unit 88
5.6 v-zone tree with root Nv, showing hierarchy and regularity . . . 90
5.7 From v-segment to h-zone: hierarchy and regularity relations . 94
5.8 Regularity and hierarchy in a datapath 97
5.9 Flattening a v-zone into v-segments 98
5.10 Geometrical (a) and topological layout (b) with representations 100
5.11 Hierarchical bottom-up layout of a datapath 104

6.1 Applying Algorithm 3 . 108
6.2 Flattening, structure extraction and regularity analysis 109
6.3 Creating new primary ports in MSCs 112
6.4 Increased precision of terminal graphs 113
6.5 Effects of logic processing . 121
6.6 Isomorphic correspondence between terminals on Nf ,M, and No 122

7.1 Post-compaction vertical topological re-placement 127
7.2 Control signal connectivity via VLL 132
7.3 Vertical inter-optimized master-slice alignment 137
7.4 Computing the set of nodes to align 138
7.5 Computing maximal critical path delay dsm 150
7.6 Placing bound and floating flip-flops 151

8.1 Single bit-slice of the example circuit 157
8.2 Placement and routing solely by PPR 158
8.3 SDI placement with PPR routing 159
8.4 32-bit 74181-based ALU implemented with XACT 161
8.5 32-bit 74181-based ALU implemented with SDI 162
8.6 32-bit 74181-based ALU implemented with XACT on XC4003 . 164
8.7 Bit-slice of address generator for DES encryption 165

xii

List of Figures

8.8 UFC-A address generator implemented with XACT 167
8.9 UFC-A address generator implemented with SDI 168
8.10 SRISC logic unit implemented with XACT 170
8.11 SRISC logic unit implemented with SDI 171

xiii

List of Figures

xiv

List of Tables

2.1 SDI module library overview . 27

3.1 Current list of LPM modules . 47

8.1 Performance of generic 16-bit datapath 159
8.2 Performance of 74181-based 32-bit ALU 161
8.3 Logic processing statistics for 32-bit ALU 163
8.4 Performance of UFC-A address generator 166
8.5 Performance of 32-bit SRISC logic unit 169

xv

List of Tables

xvi

List of Algorithms

1 Deriving geometrical layout . 102
2 Find largest contiguous soft subdatapaths of datapath D 106
3 Determine datapath DQ for the the module sequence Q ∈ CD . . 107
4 Finding raw master-slice candidates 110
5 Refining an rMSC into an MSC 111
6 Create a terminal label . 115
7 Building terminal graphs . 116
8 Isomorphism constraints on terminal labels 117
9 Isomorphism constraints on terminal labels in TTNs 118
10 Label-based test for constrained isomorphism 118
11 Regularity analysis . 119
12 Restoring vertical topological placement after compaction 126
13 Determining the placement area per omS 128
14 Generating constraints for input control signal VLL routing . . 131
15 Generating constraints for output control signal VLL routing . 132
16 Generating constraints for all segments on critical paths 135
17 Generating constraints for vertical TTN delay in SMs 148
18 Generating constraints for path delay in SMs 149
19 Computing switch matrix distances between arbitrary nodes . . 152

xvii

LIST OF ALGORITHMS

xviii

1 Introduction

In the dynamic world of modern electronics, the counterpart to the mythical
quest for the holy grail is the quest for a vorpal sword to fight the all-too-
real wyrm of increasing design complexity. Unfortunately, such a wondrous
weapon has not been discovered yet, and the noble quest has turned more
into the search for a better mousetrap. While the abovementioned wyrm will
remain undaunted by the later, the lifes of countless engineers and circuit
designers in the trenches will be eased by each gradual refinement to such
basic an implement.

This work will describe one such improvement: A set of CAD tools, and
a strategy for their use, to efficiently realize regular datapaths on field-pro-
grammable gate arrays. Despite being far from the wished-for dragonslayer
(and more in the mousetrap league), the effects of this highly specialized
method are quite appreciable when considered in a wider context.

With increasing chip complexities, the requirement for ever-higher perfor-
mance, and steadily narrowing time-to-market windows, traditional design
techniques are becoming more and more difficult to apply successfully.

Traditional quality control methods, such as simulation-based validation,
become increasingly cumbersome to use. Especially when the complexity of
the individual chip, which even today already encompasses dozens of millions
transistors, is eclipsed by the larger complexity of multi-chip systems. E.g.,
current telecommunications systems require simulation patterns on the order
of 1011 of vectors [Qds96a] to support high confidence in the design. This huge
number of vectors, combined with the changing requirement of running fewer,
but longer simulations (to handle the growing complexity of implemented al-
gorithms), instead of many shorter simulations, can no longer be processed
in reasonable timespans. Even if an effort this massive is undertaken for a
single chip, it usually cannot take system-level effects into account: Subtle in-
teractions between multiple chips, especially with regard to rarely occurring
boundary conditions, can usually only be discovered when observing an actu-
ally running system, instead of using human-devised test patterns [Qds96b].
The traditional breadboard-based prototyping using discrete components is
often prohibited by the circuit or system complexity, or minimal real-time
response requirements, however. Thus, another approach to the validation
problem has to be found.

The quickly moving market also demands a hitherto unprecedented flex-
ibility. Often, systems must be extremely adaptable to follow changing re-
quirements such as upgrades of telecommunications standards, or new pe-

1

1 Introduction

ripheral devices. While general purpose CPUs or DSPs could provide the
maximum flexibility (all functionality implemented in malleable software),
very fast processors are needed to meet the high performance requirements.
Unfortunately, the considerable chip and system costs for these processors
often precludes their use for all but very high-end applications.

For various applications, even the fastest available general purpose proces-
sors cannot provide the desired performance. Examples include particle detec-
tion and analysis in high-energy physics [NZKK94], or DNA sequence match-
ing [BuAK96]. While an application-specific integrated circuit (ASIC) could
fulfill the performance requirements, future changes can often only be antici-
pated by including a multitude of user-programmable parameters and oper-
ating modes on the chip. In addition to increasing the complexity of the basic
design even more, this approach relies on the foresight and expertise of the
designers to extrapolate all future usage variations. In case of an unforeseen
variation, the ASIC becomes useless, or can only be used with considerable
effort, performance degradation, or an expensive redesign.

In quite a few cases, programmable logic, especially in the form of field-
programmable gate arrays, can be a solution to the problems sketched above.
The efficient application of FPGAs, especially their support by novel optimized
CAD algorithms, will be at the center of this work.

The details of the programming process for FPGAs depend on the specific
on-chip technology used. Common methods of configuration storage include E-
PROM, EEPROM, SRAM and anti-fuses1. Anti-fuse, EPROM and EEPROM
configurations are non-volatile, SRAM configurations are volatile in that the
configuration must be battery-preserved, or be loaded from an external non-
volatile medium (ROM, external CPU etc.).

Especially re-programmable FPGAs can be used to perform validation by
emulation instead of simulation [BEKS95]. Here, a single chip (or even an
entire system) is partitioned into a number of FPGAs integrated with the re-
maining hardware components (e.g., peripheral devices, CPUs). In this man-
ner, the complete system and environment are actually assembled in hard-
ware, and can be used to perform conclusive system-wide tests (e.g., boot an
operating system [Qds96b]), or be observed for billions of test vectors [Qds96a].
While the emulation speed is usually far slower than the target speed of the
final ASIC (by a factor of 40 in [Qds96a]), it still exceeds simulation speeds by
several magnitudes. Current emulation systems have capacities of millions of
gates [Qds96c], and will benefit directly from the growth in FPGA capacities.

Non-reprogrammable FPGAs (e.g., anti-fuse-based) are unsuitable for fully
automatic system emulation (no in-circuit reconfigurability). However, they
can be used to extend the limits of traditional bread-board based prototyp-
ing approaches by integrating large amounts of formerly discrete logic into a
single device.

The field-programmability of FPGAs also provides the required flexibility

1 An anti-fuse has a high-impedance state, but can be brought permanently into low–
impedance by briefly applying a (relatively high) programming voltage. In this manner, it
can be used to selectively establish permanent connections.

2

in a world of short times-to-market and changing specifications. The critical
path in a product cycle will be shorter due to the removal of long foundry lead
times. Furthermore, the low NRE charges for FPGA-based implementations
lower the cost of short-term design alterations (engineering change order,
ECO), and thus significantly reduce the risk when tracking non-formalized
standards. E.g., [3Com95] describes the design of a 10BASE-T Ethernet inter-
face that was begun while the standards were still being formalized. By using
FPGAs, the design could closely follow all changes in the emerging standard,
and be released to the general market as soon as the standardization proce-
dures were closed. Only after satisfying the initial demand with FPGA-based
interfaces was a conversion to a classical gate array (to achieve lower unit
costs) performed.

In-circuit programmable FPGAs are even more flexible: They allow hard-
ware upgrades by simply shipping a new configuration bitstream (e.g., on a
diskette or by network transfer [Xili96d]) to the customers. In this manner,
hardware can be maintained as flexibly as software.

The basic performance of FPGAs is far slower than that of foundry-fabri-
cated circuits. The delay of the fundamental elements (a gate for gate arrays,
a logic block for FPGAs) differs by five orders of magnitude. However, re-
programmable devices can be configured with hardware specific to a given
problem. E.g., for a certain dataset, the device might be loaded with a unit
multiplying by a constant “5”. Another dataset might lead to a multiplication
by “42” being generated. By actually adapting hardware to low-level problem
parameters, and employing specialties such as non-Von Neumann architec-
tures, multi-stage pipelining, and problem-specific instruction sets, an FPGA-
based configurable processor, also called field-programmable custom comput-
ing machine (FCCM), can outperform even the most powerful conventional
computers on certain problems.

E.g., for DNA sequence matching, an FCCM based on an array of 248
processing elements2 outperformed even MP-1 and CM-2 supercomputers by
factors of 1344 and 7288 (respectively) [BuAK96]. A very simple FPGA-based
co-processor [KoGo94], containing just three Xilinx XC4010 FPGAs and two
256K × 32 bit memory banks, can label objects in black-and-white images
6.5 times faster than a general purpose SPARC 20/71 workstation [Meye97]
[Koch97b].

It is interesting to trace the development of programmable logic in a larger
historical context. In contrast to traditionally fabricated chips, programmable
logic devices (PLD) are sold as “blank” devices which can later be personal-
ized with a specific design. Ideally, this process, also called configuration or
programming, is performed without resorting to foundry techniques (etching,
photolithography etc.). Depending on the nature of the device, configuration
may be performed once or many times, using dedicated programming equip-
ment, or by simple serial download to an already system-integrated device.

The various variants of programmable read-only memories (PROM, EPROM,
EEPROM) may be viewed as PLDs: An 2n × m PROM can be used to imple-
2 Each based on a Xilinx XC4010 FPGA with 256K × 16 bits of local memory.

3

1 Introduction

ment m combinational functions of n variables (using the memory to hold a
truth table with 2n rows and m output columns). While the table-lookup char-
acter guarantees constant response times (without regard to the complexity
of the function implemented), the memory size grows exponentially with the
number of variables to evaluate, which becomes impractical for larger num-
bers of variables.

The next step in the evolution of PLDs was prompted by the insight that
often only a small fraction of input variable combinations is relevant to the
practical problem. Thus, it would suffice for the PLD to contain logic only
for this subset of input combinations, and ignore the rest (don’t-cares). This
lead to the programmable logic array (PLA) , a device implementing combina-
tional functions in a sum-of-products form. A PLA consists of a configurable
AND-matrix connected to an also configurable OR-matrix. By appropriately
programming the AND-matrix, the product terms may be composed. The pro-
gram for the OR-matrix then assembles sums from the selected product terms.
Since the AND-matrix is programmable (instead of the fully decoded address
evaluation in a memory circuit), only the relevant input combinations are
evaluated.

To reduce the fabrication complexity of blank PLAs, and increase perfor-
mance by reducing delay, a variant called programmable array logic (PAL)
does away with the programmable OR-matrix. Here, each sum is composed
from a fixed number of products.

The current generation of programmable arrays are devices called generic
array logic (GAL), based on PALs. They also include sequential elements (flip-
flops and latches), and internal connections to feed outputs back into the ar-
ray. In this manner, they can directly implement state machines.

While the simple two-level structure of programmable arrays, also called
simple PLDs (SPLD) leads to short circuit delays (around 5ns for fast commer-
cially available chips), it also limits the design complexity: With an increas-
ing number of product terms, the internal connection network (separate from
the AND/OR logic functions) grows impractically large. Thus, current SPLDs
usually have an upper limit around 200 equivalent gates [BrRo96].

Classical mask-programmable gate arrays (MPGA) allow the efficient im-
plementation (60ps gate delay) of circuits with up to 12 million gates [Texa97].
Their “blank” chips, also called gate array masters, consist of a matrix of pre-
fabricated transistors. An MPGA is personalized by applying final metal lay-
ers to interconnect the transistors in the desired manner. Unfortunately, this
process relies on foundry equipment, and cannot be performed “in the field”.
Typical turnarounds are measured in weeks and months, and non-recurring
engineering (NRE) charges begin at 10,000s of dollars.

Recently, laser programmable gate arrays (LPGA) have become available.
Their blank chips include all metal connections between transistors. A laser
beam is then used to remove all extraneous connections, leaving only those
specified by the netlist. While personalization of LPGAs does not rely on
foundry technology, the need for a precision laser cutter also makes it im-
practical for “in the field” prototyping. Still, with turnarounds reduced to a

4

few days, and NRE charges starting at under $10,000, LPGAs are very at-
tractive for low-volume designs of up to 70k gates, with a gate delay of 300ps
[Chip97].

The main advantage of MPGAs over SPLDs is the scalability of their struc-
ture: In contrast to SPLDs, logic functions and interconnect are not imple-
mented independently of each other, but rely on the same resources (transis-
tor matrix). Thus, when increasing the area for logic functions, the area for
interconnect also increases (and vice versa).

The field-programmable gate array (FPGA), invented in 1985 by Xilinx
Inc., combines the easy “in the field” programmability of SPLDs with the scal-
able logic and interconnection structure of MPGAs, allowing a currently avail-
able maximal capacity of 85k gates [Xili97], and near-term projected capaci-
ties of up to 400k gates [Acte96].

Unfortunately, the development of FPGA-specific CAD tools has not kept
up with the growth in chip capacity. Many of the current tools trace their an-
cestry to a time, when FPGAs could only hold a thousand gates, and were pri-
marily used to implement glue logic. When attempting to implement the more
complex datapath structures common to many of today’s CPUs and DSPs in
one of these larger FPGAs, the traditional tools are often overtaxed. The re-
sulting circuits are often inefficient in terms of area use and performance.
This work will describe a suite of CAD tools, and a strategy coordinating their
use, specialized for efficiently mapping datapaths onto FPGAs.

Interconnect Logic Block I/O Block

Figure 1.1: Conceptual FPGA architecture

Figure 1.1 shows the fundamental elements of a conceptual FPGA [BFRV92].
It consists of a number of programmable logic blocks, interconnected by a pro-
grammable interconnection network. Programmable input/output blocks at

5

1 Introduction

the periphery of the chip allow for chip-external communication.
The implementation of a circuit on an FPGA consists of three main steps:

1. The circuit netlist is partitioned into individual logic blocks (each of
which can hold only a relatively small part of the logic). The result is
a netlist of logic block configurations.

2. Each logic block configuration is then assigned to an actual logic block
on the FPGA (placement).

3. The interconnection network is programmed for the connectivity pro-
scribed by the netlist (routing).

All of these steps are highly dependent on the actual structures (architec-
ture) of logic blocks and routing network. See [BFRV92] for a detailed discus-
sion including a statistical analysis of different architectures. The next few
paragraphs will present brief overviews of general logic block and routing ar-
chitectures. An actual FPGA, the Xilinx XC4000 series, will be examined in
greater detail in Section 2.1.

It is the fixed FPGA architecture that distinguishes CAD tools for FPGAs
significantly from those for classical standard cell or gate array technologies.
In an FPGA, it will not be possible, e.g., to simply increase the width of a rout-
ing channel to handle congestion: The channel width has been fixed on the
FPGA die at fabrication time, and cannot be influenced by the user. Due to
the long interconnection and logic block delays, even slightly suboptimal par-
titioning, placement, or routing can cause a significant performance degrada-
tion. Efficient CAD tools will have to be finely tuned to exploit a given FPGA
target architecture for optimal results. To this end, our back-end tools have
detailed knowledge about the capabilities of logic blocks, and the intricacies of
the interconnection networks. In addition, however, we follow a two-pronged
approach by also specializing the front-end for the regular datapath struc-
tures we intend to implement. In this manner, we can cover precisely those
areas neglected by the current general-purpose tools.

The nature and size of logic that fits into a single logic block is determined
by the logic block architecture. A logic block can be as primitive as a simple
transistor pair [Cros94], or be as complex as to contain an integer multiplier,
two ALUs, six registers and three local memories [EbCF96]. The most com-
mon logic blocks are based on one or more k-input lookup-tables (k-LUTs)
(Figure 1.2.a) [Alte95] [ATTM95] [Xili96a] [Xili96b] [Xili96c], multiplexers
(Figure 1.2.b) [Acte95a] , or on a PAL-like internal structure (Figure 1.2.c)
[Alte96] [AMDI96]. Often, they also contain sequential elements such as flip-
flops or latches (not shown in Figure 1.2). Small logic blocks (in terms of logic
capacity) are called finely granular, otherwise they are called coarsely granu-
lar.

Since the signal delays within a logic block are usually far shorter than
those encountered when routing a signal through the general interconnection
network, many current FPGAs are coarsely granular. However, for an efficient

6

011 1
010 0

100 1
101 0
110 1

001 1

111 1

000 1
A

B

C

Y

SB S0 S1

B0

B1

A0

A1

SA

Y

(a) (b)

A B C D

Y

(c)

Figure 1.2: Logic block architectures: (a) look-up table, (b) multiplexer, (c)
PAL

mapping to these chips, the large capacity of the logic blocks actually has to
be filled. Due to their larger size (in terms of silicon area), a coarsely granular
FPGA will have fewer logic blocks than a finely granular FPGA of the same
gate capacity. Thus, partially filled coarsely granular blocks will waste a much
larger fraction of chip gate capacity than partially filled finely granular blocks.
To minimize this wastage, our system contains dedicated optimization passes
aiming to maximally fill each logic block.

The routing architecture influences the performance of the FPGA-imple-
mented circuit as well as the speed of the implementation process. A fast
routing network will allow short connections between logic blocks. A very
general routing network (e.g., a fully populated crossbar) will only need min-
imal computational effort to determine a configuration which provides the
desired connectivity. More constrained architectures (e.g., connectable metal
segments with varying lengths) require more complex routing algorithms.

However, the capabilities (speed and flexibility) of the routing network are
limited by the silicon area available for its implementation. Thus, the design
of a routing architecture is constrained by conflicting requirements:

1. Capability: All required connections should be routable with minimum
delay. However, more flexible routing networks may consume more sili-
con area.

7

1 Introduction

2. Silicon area: Since the die size of a chip is limited, a more flexible rout-
ing network consumes area possibly better used by logic blocks. How-
ever, a small but overconstrained routing architecture might hamper cir-
cuit performance (by forcing long “detour” connections), or even prevent
the circuit from being routed at all (insufficient routing resources).

Note especially the last point: The number and layout of routing resources
(similar to “channels” in standard cell technologies) on an FPGA is fixed at
“blank” chip fabrication time. Thus, circuits to be used on this FPGA type
have to get by with the resources available, or cannot be implemented at all
on the given FPGA type. The full-custom and standard cell routing techniques
of just increasing the channel widths in congested areas are unavailable on
FPGAs, making efficient FPGA routing considerably more difficult.

While interconnection delay on FPGAs is also dependent on wire lengths
and capacities, it depends primarily on the number and nature of program-
mable connections (anti-fuses, pass transistors, transmission gates, multi-
plexers), called switches, that the signal passes from source to sink.

Symmetrical Array Row-based Sea-of-Gates Hierarchical PLD

Hierarchical FPGA

Crossbar

PLD Block

Logic Block

overlaid on blocks
Interconnect

between blocks

Figure 1.3: Routing architectures

The most common routing architectures used today are shown in Figure
1.3. Assume that switches are placed at all wire intersections (but see Sec-
tion 2.1). Without going into a more detailed discussion, in symmetrical ar-
rays, row-based FPGAs and sea-of-gates FPGAs, geometrically adjacent logic
blocks will have short interconnection delays (few switches in the signal path).
FPGAs composed as hierarchical PLDs usually have distance-independent

8

routing delays due to the (fully or partially populated) crossbar switch at the
center of the chip. Routing delays on hierarchical FPGAs, however, are not
proportional to geometrical distance. E.g., assume a source to be placed in the
bottom-right logic block, and a sink in the logic block directly above it. While
the logic blocks are adjacent, the signal has to cross three routing hierarchy
levels (six switches) before it reaches its destination. Many FPGAs support a
mix of routing architectures (e.g., a symmetrical array combined with hierar-
chical elements), or special features not covered by the general model. These
might include dedicated resources for routing clock signals, or for distributing
high fan-out signals with low skew over long distances.

As with logic block architectures, a good FPGA CAD tool needs to take
the specific details of the target FPGA’s interconnection network into account.
Our system exploits these resources by mapping higher-level concepts (such
as inter-bit-slice control signals) recognized by the front-end directly to their
most efficient counterpart on the physical level.

By combining a front-end specialized for a specific class of circuits (wide re-
gular datapaths, as needed in FCCMs and fast ASIC emulation) with a back-
end optimized for the target FPGA architecture, we are able to generate faster
circuits in shorter amounts of computation time. Given the abovementioned
wide applicability of FPGAs in a modern VLSI design, even gradual improve-
ments to small parts of a such a circuit can have appreciable effects on the
entire system.

It’s been said:
“Build a better mousetrap,
and the world will beat a path to your door.”
But that’s not the purpose of a mousetrap, is it?
– Eric S. Raymond on USENET

9

1 Introduction

10

2 Overview of Structured Design
Implementation

The points raised in Chapter 1 lead to Structured Design Implementation
(SDI), a strategy for the efficient implementation of bit-sliced datapath struc-
tures on FPGAs. Bit-sliced architectures are called regular in context of SDI.
The general organisation of the strategy and the design flow is shown in Fig-
ure 2.1 and outlined in the following sections.

This chapter presents an easily accessible overview of the entire system,
while Chapters 3 to 7 will describe key components in greater detail or more
formally.

SDI does not consist of a single tool, but a suite of specialized tools and
a strategy coordinating their application. The suite combines a floorplanner,
module generators, and tools for placement and global routing with minimiza-
tion and technology mapping algorithms. It is thus difficult to compare it with
specialized stand-alone tools that cover only part of the design implementa-
tion process, but these tools can often be integrated into SDI with minimal
effort (see Section 2.6).

Module
Library

µPlacement

Module Generator
PARAMOG

(parametrized modules)

Compaction

Design Entry

Floorplanner

FPGA Vendor P&R Tools

(a) System Architecture

compacted
macros

macros
soft-

macros
soft-

Complete FPGA

Chip Assembly

Datapath Assembly

Datapath Entry Controller Entry

Control Synthesis

Floorplanning

Compaction

µPlacement

controller netlist

macros
hard-

ha
rd

-m
ac

ro
s

Module Generation

not part of SDI

netlist

lin
ea

r
flo

or
pl

an

FPGA layout

datapath layout

(b) Design Flow

Figure 2.1: SDI overview

11

2 Overview of Structured Design Implementation

2.1 Xilinx XC4000 FPGAs

To better understand the design decisions made during the development of
SDI, it is helpful to examine the architecture of the currently targeted FPGA
in greater detail. The Xilinx XC4000 series, one of the most popular chips, is
a third generation FPGA and was introduced by Xilinx Inc. in 1990. Later
revisions, such as the XC4000A, XC4000E, XC4000EX, and XC4000XL se-
ries, improve upon various details (e.g., routing facilities, synchronous on-
chip memories etc.), but much of the basic design is still unchanged. The
XC4085XL FPGA has a capacity of 85k gates and is currently (June 1997) the
highest density device available1. With logic block delays of 1.3ns in the “-1”
speed grade, XC4000EX-1 and XC4000XL-1 chips are also among the fastest
current chips.

Figure 2.2 shows a “blank” XC4002 FPGA. The basic layout is very similar
to the conceptual FPGA of Figure 1.1, with the routing architecture being a
symmetrical array (Figure 1.3). The I/O blocks (IOB) are located at the sides
of the array.

XC4000 FPGAs also have various special features not part of the con-
ceptual FPGA. These include wide edge decoders, the use of logic blocks as
fast on-chip 32x1 bit or 16x2 bit memories, a fast carry-propagation logic for
adders and counters, and on-chip tri-state buffers (TBUF).

2.1.1 Logic Block Architecture

The logic blocks on an XC4000 FPGA are called configurable logic blocks
(CLB). A simplified view of the internal structure is shown in Figure 2.3. Ba-
sically, a CLB consists of two 4-LUTs F and G, and a 3-LUT H. Furthermore,
it contains two D-flipflops FFX and FFX. Some connections are hardwired (e.g.,
the H LUT accepts inputs only from the outputs of the F and G LUTs, and
the H1 CLB input pin. However, others can be established at configuration
time using a network of programmable multiplexers. In this manner, e.g., the
output of the H LUT might be routed to the Y CLB output pin, or the DIN CLB
input pin connected to the input of the FFX D-flipflop.

A single CLB may implement any two independent functions of two vari-
ables, any one function of five variables, any function of four variables to-
gether with a single of some functions of five variables, or some functions of
up to nine variables.

Due to the large logic capacity of a CLB (as compared to transistor pairs
and multiplexers), XC4000 FPGAs have a coarse granularity. Consider, e.g.,
the amount of CLB capacity wasted when implementing only a simple two-
input AND gate in a single CLB. Thus, for the XC4000, the method of “pack-
ing” logic into CLBs with minimum wastage and delay becomes very impor-
tant.

1 Note that in order to obtain this much configurable capacity, the FPGA chip itself has 16
million transistors, three times the number in Intel’s PentiumPro CPU [Xili97].

12

2.1 Xilinx XC4000 FPGAs

2
9

P3 5P3 5 P3 6 U4 6 P3 7 P3 8 P3 9 P4 0 P4 1 P4 4 P4 5 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1

5
7

P5 1

2
9

2
8 CL B_ R8

C1
CL B_ R8
C2

CL B_ R8
C3

CL B_ R8
C4

CL B_ R8
C5

CL B_ R8
C6

CL B_ R8
C7

CL B_ R8
C8

5
6

5
7

5
1

2
7 CL B_ R7

C1
CL B_ R7
C2

CL B_ R7
C3

CL B_ R7
C4

CL B_ R7
C5

CL B_ R7
C6

CL B_ R7
C7

CL B_ R7
C8

5
8

2
9

2
6

2
5 CL B_ R6

C1
CL B_ R6
C2

CL B_ R6
C3

CL B_ R6
C4

CL B_ R6
C5

CL B_ R6
C6

CL B_ R6
C7

CL B_ R6
C8

5
9

6
0

2
4

2
3 CL B_ R5

C1
CL B_ R5
C2

CL B_ R5
C3

CL B_ R5
C4

CL B_ R5
C5

CL B_ R5
C6

CL B_ R5
C7

CL B_ R5
C8

6
1

6
2

2
0

1
9 CL B_ R4

C1
CL B_ R4
C2

CL B_ R4
C3

CL B_ R4
C4

CL B_ R4
C5

CL B_ R4
C6

CL B_ R4
C7

CL B_ R4
C8

6
5

6
6

1
8

1
7 CL B_ R3

C1
CL B_ R3
C2

CL B_ R3
C3

CL B_ R3
C4

CL B_ R3
C5

CL B_ R3
C6

CL B_ R3
C7

CL B_ R3
C8

6
7

6
8

1
6

1
5 CL B_ R2

C1
CL B_ R2
C2

CL B_ R2
C3

CL B_ R2
C4

CL B_ R2
C5

CL B_ R2
C6

CL B_ R2
C7

CL B_ R2
C8

6
9

7
0

1
4

1
3 CL B_ R1

C1
CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

7
1

7
21

3

P1 0P1 0 P9 P8 P7 P6 P5 P4 P3 P8 4 P8 3 P8 2 P8 1 P8 0 P7 9 P7 8 P7 7P7 8

7
2

2 I/O blocks Switch matrix Logic block

Figure 2.2: Xilinx XC4002 FPGA

13

2 Overview of Structured Design Implementation

F1
F2
F3
F4

G1
G2
G3
G4

DIN

H1

F

G

H

FFY

FFX

Y

YQ

XQ

X

programmable multiplexers

Figure 2.3: Xilinx XC4000 configurable logic block

2.1.2 Routing Architecture
As shown in Figure 2.2, an XC4000 FPGA consists of a symmetrical array of
logic blocks, with metal segments of varying lengths placed between the logic
blocks. Programmable connections, called switch matrices (SM), at the inter-
sections of horizontal and vertical metal segments, allow the interconnection
of individual segments to cross longer routing distances, possibly also routing
a signal around a corner.

Figure 2.4: XC4000 switch matrix

Figure 2.4 shows a switch matrix and two of the possible connections. Note
that, to conserve silicon area, a SM is no fully populated crossbar, but provides
a more constrained connectivity: A signal entering at pin n ∈ N at side k ∈
{N, S, E, W} can only be routed to pin n at the sides {N, S, E, W}\{k}.

While a routing architecture just based on SMs and wires of a single length
(one logic block) could certainly work, its performance would be limited by the
increasing number of slow switches between source and sink of a net: E.g., to
connect a logic block in row 1, column 1, with a logic block at row 1, column 6,

14

2.1 Xilinx XC4000 FPGAs

= single-length lines

= programmable switch
= double-length lines

YQG4C4

X

G1

K

F1

matrix
switch

matrix
switch

F4

C1

matrix
switch

switch
matrix

Y

G3

C3

F3
XQ F2 C2 G2

CLB

Figure 2.5: XC4000 single and double length lines

the signal would have to pass through five SMs, each with a resistance of 1-2
k�, and capacitance of 10-20 fF.

To counter this effect, XC4000 FPGAs use different length metal segments.
Single length lines are only a single CLB long, while double length lines have
a length of two CLBs. The result is shown in Figure 2.5. The CLB pins can be
connected to the metal segments forming the routing network through indi-
vidual programmable switches. The single length lines (shown in black) run
between a pair of adjacent SMs. Double length lines (shown in grey), pass
only through every second SM (see also Figure 2.5). While this limits their
flexibility somewhat (e.g., the signal cannot turn around a corner at an arbi-
trary SM), it also decreases signal delay by halving the number of switches in
the signal path.

For even longer distances, the XC4000 routing architecture provides hor-
izontal and vertical long lines (HLL, VLL): Long metal segments running
across half the height (VLL) and length (HLL) of the chip, unbroken by any
switch matrix. For increased flexibility, two horizontal or vertical long lines
may be interconnected (using programmable switches at the center of the
chip) to route a signal along the entire length or height of the FPGA. Figure
2.6 shows how CLB pins can be connected to the long lines.

When a signal has to be routed to every CLB on the FPGA (e.g., clocks),
global long lines may be used. While only four global long lines exist in the
XC4000 series (also shown in Figure 2.6), they can supply a large number of
sinks with very low skew.

Newer revisions such as the XC4000EX and XL extend this routing scheme

15

2 Overview of Structured Design Implementation

= programmable switch
= global long lines
= long lines

F3

C3

G3
CLB

Y

XQ F2 C2 G2X

F1

K

C1
G1

F4 C4 G4 YQ

Figure 2.6: Connecting to long lines

with additional resources such as direct interconnections for very fast con-
nectivity between adjacent CLBs, and quad and octal length lines for fast
medium-range connections (an extension of the double length line concept).
Furthermore, they also increase the actual number of metal segments avail-
able.

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

[ns]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 [CLBs]

single-length lines
double-length lines

long lines w/o TBUF
long lines w/ TBUF

Figure 2.7: Signal delays on different routing resources

The three level routing (single, double, long lines) of the XC4000 leads to

16

2.2 Structured Design Entry

0

1

2

3

4

5

6

7

8

9

[ns]

1 2 3 4 5 6 7 8 [CLBs]

single-length lines
double-length lines

long lines w/o TBUF
long lines w/ TBUF

Figure 2.8: Enlarged section of Figure 2.7

the delays graphed in Figures 2.7 and 2.82. The X-axis shows the total net
load (fanouts) and the distance to the farthest CLB, the Y-axis the delay in ns.
Note the reduced slope of the double length line vs. the single length line de-
lay. Furthermore, long line delay is almost completely independent of routing
distance and net load, and increases only when the programmable switches
at the chip center are crossed (between CLBs 10 and 11 on the XC4010-5).
Some of the horizontal long lines have connections to TBUF outputs for im-
plementing on-chip tri-state busses. The capacitive loading of these outputs
slows these long lines down considerably.

Returning to Figure 2.5, note the placement of input and outputs around
a CLB: While inputs can be routed into the CLB from any direction (the input
pins of a LUT are interchangeable), the outputs have preferred directions.
The X and XQ outputs most efficiently supply sinks located below and left of
the CLB, while the Y and YQ outputs should be used for sinks above and right
of the CLB.

2.2 Structured Design Entry
We concentrate on implementing regular datapaths using a regular on-chip
layout, and will rely on traditional methods to handle irregular circuits such
as controllers. Thus, we need to derive information describing the regular
(bit-sliced) structure from a given circuit description. Since SDI handles only
regular structures, our input format can afford to be specialized for this do-

2 Delay times were experimentally determined on an XC4010-5.

17

2 Overview of Structured Design Implementation

main. So instead of extracting regularity information from a generic netlist
(as in [OdHN87], [ChCh93], [YuWY93], [NaBK95]), or evaluating manually
annotated regularity attributes (e.g., [ATTM94]), datapaths are entered into
SDI in the form of interconnected parametrized modules that encapsulate the
bit-sliced structure.

Explanation 1 A module is a sub-circuit, described at varying degrees of ab-
straction (behavioral, structural, layout). Parametrized modules do not have
a static description, but rely on a static template combined with dynamic
property-value assignments, to create an adapted description at instantiation
time. Regular modules have a description that follows a consistent pattern: A
module consists of instances (copies with actual parameters) of masters (tem-
plates with formal parameters). A bit-sliced structure is a special case of a
regular module that is also a regular array (Section 3.2.1).

To measure the regularity of a given structure, the regularity index of
[Leng86] can be applied. It is defined as the ratio of actual components (in-
stances) to the number of original templates (masters). The regularity index
of common circuits is currently in the range 10. . . 100.

In the context of this work, we will concentrate on the processing of auto-
matically generated (Section 2.4) bit-sliced parametrized modules, just called
modules for brevity. While SDI can also process non-bit-sliced modules, they
will be treated as “black-boxes” and not optimized further (Explanation 5).

la
st

_c
yc

le
bu

sy

cl
oc

k
st

ar
t

ci
n

ad
d-

su
b

co
ut

ov
er

flo
w

se
l0

p[15:0] s[15:0]
b[15:0]

a[15:0] a[15:0]

b[15:0]
in0[15:0]

in1[15:0]

out[15:0]

[0] [1] [2] [3]

[0] [1] [2] [3]

IA[15:0]:data_in

Res[15:0]:data_out

[4]

IB[15:0]:data_in

OP[4:0]:control_in

Flags[3:0]:control_out

MULT:mult16 MUX:mux16 PLUS:add16

Figure 2.9: Example datapath providing simple arithmetic functions

Designs are expressed in the SDI netlist format SNF, which is a textual
netlist of module declarations, module instantiations, and interconnections.
It also associates values with module parameters such as bus widths, data

18

2.3 Target Topology

types, and optimization requests (speed vs. area). Furthermore, SNF allows
to clearly differentiate between data and control signals. A typical example
for a datapath expressible in SNF is the fragment shown in Figure 2.9. It
calculates either the sum, the difference, or the product of two data operands
IA and IB and puts the results on an data output bus Res. The specific opera-
tion performed and additional information (e.g., carry initialization) is entered
through the control input bus OP. Status information monitoring the progress
of the datapath (e.g., busy) or arithmetic flags are made available to the out-
side on the control output bus Flags. A detailed description of the format can
be found in [Putz95a].

In this manner, information on the logical structure of the circuit is passed
down from design entry to the placement and routing tools, and does not have
to be reconstructed from an unstructured, possibly flattened netlist. The pre-
served regular structure can then be used to optimize the circuit as well as
the internal operation of the electronic design automation (EDA) algorithms.

2.3 Target Topology

2.3.1 Datapath Topology

In holding with the classical approaches (e.g., [CNSD90], [BeGr93], [Raba85],
[GrPe97], [Shro82]), SDI assumes that a datapath is laid out as a linear place-
ment of modules, with each module consisting of stacks of bit-slices (Figure
2.10). Within the datapath, all modules usually have a consistent stacking di-
rection for the bit-slices from least-significant bit (LSB) to most-significant bit
(MSB). However, this direction may change locally to accomodate folded mo-
dules that are too tall for the placement area (Figure 2.11). In holding with
the traditional approach, control and data flows are generally orthogonal to
each other.

D
at

a
B

us
se

s MSB

LSB

Control Busses

Bit-Slice

Figure 2.10: Classic datapath structures

When describing the layout and topology of datapaths or modules, it is
useful to differentiate between an unplaced datapath logical circuit, and its
placed physical layout. Placement is differentiated into the geometrical place-

19

2 Overview of Structured Design Implementation

R
eg

B
[7

:0
]

M
ul

t[1
5:

0]
LSB

MSB

or
R

eg
A

[7
:0

]

Placement Area

Figure 2.11: Folding modules jutting out of the placement area

ment of a layout at an explicitly specified location on the die, and the topolog-
ical placement of a layout relative (“above”, “left-of”, etc.) to another.

To this end, we introduce the quantities of width, height, and length. Fig-
ure 2.12 illustrates their relationship.

Explanation 2 The logical width of a datapath or module circuit is the max-
imum number of differently significant bits processed in parallel. Height and
length refer to the size of the bounding box of the physical datapath layout,
with height being measured in the direction of width. Height and length are
expressed in technology-dependent units, with logic blocks (LB) being most
appropriate for FPGAs.

The restriction “differently significant” in the explanation of width serves
to more clearly describe the logical structure of arithmetic units in the data-
path. For example, while a 32-bit adder with operands A[31:0] and B[31:0]
has 64 input bits, each two of these input bits will have the same significance
in the input words (e.g., A[0] and B[0], A[1] and B[1], etc.). Since the data
flows in the datapath should be correctly aligned (usually at the LSB, as in
Figure 2.10), the physical datapath layout is directly influenced by this logical
characteristic.

In full-custom and macro-cell technologies, cell placement and routing are
only constrained by design rules. Even when targetting sea-of-gates masters,
the basic blocks (e.g., transistors or transistor pairs) on such masters are of-
ten highly symmetrical (often 4-way, sometimes even 8-way [GrSt94]). Thus
the orientation of the datapath, and the directions for bit-slice stacking and
signal flow area are usually only determined by external pin-constraints and
independent of the base substrate.

20

2.3 Target Topology

X[0]

X[1]

X[2]

X[3]

W
id

th
 =

 4
 b

its

H
ei

gh
t =

 8
 lo

gi
c

bl
oc

ks

Length = 7 logic blocks

A[0]

A[1]

A[2]

A[3]

B[0]

B[1]

B[2]

B[3]

Figure 2.12: Extents of datapaths and modules

Suitable FPGA Architectures

In stark contrast, any kind of layout on FPGAs has to take the fixed under-
lying architecture of the FPGA chip into account. The freedom for specifying
an FPGA architecture is highly limited by the large amount of chip area con-
sumed for implementing the programming facilities for logic and routing (see
[BFRV92]). For this reason, symmetrical blocks are quite rare for FPGAs
and do not exceed 4-way symmetry even when they are actually implemented
[Atme94], [Algo92].

When designing any kind of physical design software for FPGAs, the com-
position of the logic blocks and the structure of the routing network have to
be considered carefully.

Since SDI aims at laying out regular circuits in a regular manner, it is
directly influenced by the regularity of the underlying FPGA architecture.
Thus, the architecture most suitable for our application would have highly
regular and homogeneous logic blocks and routing resources.

SDI does not depend on the core elements of the logic blocks (K-LUTs,
MUXes). However, it relies on a regular logic-block structure. Single-output
blocks, such as those found on Actel ACT [Acte95a], Xilinx XC6200 [Xili96b]
are ideally suited to SDI. Coarse-grained multi-output blocks, such as AT&T
ORCA [ATTM95], and Xilinx XC4000 CLBs, can be decomposed into regular
single-output blocks (Section 2.7.3). However, this becomes difficult for fine-
grained multi-output blocks such as QuickLogic pASIC2 [Quic95] or Atmel
AT6000 [Atme94]. Here, a library-based technology mapping could assem-
ble the multi-output blocks, each of which would then be placed as a unit.
Architectures that directly couple logic-block functionality to placement loca-
tions, e.g., Pilkington/Motorola TS-series tiles [Pmel96], would have to care-
fully trade-off placement regularity vs. wasted space due to partially filled
tiles. They could be better exploited using hierarchical clustering placement
methods.

FPGAs with a row-oriented topology often lack the routing resources for
two orthogonal signal flows. Architectures with sets of tightly interconnected

21

2 Overview of Structured Design Implementation

logic-blocks and hierarchical routing, such as the Altera FLEX10K series [Alte95],
are better exploited by clustering placement methods [CuoL96] than by our
regular-array approach. Applying our methods to chips with routing through
a universal interconnection matrix would not yield much of an improvement:
these FPGAs dedicate much of their die area to the cross-bar switch, which
provides an almost constant-delay routing independent of circuit placement
[ACCK96]. However, with an increasing number of logic blocks the size of
the cross-bar (even if not fully populated) consumes too much area to be prac-
tical for all but highly specialized applications. Thus, our requirements are
currently best fulfilled by matrix-structured FPGAs.

We chose to target the Xilinx XC4000 family, since it provides a homoge-
neous routing structure (matrix) as well as logic-blocks that are easily reg-
ularized. The recent XC6200 family, which was not available in time to be
included in our research, would also fulfill the criteria. Due to the fine logic-
block granularity, it would also be less dependent on the compaction step (Sec-
tion 2.6).

Bit-Slice Pitch

As with full-custom and macro-cell-based datapaths, a fourth quantity be-
comes relevant when aiming for a regular layout. The pitch of a bit-slice is
the height of a single slice (Figure 2.13). For a regular layout, all bit-slices
in modules in a datapath should balance the pitch. Otherwise, routing be-
comes more difficult and congestion increases (Figure 2.13.(2)). This becomes
especially critical on FPGAs, where the channel width is fixed on the die and
signals are delayed by the programmable routing elements.

Pitch Slice

Slice

Slice

Slice Slice

Slice

Slice

Slice

Slice

Slice

Slice Slice

Slice

Slice

Slice

Slice

(1) matched slice pitch (2) mismatched slice pitch

0
0

2

3

2
3

1

1

Figure 2.13: Matched and mismatched bit-slice pitch

However, for FPGAs, it is useful to extend the classical concepts of bit-slice
and pitch to accomodate the coarse granularity of logic blocks compared to
full-custom/macro-cell, or even gate arrays and sea-of-gates. Since LBs often
have multiple outputs, even a slice having only the height of single LB can

22

2.3 Target Topology

conceivably compute multiple different functions at once. Thus, this minimal
slice can process more than a single bit.

In a similar manner, we extend the concept of pitch from the simple height
measure of a bit-slice to the number of bits with different significances actu-
ally processed per LB height (BPLB)3.

Explanation 3 Bits per logic-block-height (BPLB) is a bit-slice specific quan-
tity. It is defined as the number of outputs with different bit significances on
a given bit-slice divided by the height of this bit-slice in logic blocks.

Figure 2.14 gives some examples for different BPLB values. It assumes
LBs with two independent inputs (as on the XC4000, Section 2.1.1). E.g., in
Figure 2.14.a each bit-slice is one LB high and has two outputs, but both with
the same significance. Since multiple outputs with the same bit-significance
do not influence the BPLB, (a) processes 1 BPLB. Furthermore, with a long
bit-slice that contains multiple LBs in a single row, the BPLB value can ex-
ceed the number of independent outputs of a LB (Figure 2.14.d). As with
pitch, BPLB should stay as constant as possible across an entire datapath for
maximal performance.

X[2]

Y[2]

X[3]

Y[3]

X[1]

Y[1]

X[0]

Y[0] X[1]

X[0]
LB LB

(d) 4 BPLB(c) 1 BPLB(b) 2 BPLB(a) 1 BPLB

LB

LB

LB

X[5]

Y[0]

X[1]

Y[1]

X[2]

Y[2]

X[3]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

LB

LB

LB

LB LB

X[6]

X[13]

X[11]

X[0]

LB

LB

X[12]

LB

LB

LB

LB

X[4]

X[14]

LB

X[7]

X[8]
X[9]
X[10]LB

LB

LB

Y[3]
X[15]

LB

LB

LB

LB

X[0]

X[3]
X[2]
X[1]

B
it-

S
lic

e
B

it-
S

lic
e

B
it-

S
lic

e
B

it-
S

lic
e

Figure 2.14: Examples for BPLB values

Applying these concepts to our concrete target FPGA family, the Xilinx
XC4000 series of chips, we determine the following specifics: The dataflow
of the hard-carry logic (Section 2.1) requires a vertical stacking of bit-slices
inside a module, with the LSB at the bottom and the MSB at the top. The
modules themselves will be placed horizontally, leading to a topology as shown
in Figure 2.15. The orthogonal signal flows can be efficiently implemented in
this arrangement: The (possibly high fan-out) control signals are efficiently
routed on VLLs, while data signals mainly use the various horizontal routing
resources. By using VLLs, control signals can be distributed with minimum
3 Previous papers refer to this quantity as bits-per-CLB BPC

23

2 Overview of Structured Design Implementation

skew along the entire height of the chip, making them easily accessible to all
bit-slices in a module.

2.3.2 Chip Topology

After establishing the topology for the datapath itself, we now have to de-
termine where to place it on the chip. This is most critical for FPGA-based
systems with a fixed pin-out (like the Sparxil-processor [KoGo94]). When the
pin-out of the FPGA can remain variable (e.g., when a system-wide program-
mable routing network based on FPICs is employed), the chip pin-out itself
can be adjusted to accomodate a floating placement of the datapath section of
the whole circuit.

Control Flow

Data Flow

Cap Cell

Bit-Slices

Controller

Figure 2.15: On-chip topology

The chip topology targeted by SDI is characterized by a fixed threepartite
layout (Figure 2.15). The large middle section holds the regular part of the
datapath. This part consists of the horizontal arrangement of modules, each
composed of vertically stacked bit-slices. The area below the datapath is in-
tended to hold the controller, whose irregular logic is not processed by SDI.
A small area above the regular section can hold irregularities in the modules
such as cap cells, e.g., the processing of overflow and carry bits in a signed
adder. Such irregularities may also reach below the datapath baseline into
the controller section, e.g., the initialization of the carry chain below the LSB
of the adder mentioned above. After datapath placement, all of the remaining
chip area may be used for implementing the controller through conventional
methods (the XACT tool suite for Xilinx FPGAs).

The dimensions of the three areas are application-specific and must be
manually designated by the user. In the case of FPGAs with a fixed pin-out
on a printed circuit board (PCB), the area heights are primarily determined by

24

2.3 Target Topology

the interconnection pattern on the PCB, which in turn depends on the width
requirements for external busses.

The SDI chip topology can accommodate multiple datapaths on a single
FPGA, arranged horizontally across the chip, as long as their total length re-
mains smaller than the FPGA length. To allow access to the external pads and
communication between otherwise independent datapaths, horizontal long-
distance connections, which are available in many FPGA architectures, can
be used. For XC4000 FPGAs, this suggests the use of HLLs. They are usually
not allocated for simple inter-module communication (HLLs are inefficient
over short distances), but are very effective for chip-wide communication (e.g.,
access to the external pads). The XC4000 also has a more unusual feature in
that each of the HLLs can be split by switching off a pass-transistor in the
middle. This can be employed to good advantage for the implementation of
two completely independent datapaths, with each using the full number of
HLLs per channel in its chip half.

MSB

LSB

Controller

Bit-Slices

Cap Cells

Figure 2.16: SDI topology as used on the Sparxil processor

This base topology was already considered for the hardware design and
PCB layout of the Sparxil processor system. The 20x20 matrix of the XC4010
FPGAs (Figure 2.16) is vertically organized with one CLB as cap cell, 16 CLBs
for the datapath, and 3 CLBs initially reserved for the controller. The pads
for the data busses are locked on the left and right sides of the FPGAs, while
control signals are locked to the top and bottom sides. Thus, the PCB layout
mirrors the on-chip layout.

In this manner, the topology allows the area-efficient implementation of
32-bit operations in modules that are only a single CLB long. By fully using
the datapath area height of 16 CLBs, and processing 2 BPLB (possible with
XC4000 CLBs, Section 2.1.1), 32-bit functions can be computed directly.

25

2 Overview of Structured Design Implementation

2.4 Module Generation

The parametrized module generator Paramog [Ditt95], [Sade95] is responsi-
ble for generating individual modules in SDI. While these modules are already
composed in a regular manner by vertically stacking bit-slices, it is useful to
introduce another level of regularity to capture relations between bit-slices.

Explanation 4 A master-slice (MS) is an independent sub-circuit that is in-
stantiated one or more times into a module as bit-slice. A zone is a contiguous
part of a module which contains only bit-slices that are instances of a single
master-slice. Multiple instances of the master-slice are stacked vertically.

The relationship between bit-slices (also called slices), master-slices, and
zones is shown in Figure 2.17.

Master-Slice A

Master-Slice C

Master-Slice B

Slice 0

Slice 1

Slice 2

Slice 3

Slice 4

Zone 0

Zone 1

Zone 2

Module

instantiation

instantiation

instantiation

Figure 2.17: Regular structure of a module

Paramog currently supports the functions shown in Table 2.1. New mo-
dules can be added by building on the general framework of C++ classes.

For each of these modules, Paramog can offer various layout alternatives
with different BPLB values and module heights, folding modules if the height
of the placement area is exceeded (Figure 2.18).

Among the parameters supported by Paramog are:

• function

• operands with widths and datatypes

• result width and datatype

• optimization preference (delay vs. area)

• BPLB value for the module slices

• maximum module height in logic blocks

26

2.4 Module Generation

Class Functions Comment
Logic NOT, AND,

NAND, OR, NOR,
XOR, XNOR,
MUX

Shift and Ro-
tate

LSHIFTA,
RSHIFTA

arithmetic shifts

LSHIFTL,
RSHIFTL

logical shifts

LROT, RROT
Storage REG, RAM, ROM

CONST literals
Arithmetic ABS

COMPL1 one’s complement
COMPL2 two’s complement
INCDEC,
ADDSUB, MULT

Comparison COMPARE
Counter COUNT

Table 2.1: SDI module library overview

specified maximum

module height

6

7

8

9

4

2

3

5

4

2

3

5

4

2

3

5

7

8

9

1 1 1 6

(1) (2) (3)

Figure 2.18: Examples for module layouts: (1) unfolded, (2) alternate folding,
(3) unidirectional folding

27

2 Overview of Structured Design Implementation

Paramog responds with a set of topology alternatives, each having differ-
ent BPLB values or delay vs. area tradeoffs. On request, Paramog generates
an actual layout for a selected topology alternative. These module layouts are
already placed and routed. FPGA specifics such as dedicated hardware and
different routing resources are considered: for the XC4000 chips, Paramog
can employ the hard-carry logic as well as on-chip memory blocks and dis-
tinguishes between single-length, double-length and long lines for module-
internal routing.

However, it operates only at the layout and structural netlist levels. Un-
like more complex systems like LORTGEN [BrMR94], Paramog does not have
an extensive internal knowledge base and does not evaluate the quality of
the proposed implementations or perform architectural optimizations. Also,
it does not perform data type propagation as in X-BLOX [Xili94a]. To a cer-
tain degree, these tasks are handled by the floorplanning component of SDI
(Section 2.5).

2.5 Module Selection and Floorplanning

Since Paramog offers various layout alternatives for a given module, a con-
crete layout has to be selected for each module instance. For an optimal choice,
the layout alternatives for all modules in the datapath have to be considered
(to equalize their BPLB values, Explanation 3). Furthermore, layout selection
and module placement are also interdependent. E.g., assume the situation
shown in Figure 2.19, in which it was advantageous to support two different
BPLB values in a single datapath. This might occur, when certain tightly in-
terconnected modules on the critical path obtain their best performance with
topologies different from the rest of the datapath. Due to the loose coupling
with the other modules and the local scope, the routing delay penalty associ-
ated with BPLB matching might be acceptable here.

The FloorPlanner component [Putz95a] [Bode97] of SDI is reponsible for
simultaneously evaluating module layout and placement alternatives. Ini-
tially, it obtains the available layout topologies for all module instances in
the datapath by querying the generators. Then, it begins to linearly place in-
stances in the regular region of the FPGA. However, instead of simply gener-
ating different orderings of module instances and evaluating them in terms of
wire length (as in the classical linear placement problem [Sung83], [SaCh94]),
different concrete layouts (as offered by Paramog) are selected and evaluated
in context of the linear placement.

FloorPlanner heuristics are based on a fuzzy-controlled [NaKK94] genetic
algorithm (GA) [Gold89], and thus consider multiple different layout choices
and placements simultaneously. The fuzzy-controller is responsible for dy-
namically adapting the parameters of the genetic algorithm (e.g., population
size, mutation rate, etc.) in order to improve the GA’s performance but prevent
premature convergence to a local optimum.

SDI can afford to use this computationally expensive, but powerful algo-

28

2.6 Compaction

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

1BPLB2BPLB 1BPLB

Figure 2.19: Multiple BPLB values in a single datapath

rithm: The solution space consists only of placing complete module instances
(usually less than two dozens on current FPGAs) and selecting their config-
uration (around three to four after BPLB normalization). This problem size
is far more manageable than that of an algorithm processing a netlist of ba-
sic gates (todays FPGAs easily have complexities of 10,000s of gates). The
exploitation of the regular structure allows the efficient use of a GA. Alter-
natively, other approaches base on integer linear programs, or simulated an-
nealing could be employed.

The fitness function of FloorPlanner mainly considers the following fac-
tors in its search for a high-quality chip layout: the uniformity of the instance
BPLB values, the wire length and the compactibility of adjacent modules (Sec-
tion 2.6). The fitness is not only computed as a simple weighted sum, which
could lead to a sub-optimal solution [EsKu96], but also by true multi-criteria
evaluation.

2.6 Compaction

For traditional standard-cell and gate-array technologies, the process of lay-
ing out the datapath would end here, and routing could commence. However,
the coarse block-granularity of FPGA logic blocks as compared to standard-
cells and sea-of-gates transistors suggests an additional compaction phase to
reduce area and delay inefficiencies (Section 2.6.1). Area and delay reduc-
tions are achieved by locally applying classical logic synthesis and technology
mapping algorithms. However, this compaction step should not disrupt the
regular circuit structure (Sections 2.6.3 and 2.6.4). The steps of this phase
are outlined in Figure 2.20.

29

2 Overview of Structured Design Implementation

FP

FP

Logic

Optim

Tech

Map

Logic

Optim

Tech

Map

Logic

Optim

Tech

Map

Vert
Place

Vert
Place

Vert
Place

(1)

(2)

(3)

(4)

(5)

(6)

FP

Netlist generation

Stack generation
Timing analysis

Horizontal placement
Control routing

From FloorPlanner

To FloorPlanner

Rows of FPGA cells

Columns of FPGA cells
Channels for control signals

Slices composed of FPGA cells
Critical paths

Networks of FPGA cells

Slices to compact

Compaction area
(sub-datapath)

Placed module slices

do for each slice

do for each slice

Placement Areas

Structure extraction
Regularity analysis

Figure 2.20: Compaction

30

2.6 Compaction

2.6.1 The Need for Compaction

To illustrate the need for compaction, consider the following premises: The
datapath layout is assumed to consist of a linear placement of regularly gen-
erated modules. Since a module is always at least one logic block long (most
module generators, Paramog included, cannot generate module fragments),
partially utilized blocks inside each module waste area and speed. The size
of the wasted area and the loss in speed increase with the logic capacity of a
single FPGA logic block and the number of modules in the datapath.

AND2 OR2 AND2B1 MUX21

Figure 2.21: Wasted space in a module-based layout

Figure 2.21 is an extreme example for such a scenario: The 3-bit wide
datapath contains three regular modules AND2, OR2, and AND2B1, imple-
menting the functionality of a 3-bit wide 2-1 multiplexer. However, even as-
suming fine-grained logic blocks on the FPGA (e.g., Actel ACT logic modules,
Atmel AT6000, or Xilinx XC6200 cells), the function MUX21 can be imple-
mented in a single logic block per bit. Thus, this sample datapath wastes 2/3
of its area (length of 3 LBs vs. 1 LB) and only runs at 1/2 the speed (2 levels
vs. 1 level of LB delay) of the single block solution. This situation becomes
worse with coarser-grained blocks such as the K-LUTs found, e.g., in Xilinx
XC3000/XC4000 or AT&T ORCA FPGAs.

The compaction process merges adjacent modules to better utilize the logic
blocks, but leaves the regular bit-sliced structure of the modules as well as the
general topology of the datapath intact.

2.6.2 Soft- and Hard-macros

Compaction is not performed indiscriminately on all modules in the datapath.
We distinguish between soft and hard-macros.

Explanation 5 A soft-macro is a module that contains only simple combina-
tional and sequential logic that is tractable using conventional logic synthe-
sis tools, and which has a very simple internal topology. A hard-macro is a
module that uses chip-specific features, like on-chip memory or carry-chains,

31

2 Overview of Structured Design Implementation

that are intractable by conventional logic synthesis, or has a highly irregular
or very complex internal structure laid out carefully to take maximum advan-
tage of the FPGA block and routing topologies.

It is the responsibility of the module generators to declare a generated
macro either hard or soft. In order to avoid a performance deterioration for
hard-macros, they are not compacted, but passed unchanged. However, hard-
macros serve the important role of marking boundaries between sets of soft-
macros to be compacted separately (Section 2.6.3).

2.6.3 Preserving Module Placement

Compaction respects the original floorplan of the datapath in that the order-
ing of hard-macros and regions of soft-macros in the linear placement remains
constant. In this manner, we avoid increases in critical path routing delay.
These could be caused by inadvertently merging logic implemented in two
widely spaced regions of the datapath. Note that this does not preclude opti-
mization at the architectural level before employing SDI. However, once SDI
is engaged, replicated logic is only eliminated if doing so does not disturb the
module ordering of the linear floorplan.

(c) Respecting

boundaries during

compaction

(b) Ignoring area

boundaries during

compaction

(a) Before

compaction

H2H1M1 M2 M3 M4 M5 M6 M7

f
α β

f

B

A

Hard Macro

Module

Logic BlockH1

α ’

B

A

β

H2M1234567

’f

f f

H1 H2M1 M2345 M67

α β

B

A

Figure 2.22: Hard-macros as boundaries of compaction areas

Figure 2.22 shows an example for this reasoning. The datapath consists of
soft-macros M1, . . . , M7 and hard-macros H1, H2. FloorPlanner has calculated
the linear placement shown in Figure 2.22.a. The function f is realized twice
at separate locations in the datapath: once in M1 and once in M5. Note the rel-
ative routing lengths α and β between the outputs of the LBs realizing f and

32

2.6 Compaction

their sinks in H1 and H2. Consider the layout that would be obtained when
foregoing the original floorplan during compaction (Figure 2.22.b): All soft-
macros in the datapath have been compacted together, yielding a combined
module M1234567. While this compacted module has reduced area (and most
likely delay) as compared to the sums of its original constituent modules, the
wire lengths have degraded: Even when assuming an optimal placement, with
the LB calculating f in the middle between its two sinks, the post-compaction
wire lengths α′ and β ′ are most likely still increased over their pre-compaction
equivalents, slowing down the whole datapath.

When the boundaries marked by the hard-macros are respected (Figure
2.22.c), area is traded for speed: Compaction occurs now separately for the
sets of soft-macros {M1}, {M2, . . . , M5} and {M6, M7}. The resultant compacted
modules M1, M2345, and M67 are larger than M1234567, but the wire lengths do
not increase over their pre-compaction values.

2.6.4 Extracting and Exploiting Regularity
After determining the separate sets of soft-macros to be compacted, each of
these sets is now processed separately (potentially in parallel). As the first
step, the regular bit-sliced structure across all modules in a set is extracted to
reduce run-times for the following compaction steps.

1

0

2

3

4

5

6

7

ALU4/0

ALU4/1

ALU4/2
8

9

11
10 TOPDWN/0

DWN/3

DWN/0

DWN/1

DWN/2

DWN/4

ALU[11:0] LSHL[11:0]

S0S1S2S3 SHIFTControl Signals

Figure 2.23: Sample datapath segment

Figure 2.23 shows a sample datapath segment consisting of two soft-macros,
a 12-bit ALU connected to a 12-bit logical-shift-left register. The ALU has a
single zone of logic which is composed by stacking the three instances ALU4/0,
ALU4/1, and ALU4/2 of the master-slice ALU4. Each of the slices is 4 LB high
and processes 4 differently significant bits, yielding a value of 1 BPLB. The

33

2 Overview of Structured Design Implementation

shift-register has two zones of logic. The bottom zone contains 5 instances of
the master-slice DWN, each providing a simple downward-shifting function-
ality. The top zone contains a single instance of the master-slice TOPDWN,
which also shifts in a zero into its MSB when the shifter is activated by the
SHIFT control signal. Each of the shifter slices also has a 1 BPLB topology
(height of 2 LB, processing 2 differently significant bits).

While the partitioning of the datapath into independent module sets al-
ready leads to smaller sub-problems, their size can be reduced even further
by considering the bit-sliced regularity in datapath modules: Since the com-
paction operation aims to preserve the bit-sliced structure and homogeneous
pitch of the datapath, it can only be performed horizontally. Thus, the data-
path segment under compaction can now be searched horizontally across soft-
macro boundaries for areas of recurring logic that are replicated vertically.
The areas obtained in this manner will form the base for the master-slices of
the compacted modules.

E.g., the datapath segment in Figure 2.23 has two such areas: The first
one contains a single instance of the master-slice ALU4, and two instances of
the master-slice DWN. It occurs stacked twice at the bottom of the datapath
segment. The second area contains a single instance each of the master-slices
ALU4, DWN, and TOPDWN. It occurs once at the top of the datapath segment.
We refine our terminology to better describe these relationships:

Explanation 6 An h-zone is obtained by collecting logic blocks along a hori-
zontal scanline running across the layout. Since this scanline crosses module
boundaries, the h-zone can include logic blocks originating in the master-slices
of multiple horizontally adjacent modules. Thus, the h-zone can be described
as a set of its constituent master-slices. For readability reasons, information
about interconnections will be omitted at this level (but see Section 2.7.2). A
v-zone is a vertical stacking of bit-slices obtained by instantiating an h-zone
one or more times. A v-zone is described with a tuple (hz, n), where hz is an
h-zone and n is the number of times it is iterated.4 A stack (v1, v2, ..., vn) is an
upward sequence of v-zones.

Figure 2.24 illustrates the relationship between h-zones, v-zones, and a
stack. Note that a v-zone is a refinement of the zone concept (Explanation 4).
Applied to the example of Figure 2.23, we obtain the h-zones (ALU4, DWN,
DWN) and (ALU4, DWN, TOPDWN). Since the first h-zone occurs twice, it
forms the v-zone ((ALU4,DWN,DWN),2). The second h-zone occurs only once,
leading to the v-zone ((ALU4, DWN, TOPDWN),1). The complete datapath seg-
ment can thus be described by the stack (((ALU4,DWN,DWN),2), ((ALU4, DWN,
TOPDWN),1)).

Further compaction operations are now performed once for each occurence
of the h-zones, called merged master-slice, and iterated as required by the
stack. Since most soft-macros have few different h-zones (the usual maximum
is around 3), but with relatively large replication counts (8 and 16 are common
4 For improved consistency, this usage of h-zone and v-zone has been changed as compared
to [Sade95], [Ditt95].

34

2.7 Microplacement

(C, 1)

(B, 6)

(A, 1)

((A,1), (B,6), (C,1))

FULLADD-CIN,REG

FULLADD-RIPPLE,REG

FULLADD-RIPPLE,REG

FULLADD-RIPPLE,REG

FULLADD-RIPPLE,REG

FULLADD-RIPPLE,REG

FULLADD-RIPPLE,REG

FULLADD-COUT,REG

Module set under compaction Stack

Master-slice C

Master-slice B

Master-slice A

V-ZonesMaster-slices and H-Zones

HZ: (FULLADD-COUT, REG)

HZ: (FULLADD-RIPPLE, REG)

HZ: (FULLADD-CIN, REG)

Figure 2.24: H-zones and v-zones in a stack

values), the problem size can often be reduced by an order of magnitude. In
the example in Figure 2.24, the savings are less impressive: the logic of the
h-zone (ALU4,DWN,DWN) is only compacted once and the result is duplicated,
yielding a reduction to 2/3s of the original problem size.

2.6.5 Logic Optimization and Mapping

The merged master-slices extracted in the previous step from the module set
under compaction form the basis for the optimized master-slices of the com-
pacted module. Since the boundaries between modules were dissolved during
structure extraction, the following steps merge the logic of separate modules.
Since this merging occured only horizontally, the basic sliced structure (stack)
of the compacted module remains intact. Because the merged master-slices
are independent of each other, they could also be processed in parallel at this
step.

Conventional compaction steps used for full-custom and macro-cell tech-
nologies are based on 1-D or 2-D geometric operations (e.g., [Marp90]) un-
der design rule constraints. In contrast, module compaction for FPGAs is
achieved by applying classical logic synthesis and mapping algorithms to every
merged master-slice. Each of the resulting optimized master-slices contains
the functionality of all the originally separate master-slices in the h-zone, but
with reduced area and delay. The optimized master-slices are then used as
master-slices for the compacted module.

Since the general strategy is independent of the details of this step, it can
directly profit from any research advances in optimization and mapping.

2.7 Microplacement

With the original regular placement lost, the mapped network for each com-
pacted master-slice has to be re-placed in a manner consistent with the base

35

2 Overview of Structured Design Implementation

topology (Section 2.3). This step of the strategy is termed microplacement,
since it is performed separately for each compacted module in context of the
initial linear floorplan. The context, usually provided by adjacent hard-macros
or FPGA I/O pads, determines the locations of the inputs and outputs of the
compacted module (Figure 2.25).

Node in compacted soft-

macro netlistLB in hard-macro

Figure 2.25: Floorplan context of an unplaced, compacted module

As before, the placement operations can be performed independently for
each module, and possibly in parallel.

2.7.1 Congestion Handling

Except for the allocation of VLLs (Section 2.1.2) to vertical control signals,
microplacement does not attempt to balance track density between routing
channels to limit congestion. This is feasible for many circuits, because the
pins on an LB are often interchangeable to a wide degree. Architectures like
the XC4000, with all of the LUT inputs logically equivalent to each other, have
the greatest flexibility in this regard. Figure 2.26.a shows the arrangement of
pins around an XC4000 CLB (for a single LUT) and possible pin-assignments
for the realization of the function f (a, b) = a+ b (in (b)).

Thus, the pin-assignment and routing steps following SDI (Section 2.8)
can relieve congestion by locally swapping pins to less dense channels and
adjusting the LUT configuration accordingly.

2.7.2 Pre-placement Activities

To maximize the performance of the compacted module, microplacement is
timing-driven, minimizing the critical path delay. Thus, the critical paths
through the compacted module have to be determined first.

36

2.7 Microplacement

F1

F4

F2

F3

Fn

a

b

F = F1 + F4

a

a

b

b
b

b

F = F1 + F3

F = F1 + F2

a

a

a

b

b

b

F = F4 + F3

F = F4 + F2

F = F4 + F1

a

a

a

b

b

F = F3 + F2

F = F3 + F1

F = F3 + F4

a

a

a

b

b

F = F2 + F1

F = F2 + F4

F = F2 + F3

4-LUT inputs

4-LUT

(a) (b)

Figure 2.26: Pin-arrangement around a LUT (a) and equivalent pin-
assignments with LUT configurations for f (a, b) = a+ b (b)

Initially, the compacted module has to be assembled from its optimized
master-slices, which are instantiated according to the stack. Vertical inter-
slice and control signals are then connected as specified by the module netlist.

The compacted module is then delay-traced, and the arrival and required
times of inter-slice nets are back-annotated into their master-slices. For input
ports, the arrival time becomes the latest time at which their signal arrives at
an instance of the slice. For output ports, the required time becomes the ear-
liest time the signal is required in an instance. Figure 2.27 shows an example
of this process: A 3-bit ripple-carry adder is assembled from three instances
of the FULLADD master-slice. When the entire module is delay-traced, the ar-
rival and required times are set to the extreme values over all instances of the
master-slice.

Next, each of the optimized master-slices is delay-traced separately, hon-
oring the back-annotated constraints. The slice-local critical paths discovered
by this method form the base for all further delay calculations.

While the extreme timing constraints obtained through back-annotation
are not accurate enough to estimate the precise criticality of an inter-slice
path through its master-slices, they can be used to determine paths that are
critical at all (having timing slacks ≤ 0).

The final result is a list of critical paths for each optimized master-slice,
sorted in order of ascending length. Note that multi-terminal nets are de-
composed into one or more sequences ((n1, n2), (n2, n3), . . . , (nm−1, nm)) of two-
terminal nets (TTN) . Each of the tuples (a, b) describes a TTN connecting a
source a with a sink b. The timing-driven component of microplacement uses
these sequences to minimize wire lengths on critical paths.

Another aspect that has to be resolved before placement is the placement

37

2 Overview of Structured Design Implementation

FULLADD/2

FULLADD/1

FULLADD/0

a

b

cin

cout

s

required = min {

arrival = max {

Master-Slice Entire compacted module

FULLADD

FULLADD

FULLADD

FULLADD

Figure 2.27: Back-annotation of timing for cin and cout into optimized
master-slice

area for each slice. Due to the direct dependency between slice height and
module pitch (measured in BPLB), the compactor with its datapath segment-
local view cannot determine a height that ensures a homogeneous pitch across
the entire datapath. Thus, this information has to be provided by the floor-
planner, which can assess the best topology for the entire datapath.

In addition, the floorplanner also supplies data describing the geometric
context around the compacted module, including the locations of external I/O
ports, hard-macros, other compacted areas, or the FPGA pads.

2.7.3 Regularizing Logic Blocks

Microplacement aims at a regular bit-sliced layout of the compacted module.
However, while recent FPGA architectures tend to have highly regular LBs
(e.g., Altera FLEX 10K [Alte95], Xilinx XC5000/XC6200 [Xili96a] [Xili96b]),
established chips, like the Xilinx XC4000 currently targeted by SDI, often
have some pecularities.

Consider the XC4000 CLB (Section 2.1.1) shown in Figure 2.28.a. It con-
tains two 4-LUTs named F and G, a 3-LUT named H and 2 flip-flops. The
connections between these elements are determined by programmable multi-
plexers. However, since the H-block is not independent of the 4-LUTs (with
regard to both in- and outputs), the CLB itself is inherently irregular. The
usual approach to handle these irregularities is to match the nodes of the K-
LUT-based netlist (with K ≤ 4) together and pack matched nodes into the 3-
and 4-LUTs in a CLB. Further processing then takes place at the CLB level
[BaCM92], [MSBS91b].

38

2.7 Microplacement

Y

YQ

XQ

X

G

F

H

G

F

FFY

FFX

F1
F2
F3
F4

G1
G2
G3
G4

DIN

H1

G1
G2
G3
G4

F1
F2
F3
F4

controlled by configuration bitstream
cell

Y

YQFFY

X

XQFFX

cell

(a) Real structure of Xilinx XC4000 CLB (b) Simplified regular structure

Figure 2.28: XC4000 CLB and corresponding regular cells

Our solution emphasizes regularity by treating each of the irregular CLBs
as two simplified, but completely regular cells (Figure 2.28.b).

Explanation 7 An SDI cell is the smallest regular unit of logic supported by
the LB architecture of a given FPGA. In this context, “regular” means, that
any two cells of the mapped netlist can be exchanged between LBs.

4-LUT 3-LUT

(a) XC4000 CLBs (b) SDI cells

nic
nic

nic

ic

ic
ic

nic=not interchangeable ic=interchangeable

Figure 2.29: Interchangeable netlist cells in CLBs

Figure 2.29 shows an example of some of the restrictions imposed by the
original CLB (a) and the complete interchangeability of netlist nodes and
LUTs (inside as well as between different LBs) for cells (b).

39

2 Overview of Structured Design Implementation

Each of the two cells corresponding to an XC4000 CLB includes a 4-LUT
and a flip-flop, which is also externally accessible. Thus, the cell concept sac-
rifices the H-blocks for independent flip-flop access.

Due to the cell concept, the usual match-and-pack step is not applicable
to SDI. The nodes of the mapped netlist are viewed as cells and assigned to
CLBs only during placement.

2.7.4 Two-Phase Placement
To exploit regularity to reduce run-time, microplacement is partitioned into
two phases with differing objectives, both operating on a cell-based placement
matrix (Figure 2.30).

Figure 2.30: Cell-based placement matrix

The first phase aims primarily at optimizing the vertical signal flow typical
for datapaths. Vertical signals include control signals spanning the entire
height of the module, as well as inter-slice connections (e.g., carry-chains or
shifter data). Since vertical signals may span multiple slices, all optimized
master-slices of a module have to be considered simultaneously.

With all inter-master-slice dependencies now resolved, the next phase nar-
rows its scope to a single optimized master-slice, allowing a parallel process-
ing of all optimized master-slices. This second phase is purely timing-driven,
minimizing interconnection delays.

Phase 1: Horizontal Placement

In the first phase, cells are assembled into columns, fixing their x-coordinates
while the y-ccordinates are left floating. Here, the placer strives to

1. assign cells to the columns of the placement area in order to minimize
the number of VLLs used for control signal routing.

2. allow vertical inter-slice nets in adjacent slices of the stack to be routed
by abutment.

3. minimize the maximum routing length on critical paths.

40

2.7 Microplacement

Inter-slice signal

Slice 2

Slice 1

Slice 0

a b c d

Y

B

A

X

0 1 2 3 4 Cell column with associated VLL channel

Control signals

Module I/O port

a,b,c,d

Cell

Intra-slice signal

Control signal

Figure 2.31: Horizontal placement model

This phase uses the placement model shown in Figure 2.31. It consists
of columns of cells separated by vertical channels for control routing. For
the XC4000, each of the vertical channels contains 10 VLLs (the example in
Figure 2.31 uses a maximum of 2 VLLs per channel). The vertical channel as-
sociated with each cell column is assumed to lie left of the column. A control
signal routed in channel k is available to cells in columns k (left of the channel)
and k − 1 (right of the channel). Note that for control routing purposes, the
channel directly to the right of the module’s placement area is also considered
to be available. Control signals can be replicated and routed in multiple chan-
nels (not shown in the example), if necessary. Thus, the number cV L L of VLLs
used for control routing can be greater than the number c of control signals in
the compacted module.

In addition to aligning cells along common control lines, the placer also
tries to minimize the critical path delay dmax. This includes routing non-
control signals between slices by abutment when possible. E.g., in Figure
2.31 the TTN (B, Y) was routed by abutment. I/O ports are assumed to be
placed at the left or right (depending on floorplan context, Figure 2.25) border
of the module. In the example, ports are located at columns 0 and 4.

For delay minimization, the wiring delay dAB of a two-terminal net (A, B)

is modelled as the simple horizontal distance |xA − xB| between the two cells
A, B, where xQ is the column of cell Q. However, this metric becomes increas-
ingly inaccurate with growing cell height H . Since the vertical distance is
not known during this phase, it is currently approximated as bH/4c. This
assumption is based on the XC4000 topology with a maximum of one switch
matrix for 4 cells (4-LUTs) in a 4× 1 area (Section 2.1). Thus, dAB becomes
|xA − xB| + bH/4c. Without an estimation, the model would try to minimize
the wiring delays by mistakenly preferring the vertical over the horizontal di-
rection. The layouts generated in this manner are measurably worse in terms

41

2 Overview of Structured Design Implementation

of delay than those with the proposed estimation. This impreciseness of the
approximation can be justified with the intent of the compactor to process flat
bit-slices instead of tall modules. Should this assumption fail, a more accurate
assessment would be necessary.

Given the aims of the horizontal phase, the placer minimizes the objective
function wddmax+wc(cV L L− c). wd and wc are user-definable weights that can
be employed to trade-off a faster layout against a larger number of control
lines. By default, their values are set to 1. The term (cV L L − c) makes the
placer purely timing-driven once the minimum number of routing channels
has been reached (cV L L = c).

Phase 2: Vertical Placement

The second phase assigns row locations to the cells in the columns assembled
earlier. In contrast to the horizontal phase, the vertical placement phase (Fig-
ure 2.20.5) concentrates solely on wiring delay minimization on the critical
paths. Since it is not concerned with inter-slice dependencies, its scope can be
limited to a single optimized master-slice. As before, locations of external I/O
ports are determined in context of the original floorplan.

With the problem size reduced further, it becomes possible to use a more
precise model of the FPGA routing architecture that better reflects the non-
continuous distance relations. This more detailed model generates measur-
ably better layouts over those obtained using simple manhattan distances,
especially for more complex slices. Figure 2.32 shows the model, which is a
simplified view of the XC4000 routing network (Section 2.1). Cells A to I have
been labeled to serve as example TTN nodes in further explanations.

Since cell-to-CLB assignment takes place at this level, CLB boundaries
have to be considered here. This is done by overlaying the cell grid with a
CLB matrix of the same length, but of half the height of the cell matrix.

The mapping of real routing resources to the model is shown in Figure
2.33. The model encompasses direct connections (no switch matrices passed)
and general single-length connections (one switch matrix per segment). Ver-
tical long lines were handled in the horizontal placement phase. Horizontal
long lines were allocated during floorplanning to create chip-wide busses or to
route long-range inter-module signals. To limit the complexity of the model,
double-length lines (Section 2.1.2) are presently not included.

The upper cell of a CLB will be placed in the G-LUT, and thus use the Y
and YQ outputs, the lower cell will be located in the F-LUT with its output being
routed through the X and XQ pins (Figure 2.28). Y/YQ and X/XQ output pins
are assumed equivalent for routing purposes: Both Y/YQ pins reach above
and to the right of their CLB, both X/XQ pins below and to the left (Figure
2.5, Section 2.1.2). The location of input pins is not included in the model
because they are located at all four sides of the CLB. A signal is assumed to
be available at the inputs of all cells within a CLB when it reaches the CLB
boundary. The capacity of the routing channels is not considered (but see
Section 2.7.1).

42

2.7 Microplacement

(CLB)FPGA block

A, F

A, B

A, D

D, A

B, D

C, B

B, C

A, H

B, H

I, H

A, I

B, I

A, E

B, E

A, C

2

0

0

0

1

0

0

1

1

2

2

3

4

2

2

1,1

1,3

1,2

1,4

1,5

1,6

2,1

2,2

2,3

2,4

2,6

3,1

3,2

3,3

2,5

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

4,6

A

C EB

D

F

C
LB

 1
,1

C
LB

 1
,2

C
LB

 1
,3

C
LB

 2
,3

C
LB

 2
,2

C
LB

 2
,1

C
LB

 3
,3

C
LB

 3
,2

C
LB

 3
,1

C
LB

 4
,3

C
LB

 4
,2

C
LB

 4
,1

G

H

I

Switch MatrixCell (LUT+FF) Cell output

TTN SMd

Figure 2.32: Vertical placement model with example TTN routing lengths
dSM

43

2 Overview of Structured Design Implementation

routing channel (unspecified width)programmable interconnect

double-length lines

single-length lines

switch matrix

sequential and/or combinational output pin

di
re

ct
 c

on
ne

ct
io

ns
 to

 a
dj

ac
en

t C
LB

s

(a) (b)

CLB

F2XQ C2

F4 C4 G4
G1

C1

K

F1

X

Y

G3

C3

F3

CLB

Cell

Cell

YQ

G2

Figure 2.33: Real CLB routing structure (a) and abstract model (b)

The delay metric employed in this phase is not based on simple manhattan
distances, but on an actual count of switch matrices (SM) in a signal path.
For its calculation, three major cases based on the horizontal distance of cells
a, b on a TTN (a, b) have to be considered. For each case and sub-case, the
corresponding TTNs in Figure 2.32 will be pointed out.

If the horizontal distance is 0, the SM-distance dSM is the simple CLB
manhattan distance |ya − yb| if the cells are placed in different non-adjacent
CLBs ((A,F), dSM = 2) . If they are placed within the same CLB, the SM-
distance becomes 0 ((A,B), dSM = 0). In the case of adjacent CLBs in the same
column, the possibility of a direct dSM = 0 connection depends on the LUT
assignment of source cell a in a CLB: If a is below b, a should be assigned to
the G-LUT ((A,D), dSM = 0). If a is above b, a is better placed in the F-LUT
((D,A), dSM = 0). If these assignments are not possible, the signal will have to
pass through one SM ((B,D), dSM = 1).

If the horizontal distance is 1, a direct connection is possible if the two cells
are placed in the same row and a is assigned a suitable LUT. Specifically, if
b is to the right of a, a should be assigned to the G-LUT ((A,C), dSM = 0). If
b is to the left of a, the F-LUT should be chosen ((C,B), dSM = 0). Otherwise
dSM is the manhattan distance of one SM ((B,C), dSM = 1). When a and b are
placed in different rows, dSM becomes the |ya − yb| ((A,H), dSM = 1), adjusted
for an inopportune LUT assignment: The distance is increased by one if b is
to the right and above a and a was assigned to the F-LUT ((B,H), dSM = 2).
Similarly, an assignment that places a in the G-LUT but has b located to the
left and below a, will incur this SM-penalty ((I,H), dSM = 2).

If the horizontal distance is greater than 1, another effect becomes evident:
When the vertical distance also becomes greater than 1, the SM-distance is

44

2.8 Design Integration

reduced by 1 over the pure manhattan |xa− xb|+ |ya− yb|, since the corner SM
can be shared to advance in horizontal and vertical directions with a single
step ((A,I), dSM = 3). This occurs in addition to the correction for inopportune
LUT assignments as outlined above ((B,I), dSM = 4). However, when a and
b are placed in the same row, both effects vanish and dSM reverts to a pure
manhattan distance ((A,E), dSM = 2, (B,E), dSM = 2).

2.8 Design Integration

Microplacement is the last step of SDI relying on novel tools. The lowest
levels of design implementation (pin-assignment, routing, bit-stream gener-
ation) rely on vendor tools. For the Xilinx FPGAs currently supported, this
is primarily the PPR (partition-place-route) program of the XACT tool suite
[Xili94c].

Module

Generators

Control

Synthesis

Floorplanner

Compacted

Soft-Macros

Hard-Macros

Floorplan

Controller

Datapath

Merging

Routed FPGA

Pin Assignment and Routing

Compactor

µPlacer

Figure 2.34: Design integration

With the soft-macros now compacted, the different parts of the whole chip
have to be integrated (Figure 2.34). This occurs in two steps: First, the lay-
outs of hard-macros and compacted modules are composed according to the
original linear floorplan. Note that the resulting datapath core layout is only
partially routed (only within the original hard-macros) and no pin-assignment
has been performed in the compacted modules. These operations occur in the
next step: The regular datapath layout and the irregular controller circuit are
then merged by PPR for partitioning (controller only), placement, and routing.
The datapath layout is placed according to the SDI-generated location data,
while the controller circuit is processed by a simulated annealing based algo-

45

2 Overview of Structured Design Implementation

rithm. All open nets (those not already routed in the hard-macros) are then
handled by the maze-router of PPR with a rip-up and retry extension. Routing
thus connects hard-macros, compacted modules, and the irregular controller.
Remember, that during microplacement, the logic blocks were already aligned
to allow efficient routing of control signals on VLLs (Section 2.7.4). The final
result of this procedure is a bit-stream ready for downloading, combining re-
gular and irregular elements.

The next chapters will describe key elements of SDI in greater detail.
Chapter 8 gives some experimental results quantifying the performance in-
creases achievable using our approach, and Chapter 9 suggests directions for
further research.

46

3 Module Generators and Library

The application of software tools to create customized circuit components from
a reusable parametrizable “template” has a long history in VLSI design. Be-
ginning with early uses to create simple regular arrays of tiled sub-layouts
[McWi78] to the generation of complete processor cores [BDRA93], such au-
tomatic generation of modules (also known as macros, mega-cells, building-
blocks, etc.) continues to play an important part in many current design
styles. Recently, interest in the use of parametrized module libraries for
technology-independent specification of designs that can still be efficiently
mapped to different target technologies lead to the standardization of the Li-
brary of Parametrized Macros LPM[EIA93]. Apart from administrative spec-
ifications, such as data formats for module and parameter formulation in var-
ious input languages (EDIF, Verilog, and VHDL), LPM defines a library of 25
generic modules with their parameters (Table 3.1). Due to limited resources,
the current SDI library covers only a major subset of the LPM functionality,
but could be extended to the full specification.

CONST INV AND OR XOR
LATCH DFF TFF RAM_DQ RAM_IO
ROM DECODE MUX CLSHIFT COMPARE
ADD_SUB MULTIPLIER COUNTER ABS BUSTRI
FSM TTABLE INPAD OUTPAD BIPAD

Table 3.1: Current list of LPM modules

3.1 Previous Work
LPM specifies just the interfaces of its modules, it makes no statements re-
garding the generation process or format. With the long history of automated
module generation, the capabilities and specialties of actual module genera-
tors span a broad spectrum. In the context of this work, we will only examine
generators transforming a parametrized function instance (adder, multiplier,
etc.) into a layout or a structural netlist.

Structured generators creating netlists are technology-independent to a
large degree. Classical solutions [BaSe88b] and recent approaches [BrMR94]
are very similar, differing mainly in the variety of design alternatives avail-
able for the generation of a specific function. Even layout generators, being

47

3 Module Generators and Library

far more technology dependent, bear considerable resemblance for macro-cell
and FPGA target technologies.

3.1.1 Generating Modules for Macro-Cells

Depending on their routing behavior, traditional layout generators targetting
macro-cell technologies can often be divided into two classes. One kind does
not supply explicit routing and connects signals solely by abutment [Law85],
while the other kind includes routing facilities. Routing is usually performed
by the integration of conventional routers [BaMS88c], the use of patterned
routing tiles [SYYH92], or a combination thereof [IsYo87]. A common limi-
tation of generators for macro-cells is to support only a single height (pitch,
Section 2.3.1)) for bit-slices [BeGr93]. Pitch-matching [King84] can be used to
circumvent this particular problem, and to reduce area and delay in general,
a post-generation geometric compaction phase is often employed [MaWa90].

Module generators also differ in their ability to respect pre-specified bounding-
box aspect ratios during layout generation. Some, such as [GuSm86], ac-
cept an aspect parameter prior to generation. Others rely again on a post-
processing step to transform the layout to the desired shape [DeNe87].

3.1.2 Generating Modules for FPGAs

FPGA module generators can also be classified according to their routing fa-
cilities. However, far more interesting are their pitch-matching, compaction,
and shape-handling capabilities, since these points are complicated by the in-
flexible coarse-grained FPGA base architecture.

Xilinx X-BLOX

X-BLOX[Xili94a] emphasizes the automatic propagation of datatypes between
modules. However, it cannot generate placed modules (neither geometrically
nor topologically) for “simple” logic like bus gates or multiplexers. When X-
BLOX does assemble placed modules (for hard-carry arithmetic or certain
types of registers), it provides a topological LB placement, but no routing in-
formation. X-BLOX macros are generated only with a single pitch and shape,
with neither pitch-matching nor shape-transformation being available. For
compaction (esp. in the case of the “simple” logic), X-BLOX relies on the logic
synthesis and technology mapping facilities in PPR [Xili94c]. However, this
step neither preserves nor exploits any module-inherent regularity.

Oxford PRG XMACROS

In contrast, XMACROS[Law96] can generate pre-placed and pre-routed mo-
dules. The library is rather specialized (clocks, counters, buffers/latches, de-
coders, channels, RAM interfaces, Transputer links). However, in addition
to module generation, XMACROS can also automatically supply OCCAM-like

48

3.2 Anatomy of an SDI Module

code describing an interface to the generated hardware [Page95]. As in X-
BLOX, neither pitch-matching, shape-handling, nor compaction routines are
supplied. The last two restrictions, however, are intentional: Due to the re-
quirement to reliably process asynchronous communication protocols, the mo-
dules generated by XMACROS have to guarantee very precise timing specifi-
cations. Any kind of post-generation compaction would disturb these timing
constraints.

TU Chemnitz LORTGEN

LORTGEN [BrMR94] concentrates on choosing architectural design alterna-
tives for complex modules (e.g., a parallel multiplier) for a given set of parame-
ters (including timing and area constraints). It contains extensive knowledge
bases (far exceeding the simple geometrical composition rules of most other
generators) and performs a fuzzy evaluation of different implementation op-
tions. E.g., for the multiplier, three alternatives for the generation of partial
products are considered, four alternatives for their addition and 40 implemen-
tations for the final vector merging adder. For a 22x9 multiplier, this leads to
the evaluation of 480 design alternatives for the architecture of a single mo-
dule. However, LORTGEN generates only structural netlists, no placement
or routing is provided.

3.1.3 Module Templates

Module generators also vary in the form used to describe the “template”. Gen-
erators like [BaSe88b] for macro-cell technologies and [MaJO96] for FPGAs
use dedicated languages to specify the tiles and iteration patterns. Layout
generators usually employ more detailed languages than netlist generators,
with the FPGA-based languages being most technology-dependent. FPGA-
layout languages such as FRADL [MaJO96] allow the description of circuits
even at the most architecture-specific levels (different routing resources, de-
tailed LB configuration).

Another approach is to embed the template-describing operations into a
conventional programming language. For example, GENVIEW [CGPP91] em-
beds the constructs for generating macro-cell layouts in C functions. MACLOG
[BoSW90] and SDI’s Paramog [Ditt95] [Sade95] build on a C++ framework in
an object-oriented manner. X-BLOX[Xili94a] uses a fact-and-rule database
specified in PROLOG, and XMACROS[Law96] depends on a notation formu-
lated in ML.

3.2 Anatomy of an SDI Module

A module is defined by the parametrized algorithm for its generation. This
algorithm assembles a module instance according to an actual set of parame-
ter values. Often, this is done by composing the module instance from smaller

49

3 Module Generators and Library

components (slices, tiles, leaf cells, etc.). Module generation can be performed
at any level, ranging from a high-level behavioral description down to the
layout level.

In the context of SDI, module generation is supported at the layout and
at the structural level. Module layouts consist of a relative placement of LBs
with an already fixed module-internal routing, and can be relocated to any
absolute position on the FPGA die. A structural module description comprises
a netlist containing both combinational and sequential elements with only
topological placement, but no routing information (see Section 2.3.1).

3.2.1 Classes of Regularity
In both cases, explicit regularity information is generated and made available
to other SDI components. All modules currently in the SDI library fall into the
class of circuits known as regular arrays. A regular array consists of multiple
instances of only few different processing elements (PE) with identical (or at
least similar) interconnections between PEs throughout the array [MaJO96],
resulting in a linear array or rectangular mesh. Connectivity is generally
densest between adjacent PEs on a two-dimensional surface. Regular arrays
can be further classified according to their dimensionality and complexity. For
example, they include linear iterative arrays (such as a ripple-carry adder), as
well as more complex two-dimensional logic arrays (e.g., a carry-save multi-
plier [Omon94]). The functionality of the arrays ranges from bit-level arrays
with a PE complexity of a full adder or less, to word-level arrays with PEs
containing, e.g., a multi-bit ALU or a parallel multiplier.

The current SDI library contains only bit-level arrays composed of slices
containing one or two bits of, e.g., a bussed AND gate, a bus multiplexer, a
counter, or a Booth multiplier. However, word-level arrays can be processed
as well. E.g., Section 8.3 describes a 4-bit 74181 ALU used as PE.

3.2.2 Geometric Hierarchy
The quantities describing a module “template” for generation are similar to
those used in Section 2.6 to describe the compaction process. However, the 2-
D geometric composition view (array of tiles) of the layout is emphasized over
the 1-D circuit view (stack of slices) during generation.

The construction of a regular-array module in Paramog 1 according to a
geometrical hierarchy is shown in Figure 3.1. At the highest level, it is parti-
tioned into v-zones (VZ), zones of vertically replicated logic. Each instance of
the replicated logic is called a v-segment. The example has the three v-zones
A, B, and C stacked from bottom to top. For each VZ, the v-segment height in
LBs and the vertical replication count (the number of segments) is specified.
In the example, VZ C contains two instances of the same sub-circuit. Each of
these v-segments is two LBs high. Thus, VZ C has a height of four LBs. VZ B
has four v-segments at this level, and VZ A has only a single one.
1 Note that the compaction and microplacement phases use a different hierarchy order, Sec-
tion 5.2.9.

50

3.2 Anatomy of an SDI Module

VZ A

#segs=1

HZ B1

HZ B1

HZ B1

HZ B1

H
Z

 A
3

H
Z

 A
2HZ A1

VZ C

VZ B

VZ A

HZ C2 #segments=2

V
Z

 B
 #

v-
se

gm
en

ts
=

4
V

Z
 C

 #
v-

se
gm

en
ts

=
2

he
ig

ht
=

4L
B

V-segment C
height=2LB

HZ C1 #h-segments=3

width=9LB width=4LB

H-segment C1 H-segment C2
width=3LB width=2LB

Figure 3.1: Geometric regularities in a module

51

3 Module Generators and Library

At the next level down in the geometric hierarchy, each v-segment is de-
composed into h-zones (HZ), zones of horizontally replicated logic. Each in-
stance of the replicated logic is called an h-segment. For each h-zone, the
h-segment width and the horizontal replication count is specified. In the ex-
ample, VZ C has the two h-zones C1 and C2, adjoined from left to right. HZ
C1 has an h-segment width of three LBs and contains three replicated h-
segments, the h-segment width HZ C2 is two LBs and the replication count is
two. Analogously, VZ B contains only a single h-zone B1, while VZ A contains
the three h-zones A1, A2, and A3.

At the lowest level, similar to leaf-cells in macro-cell module generators
[GrPe97], [Raba85], the h-segments themselves are described. An h-segment
consists of LB functions, a placement of the LBs in the h-segment relative to
its lower-left corner, and optionally fixed routing between LBs. As can be seen,
the bounding-box of an h-segment is determined by the v-segment height and
the h-segment width.

Load Shift

A[7]

A[0]

A[1]

A[6]

A[2]

A[5]

A[4]

A[3]

XQ[0]

XQ[7]

XQ[1]

XQ[2]

XQ[3]

XQ[6]

XQ[5]

XQ[4]

(a) Generated Circuit (b) Module Topology

A1 A2

HZ HZ

VZ A

Figure 3.2: Circuit and underlying module topology

Figure 3.2 shows these relations using the example of a folded 8-bit shift
register. It consists only of a single v-zone A, that contains four v-segments.
Each of the v-segments has two h-zones, each h-zone with a single h-segment
each. Each h-segment contains a single LB: A1 provides an upward shift,
while A2 supplies the downward shift direction.

3.2.3 Structural Modules

When structural modules are generated, the relative LB placement and rout-
ing derived from the information in the h-segments is discarded, and the LB
functions of all h-segments within a VZ are merged. The result is an unplaced
netlist representing the replicated circuit in each VZ. The vertical replica-
tion counts and the stacking order from bottom to top describe a topological

52

3.3 Module Generation in SDI

arrangement of logic with no concern for geometric shape constraints (each
node of the netlist is viewed as a topological point). Retaining at least a topo-
logical placement differentiates the SDI approach from earlier netlist genera-
tors, such as [BaSe88b], which do not provide any placement info, or [BeGr93],
which relies on user-provided placement hints (special naming conventions).

3.3 Module Generation in SDI
In SDI, the sub-system Paramog is responsible for all aspects of module gen-
eration. This section will outline key points of the work already presented in
[Sade95], [Ditt95]2. Paramog has the following features:

• Outputs placed and routed macros, or structural netlists

• Topology information available even for netlist output

• Module shape constraints and logic structure considered during genera-
tion

• Offers alternative implementations for speed vs. area trade-off

• Flexible pin-assignments for layout generation

• Support of FPGA-specific features

3.3.1 Paramog Architecture
All interaction with Paramog (Figure 3.3) occurs through the Paramog man-
ager. This program accepts requests from SDI FloorPlanner in the form of
simple text files, and coordinates the use of internal Paramog operations. The
module generators themselves are stand-alone programs built upon a com-
mon C++ framework. Each of them has access to a dedicated database of tiles,
called models in this context, that can be assembled algorithmically to form
the desired module. Depending on the selected output format, the composed
module can be written ether as complete layout, or as a structural netlist with
only topological placement.

3.3.2 Design Cycle
A Paramog design cycle begins with a query for design alternatives fitting
a given set of parameters. Paramog responds with a set of different design
variants, usually offering different choices regarding layout shape, logic or-
ganization (BPLB, Explanation 3), and speed. The requestor, in SDI always
FloorPlanner, then evaluates the alternatives against each other, possibly in
a wider context. Once a concrete choice has been made, the desired design
variant and output format can be selected for generation.
2 For improved consistency, some definitions (esp. h-zone and v-zone) have been changed in
this work.

53

3 Module Generators and Library

Generator

Models

Module

work

C++
Frame-

Models

Module
Generator

C++
Frame-
work

Models

Module
Generator

C++
Frame-
work

Layout Netlist

Writer Writer

Netlist

4b.4a.

LayoutQuery

1.

Design

Alternatives

2.

Design Choice,

Format, (Pin Assign.)

3.

PARAMOG - Manager

Figure 3.3: Paramog architecture

3.3.3 Module Parameters

In query mode, the caller selects a function name from the list of supported
functions (Table 2.1) and parametrizes data operands, data results, and con-
trol signals with their bit-widths and data types. While bit-widths can be
specified to accommodate fixed-point PEs, none of the current modules makes
use of this feature. Data types currently distinguish between signed and un-
signed numbers.

An optimization preference is expressed as a percentage value each for
time and area. A value of 100 specifies the fastest or smallest designs, re-
spectively, available in the library. Paramog will only propose alternatives
meeting or exceeding both of the given optimization requests.

Module topology can be constrained by limiting the maximum height of the
module in LBs, and defining the logic structure as a BPLB value. If necessary,
Paramog can generate folded layouts (see Section 3.3.4).

Only the signal widths and their types must be specified, all other para-
meters are optional. If omitted, the solution space is left unconstrained.

3.3.4 Design Alternatives

The Paramog response to a query consists of a text file listing zero or more
alternative implementations of FloorPlanner’s request. An alternative is ini-
tially characterized by its actual area vs. time tradeoff as two percentages.
The actual timing behavior for the alternative is given as a delay in ns for
purely combinational modules, or a maximum operating frequency and beat
clock count for sequential operations (e.g., a pipelined shift-add multiplier).

Physical extents and logical sizes for the alternative implementations are

54

3.3 Module Generation in SDI

detailed as height and width of the LB matrix, and the actual BPLB value.
Additional fields describe the alignment of module operand and result signals
relative to the common base line separating controller and datapath areas in
the chip topology (Section 2.3.2).

Operand B
offset A[0]

A[1]

A[2]

X[0]

X[1]

X[2]

B[1]

B[0]

B[2]

Result offset

Bottom offset

Length

M
ax

. h
ei

gh
t

T
ot

al
 h

ei
gh

t

Datapath base line

Top edge of FPGA die

Figure 3.4: Physical extents of a module and signal alignments

Figure 3.4 shows a module two LBs long that fits a maximum height of
four LBs, extends one LB beneath the datapath area base line, and thus has
a total height of five LBs. The LSB of the X result bus and the B operand
are offset by a single LB from the datapath base line, while the operand A is
exactly aligned.

Each variant also specifies which of the horizontal and vertical long lines
are used in the layout for internal routing. Combined with the alignment
information, this permits congestion management already during module se-
lection and floorplanning.

Next, the tiled array structure of each design alternative is formulated ac-
cording to the geometric hierarchy (see Section 3.2.2). At the bottom, nested
in v-segments and h-segments, are the descriptions of single LBs at the equa-
tion level. Supplying the equations enables the floorplanner to determine the
compactibility of adjacent modules (Section 2.6). To further aid in avoiding
congestion, the LB models also list routing channels used for internal signals,
and possible pin assignments of module signals to LB pins.

As an example of the alternatives offered by Paramog, Figure 3.5 shows
different layouts proposed for various left shift registers with different widths
and BPLB parameters. Note that a module at the layout level consists of
placement and routing information, with the routing also specific to the tar-
geted FPGA. As can be seen, the generator is aware of the three different
routing resource types of the XC4000 and uses them accordingly. Further-
more, observe that Paramog can generate folded layouts when the width of
the datapath exceeds the height of the bit-slice area (Figure 2.15). The bit
ordering in the datapath is also variable: e.g., layout (e) in Figure 3.5 has
an ascending order in both columns, while layout (b) alternates the bit order
from ascending in the left column to descending in the right column. The
actual contents and pin-assignments of the LBs can be overlooked in Figure
3.5.

55

3 Module Generators and Library

G1

G1

YQ

= Single-length lines

= Double-length lines

= Long lines

XQXQ

YQ

G3

G3

YQ YQ YQ

F1

XQ

F2

XQ

F1
F4

XQ

F4

YQ

YQ

G2

G2

G1

G2

YQ

G2

YQ

F4

XQ

XQ

F1

F4

XQ

XQ

XQ

XQ

F1

XQ XQ

YQ

F1F1

F1

XQ

YQ

F1

F4

YQ

G2 G2

YQ

G2G2F1

YQ

G1

XQ

F1

YQ

XQ

G1

XQ

XQ

F2

F2

F1

XQ

G1

XQ

G1

YQ

XQ

G1

YQ YQ

G1

XQ

XQ

F2

F2

YQ YQ

YQ

YQ

F3
G1

G4
F3

XQ

G4

F3

XQ

YQ

G2

YQ

G1

G2

YQ

F3

G1

XQ

YQ

G1

YQ

G1
F3

G1

F2

YQ

G1

F2

F1

XQ

XQ
F2

XQ

XQ
F2

YQ

G1

G1

YQ

G1

YQ

G1

XQ XQ

F1

XQ

XQ
F2

XQ

XQ
F2

YQYQ

G1 G1

YQ

G1

YQ

G1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.5: Layout styles for arithmetic left shift registers. (a) - (e) 6 bits,
1BPLB; (f) - (g) 4 bits, 1BPLB; (h) - (j) 12 bits, 2BPLB; (k) 8 bits,
2BPLB

56

3.3 Module Generation in SDI

3.3.5 Generator Output

When FloorPlanner has selected a concrete implementation for each module
instance from the alternatives offered by the generators, it calls Paramog
again with instructions which variant to actually generate.

Writing structural netlists

For structural netlist generation, no additional information is needed. The re-
sulting output consists of two files: One file contains the equations and storage
configuration for each LB, the second one lists all intra-module nets. While
this process does not generate placement or routing data at the FPGA-level,
the topological arrangement of logic according to the geometric hierarchy (Sec-
tion 3.2.2) is exported. This allows FloorPlanner to take maximum advantage
of the sliced structure during the compaction phase.

Adapting layouts to actual pin assignments

When running this phase of Paramog to actually generate a placed and routed
module, further specifications need to be provided. In contrast to genera-
tors like XMACROS [Law96], or the arrays describable in FRADL [MaJO96],
Paramog keeps only a minority of pins locked on internal nets in the module
templates. The majority of module pins (both input and output) can be flex-
ibly assigned to LB pins to better match the floorplan context. The LB con-
figuration equations will be adjusted automatically to fit the pin-assignment
selected. In the simplest case, this process is limited to the adjustment of a
single LUT (e.g., as in Figure 2.26). However, due to the wide degree of free-
dom FloorPlanner has in assigning pins, more sweeping structural changes
affecting multiple LUTs also have to be managed.

F1

F3

F2 F

F1

F2

C1

F

H

(a & b) | c
F1 F2 G1

F1

F2

G1

F

G

H

F1 F2 F3

(a & b) | c (a & b) | c
F1 F2 C1

F=(F1&F2)|F3
F=F1&F2
H=F|C1

F=F1&F2
G=G1
H=F|G

Figure 3.6: Effects of different pin assignments for logic function ab+ c

Figure 3.6 gives an example for some of the different CLB configurations

57

3 Module Generators and Library

depending on the pin-assignment selected. Note that the assignment and con-
figuration of implicitly required LUTs is performed automatically by Paramog.
FF access is also covered by this procedure, adding an auxiliary LUT as re-
quired (Figure 3.7.a), but preferring direct connections when possible (b)3.

C1 C2 C3 C4

XQ

YQDIN

DIN

C1 C2 C3 C4

H

DIN

H=C2

XQ

YQ

out1 := in1
C1XQ YQ

out2 := in2
C2

(a) (b)

out1 := in1
XQ C1

out2 := in1
C1YQ

Figure 3.7: Effects of different pin assignments for FFs

Layouts are written in relocatable LCA (RLCA) format. LCA format it-
self is a technology-dependent, textual description of an FPGA layout for
Xilinx FPGAs. It contains configuration information for each of the CLBs,
IOBs, TBUFs, and routing at the programmable interconnection point (PIP)
level (programming pass-transistors and multiplexers). However, conven-
tional LCA files use an absolute coordinate system overlaid on the die. LCA is
thus unsuitable for the description of partial dies, such as module instances.
RLCA format is similar to LCA, but all coordinates (CLB, IOB, PIP) are rel-
ative to a module-local coordinate system with an origin at the lower-left cor-
ner. The reloc tool (part of SDI) can relocate RLCA files to any location on
an FPGA die. It takes irregularities in the routing structure into account and
modifies the layout accordingly. E.g., for modules containing VLLs crossing
the middle of the die, the programmable splitters located there are set to con-
nect both parts of the VLL.

3.3.6 XC4000-specific Features
Paramog supports the XC4000 architecture at a very fundamental level. This
permits the use of features not directly expressible in a general netlist. Among
these are the on-chip memory capability, allowing the use of CLBs as pre-
initialized ROMs, or asynchronous RAMs, with either 16x2-bit or 32x1-bit
organizations. The RAM/ROM modules in the Paramog library are mapped
directly to this structure.

The fast-carry logic, which provides a dedicated, low-delay routing network
for ripple carries, and hard-codes logic operations commonly used for arith-
metic functions, is used for the efficient implementation of fast adder/subtractor
3 In Figure 3.7, “:=” denotes a sequential assignment via clocked flip-flops (similar to the
PALASM [AMDI90] notation)

58

3.3 Module Generation in SDI

switch
matrix

CLB

��AA

AA��

-

6

0 10 20 30 40

0

10

20

30

40

HLL 0
HLL 1
HLL 2

HLL 3
HLL 4
HLL 5

VLL
0 1 2

VLL
3 4 5

HC 9

HC 10
HC 8
HC 7
HC 6
HC 5
HC 4
HC 3
HC 2
HC 1
HC -1

HC 0

VC
0 -1 1 2 3 4 5 6 7 810 9

[PIPs]

�

�

�

�

� �� �

�

�

� �� �
GLL

[PIPs]

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Figure 3.8: Basic tile for layout generation. “VC”=vertical channel,
“HC”=horizontal channel, “GLL”=global long line

and counter modules.
The four different routing resources of the XC4000 (general purpose, dou-

ble length lines, h/v long lines, global long lines) are fully supported. The
basic tile structure used for layout composition (Figure 3.8) permits routing
at the PIP level, allowing a careful optimization of signal delays in the module
templates.

The on-chip tri-state buffers are not handled in the current implementa-
tion of SDI. Were they to be added, it would most likely be advantageous to
consider them as part of a global connectivity allocation strategy [PBLS91] at
the floorplan level, instead of using a module-local view during generation.

3.3.7 Implementation Details

Paramog is completely implemented in C++. The module generators them-
selves are separate programs, building on a common framework, also formu-
lated in C++. By inheriting from the abstract base class ModuleGenerator ,
concrete generators gain access to file operations dedicated to the different
formats, basic text scanning and parsing facilities, data validation routines,
and text generators for various constructs in the output files. Auxiliary classes
provide container data types and consistent error handling. Interestingly, this
is a similar structure to MACLOG [BoSW90]. While both systems were de-

59

3 Module Generators and Library

veloped independently, both frameworks favor a task-oriented approach (file
operations, I/O abstraction) over an object-oriented view (abstraction of the
module properties themselves). [BoSW90] sketches initial object-oriented at-
tempts that were found unsuitable, and in turn discarded for the task-based
view. In light of more recent research in object-oriented design [Booc94] and
implementation techniques [GHJV95], further work aiming at a true object-
oriented solution for the module generation domain seems worthwhile.

Paramog employs SIS [Sent92] during the logic-adjustment step in pin-
assignment (Section 3.3.5). The optimization procedure script.algebraic
is used to simplify partial functions during the re-structuring. Since SIS
does not process the inhomogeneous mix of hard-wired 4- and 3-LUTs in an
XC4000 CLB, LUTs are assigned by Paramog. Its simple heuristics are lim-
ited, however, in that they cannot map all realizable functions to the CLB
structure. The tile functions in the current library are all handled correctly,
though. A general solution for mapping to an irregular LB containing multi-
ple LUTs with some hard-wired connections is the subject of on-going research
[ChRo92], [Murg93].

The current approach of writing (R)LCA files is also questionable with re-
gard to the recent Xilinx guidelines declaring the XNF file format, extended
with relative location constraints (RLOC), as the format of choice for placed
netlists. While XNF does not permit the formulation of routing information
(neither at the resource, nor at the PIP level), in contrast to LCA, it is far eas-
ier to use in conjunction with other tools of the XACT design flow (XNFPREP,
PPR, etc.). A new implementation of the module generators would most likely
trade the performance gain due to the optimized module-internal routing for
a smoother integration into the complete design cycle.

Figure 3.9 shows one of the possible implementations of a 6x6-bit Booth
multiplier. Note that this module has a local controller, which descends below
the baseline into the main controller area of the FPGA. Other implementa-
tions allow to place the local controller at the top of the module layout, or
to interleave the two operands instead of stacking them. Regarding routing,
the following aspects can be pointed out: High-fanout control signals have
been routed on VLLs, the intra-module routing is regular, but connections to
external pads are unconstrained and can flexibly adapt to pad locations.

60

3.3 Module Generation in SDI

Module-local
Controller

M
ul

tip
lie

r
<

5:
0>

M
ul

tip
lic

an
d

<
5:

0>

P
ro

du
ct

 <
11

:0
>

Baseline

Figure 3.9: Sample layout for a 6x6-bit multiplier

61

3 Module Generators and Library

62

4 Module Selection and
Floorplanning

As shown in Figure 2.1, the SDI floorplanner is the nexus of the design flow. It
reads the circuit to be processed as an SNF file, queries the module generators
(Chapter 3) for possible implementation alternatives, and then proceeds to
simultaneously obtain an optimal linear module placement (Section 2.3.1) and
to assign a concrete implementation to each cell in the circuit (Section 2.5).

The solution strategy of the floorplanner uses a genetic algorithm [Gold89]
[SrPa94] to explore the design space. This chapter will present some key-
points of the algorithms and data structures used. For an exhaustive treat-
ment of the floorplanner in particular, and genetic algorithms in general, es-
pecially experimental results and a detailed discussion of optimization para-
meters, we refer the reader to [Putz95a] [Bode97].

4.1 Optimization by Genetic Algorithms

A genetic algorithm is a heuristic that considers multiple partial solutions (a
population of individuals) in parallel. The solution space is explored by cre-
ating new solutions by merging parts of two existing solutions (Section 4.2),
or by altering existing solutions (Section 4.5). Next, all partial solutions are
evaluated according to certain criteria (Section 4.7). The result of the evalua-
tion (the fitness) determines, whether a partial solution will still be considered
(is selected for survival, Section 4.8) in the next iteration (generation) of the
optimization. Unfit individuals are then discarded, and the process repeats.
It continues until a maximum number of generations has been exceeded, or
user-constrained optimization thresholds are met.

4.2 Problem Description

The floorplanner aims at an efficient linear arrangement of module instances
(Figure 2.15 and 2.16) and the assignment of a concrete implementation to
each instance (out of the possible alternatives offered by the module genera-
tors, Figure 2.18). To this end, we attempt to

• minimize maximal net length between two modules;

63

4 Module Selection and Floorplanning

• maximize compactibility of the entire datapath;

• minimize total length of the design (should fit into FPGA);

• minimize routing density in all horizontal channels;

• maximize homogenization of bit-slice pitch across the datapath.

Each of these criteria is evaluated separately (multi-criteria optimization,
Section 4.7). Thus, the order of the criteria above does not reflect a priority.

4.3 Solution Representation
Each solution for a datapath of n module instances is represented by a se-
quence of tuples (a chromosome)

((l1, g1, a1), . . . , (ln, gn, an)),

such that for k ∈ {1, . . . , n}, lk is the location (locus) of module instance k in the
linear topological placement (left-to-right), gk is the module instance (gene),
and ak is a concrete implementation (allel). Note that the order in the linear
placement may be different from the order of the tuple in the solution string.
The chromosome is just an encoding of the actual solution for optimization
purposes, different chromosomes may represent the same placement and mo-
dule assignments. E.g.,

((3, Adder1, Add-16-folded-2bplb),
(1, Mux1, Mux2-16-linear-2bplb),
(2, Value1, Reg-16-linear-2bplb))

describes the same placement and implementation selection as

((2, Value1, Reg-16-linear-2bplb),
(3, Adder1, Add-16-folded-2bplb),
(1, Mux1, Mux2-16-linear-2bplb)).

However, each chromosome will contain the same genes (all describe the same
circuit, consisting of the same module-instances). The allel of each gene, how-
ever, may vary (different implementation alternative for a module-instance).

4.4 Genetic Crossover Operators
The solution space is explored by altering the chromosomes according to cer-
tain rules (genetic operators). The crossover operators create a new chro-
mosome (offspring) c3 by combining two existing, randomly selected chromo-
somes (parents) c1, c2.

64

4.4 Genetic Crossover Operators

4.4.1 Uniform Crossover

Uniform crossover first determines in the set I of all module instances oc-
curring in the two existing solutions c1, c2, and creates a new chromosome c3

consisting only of the crossover locii in c1 (gene and allel tuple-components
are left empty). Then, it scans left-to-right over all tuples in c3. For each tu-
ple t in c3, a random module-instance g is selected from I . We then select,
also randomly, the current allel a of g from either c1 or c2. The gene and allel
components of t are set to g and a, respectively, and g is deleted from I .

As a result, we obtain a new chromosome c3 that possibly has a different
placement (different g, a might be assigned to the l copied from c1), as well as
a possibly different implementation assignment (a different a, either from c1

or c2, might be assigned to g).

Example 8 Assume

c1 =((1, A, A1), (2, B, B1), (3, C, C1), (4, D, D1)),
c2 =((1, B, B2), (2, C, C2), (4, A, A2), (3, D, D2)).

We thus determine I = {A, B, C, D}. Initialization leads to

c3 = ((1,⊥,⊥), (2,⊥,⊥), (3,⊥,⊥), (4,⊥,⊥)),

Starting a t = c31 = (1,⊥,⊥), we randomly select B from I . We randomly decide to
use the allel from c2 of B, which is B2. Thus, c31 = (1,B, B2). We then delete B from I ,
yielding I = {A, C, D}. By proceeding in this manner for C, A, and D, we might end
up with

c3 =((1, B, B2), (2, C, C1), (3, A, A1), (4, D, D2)).

c3 has both changed placement and implementation assignments. However, it is still
consistent in that each of the initial instances appears exactly once.

Since uniform crossover modifies locii, genes, and allels on a single tuple-
basis, it is the most destructive genetic operator (no context is preserved from
the initial chromosomes c1, c2).

4.4.2 One-Point Crossover

One-point crossover preserves more of the initial context by keeping longer
subsequences of tuples from the initial chromosomes. It operates by randomly
determining a crossover point 1 ≤ k ≤ n − 1. c3 is initialized by copying c1,
but then setting all genes and allels in tuples c3i , k+ 1 ≤ i ≤ n to ⊥. Then, we
scan over c2 for all genes g not already found in c3 j , 1 ≤ j ≤ k (the preserved
subsequence of c1). For each such gene g and its allel a (in c2), we set the first
unused tuple of c3 (gene is ⊥) to g and a.

As before, we modify both placement and implementation assignment.
However, in contrast to uniform crossover, the k-element subsequence of c1

is preserved in c3.

65

4 Module Selection and Floorplanning

Example 9 Consider the c1, c2 of the last example. Assume k = 2. Thus, c3 initially
is

((1, A, A1), (2, B, B1), (3, ⊥, ⊥), (4, ⊥, ⊥)).

Scanning over c2, we find g =C as a gene not found as c3 j , 1 ≤ j ≤ 2. Thus, the next
unused tuple of c3, (3, ⊥, ⊥), becomes (3, C, C2). Continuing our scan over c2, we find
D as another new gene (A was skipped). The next free location in c3 is (4, ⊥, ⊥), now
becoming (4, D, D2).

The result is the offspring chromosome

(1, A, A1), (2, B, B1), (3, C, C2), (4, D, D2).

In general, placement and implementation assignments are changed, but the subse-
quence of the first k = 2 elements of c1 has been preserved in c3.

4.4.3 Two-Point Crossover

Two-point crossover is a generalization of one-point crossover. It preserves
subsequences both at the beginning and end of c1 in c3. Initialization consists
of randomly determining two crossover points 1 ≤ k1 < k2 ≤ n−1, and copying
c1 to c3, but setting all genes and allels in c3 j , k1 ≤ j < k2 to ⊥. Next, we scan
the entire chromosome c2 for the genes g occurring as c1 j , with k1 ≤ j < k2

(between the crossover points in c1). When we find such a gene, we copy g
with its allel in c2 to the next unoccupied (⊥) position in c3 (keeping the locus
initially copied from c1). The positions of c3 j , k2 ≤ j ≤ n are left untouched
(resulting in the preservation of a c1 subsequence at the end of c3).

Example 10 We will continue to use the c1, c2 of the last example. Assume k1 = 2,
k2 = 3. Thus, c3 is initialized to

((1, A, A1), (2, ⊥,⊥), (3, C, C1), (4, D, D1)).

We then commence our scan of c2 for genes occurring in c1 between the crossover
points. We find such a gene g =B at c21 (B occurs in c12, between the crossover points).
We copy g with its allel B2 to the next unoccupied position (2, ⊥,⊥) in c3, resulting in

c3 =((1, A, ((1, A, A1), (2, B, B2), (3, C, C1), (4, D, D1)).

Since the crossover sequence in this example only has a length of 1, the crossover
operation finishes at this point.

The subsequences of c1 lying outside the crossover region have been preserved,
while all those genes originally occurring inside may have been assigned new locii
and allels.

4.5 Genetic Mutation Operators

While crossover operates on two different chromosomes, mutation alters a
single chromosome.

66

4.5 Genetic Mutation Operators

4.5.1 Allel Mutation

The allel mutation operator randomly changes the currently selected imple-
mentation to another one of the alternatives proposed by the module genera-
tor for a randomly selected instance (gene). All placement information is left
intact.

Example 11 As before, we will reuse the initial chromosome c1 from the previous
example. Assume that we randomly select k = 3, and now modify the allel of c1k = (3,
C, C1). Furthermore, assuming the existence of an alternate implementation C7, the
post-mutation chromosome could become

c′1 =((1, A, A1), (2, B, B1), (3, C, C7), (4, D, D1)).

4.5.2 Position Mutation

The position mutation operator randomly exchanges two gene-allel tuples in
the target chromosome. In this manner, only placement is modified, imple-
mentation selections are left untouched.

Example 12 Re-using the chromosome c1, we randomly select 1 ≤ j < k ≤ n, and
exchange the genes and allels of c1 j and c1k . Assuming that j = 2, k = 4, the post-
mutations chromosome becomes

c′1 =((1, A, A1), (4, D, D1), (3, C, C1), (2, B, B1)).

4.5.3 Translocation Mutation

Translocation mutation operates by moving an entire, randomly determined
subsequence of genes and allels (note: not locii) to a random position on
the chromosome, changing the placement. In this manner, the partial solu-
tion represented by the subsequence is preserved. The same effect could be
achieved by the position mutation operator. However, it would need to be ap-
plied numerous times, and would most likely disrupt the partial solution in
the process. Translocation is thus similar to one- and two-point crossover in
that it operates on a larger context than single genes and allels.

Example 13 We randomly determine 1 ≤ j ≤ k < l ≤ n. j , k will delimit the
subsequence to move, l is the target position of the tail. For c1, assume we have
j = 2, k = 3, l = 4. We thus move the genes and allels of the subsequence (((2, B,
B1), (3, C, C1)), such that this partial solution ends at position k = 4 in the mutated
chromosome. All genes and allels formerly occupying these positions will be moved
to the left. After mutation, we thus have

c′1 =((1, A, A1), (2, D, D1), (3, B, B1), (4, C, C1)).

67

4 Module Selection and Floorplanning

4.5.4 Reversal Mutation
Reversal is the last mutation operator of the floorplanner. It reverses the or-
der of genes of allels within a subsequence (changing their placement, since
locii are preserved). As before, the same effect could be achieved by the po-
sition operator. However, the next-to relations in the encoded subsequence
(which are kept intact during reversal), would probably be disrupted.

Example 14 To apply a reversal mutation, we randomly determine 1 ≤ j < k ≤ n,
which mark the boundaries of the subsequence to reverse. Assume j = 2, k = 4, and
our well-known c1. Using these parameters, we obtain

c′1 =((1, A, A1), (2, D, D1), (3, C, C1), (4, B, B1)).

4.6 Genetic Inversion Operator
All of the preceding operators (both crossover and mutation) modify the solu-
tion. However, the solution representation itself (the string of tuples, Section
4.3) is not changed. Due to the nature of the genetic operators (operating on
single tuples or substrings of tuples), it might be advantageous to change the
encoding of the solution (not the solution itself). This is achieved by the inver-
sion operator, which randomly exchanges entire tuples (locus, gene, allel) in
the chromosome. Note that this changes only the representation of the same
solution.

Example 15 Assume for c1, and for some randomly selected j , k with 1≤ j < k ≤ n,
current values j = 2, k = 4. We now swap the entire tuples c1 j and c1k , resulting in a
post-inversion chromosome

ci
1 = ((1, A, A1),(4, D, D1) , (3, C, C1), (2, B, B1)).

ci
1 represents the same solution (topological left-to-right placement and implemen-

tation selection) as c1, but the changed encoding will alter the effects of the genetic
operators.

4.7 Multi-Criteria Evaluation
After creating new chromosomes by crossover, or altering existing chromo-
somes by mutation, we determine the quality of a given solution (chromosome)
by evaluating it according to certain criteria and use these results to decide
whether the solution should be considered further, or discarded (Section 4.8).

To compute the quality of a given solution (chromosome), we evaluate it in
terms of

• net delays,

• compactibility,

• fitting inside FPGA boundaries, and

• routability.

68

4.7 Multi-Criteria Evaluation

4.7.1 Net Delays

We will attempt to minimize the length of the longest net between two mo-
dules. To this end, the delay in ns td of each two-terminal net is estimated
by

td =

1.30+ 0.24 · d 1≤ d ≤ 6

2.20 7≤ d ≤ 10

3.75 d > 10,

where d is the horizontal distance in logic blocks between two ports. The
first estimate reflects a connection using the general interconnection network
(switch matrix-based, single-length and double-length lines), the second es-
timate considers routing on a horizontal long line (without tri-state buffers,
within one chip-half) and the last one a connection via horizontal long line
(without tri-state buffers, crossing the chip-half boundary). Note that in con-
trast to the more precise delay models used e.g., in Section 7.5, we do not
consider direct connections (routing by abutment) at the floorplan level. The
delays were experimentally determined [Ditt95] [Sade95] for Xilinx XC4010-5
FPGAs [Xili94e].

4.7.2 Compactibility

The computation of a precise measure for compactibility would require an en-
tire iteration of the compaction process (Chapter 6), including local logic syn-
thesis, and then calculate the ratio of pre- to post-compaction area and delay.
However, since this procedure is far too complex to be performed for each iter-
ation of the genetic algorithm, we estimate compactibility as follows: For each
contiguous section of soft-macros (Explanation 5) in the current topological
placement (Section 2.6.3), we examine the constituent modules.

Each soft-macro implementation alternative is classified in the module
generator templates as primitive or complex: A primitive soft-macro consists
only of very simple logic (fundamental logic functions, e.g., AND, OR, NOT,
etc.). A complex soft-macro implements a more complicated function (MUX,
SHIFT, etc.), but without employing FPGA-specific features (carry-logic, mem-
ory blocks).

When a contiguous soft-macro section contains only primitive modules,
we estimate that compaction will reduce its length at most to 1/3 of its pre-
compaction length, but not below the length of the longest module in the pre-
compaction section.

If the contiguous soft-macro section under analysis contains at least one
complex soft-macro, we assume a best-case compaction to 1/2 of its original
length, also with the pre-compaction length of the longest module as lower
bound.

The rationales behind these estimates are:

69

4 Module Selection and Floorplanning

• The simple logic functions of primitive macros waste a lot of logic block
capacity, and thus compact very well.

• Since complex soft-macros implement more complicated functions, they
already have a better logic block utilization, and thus do not compact as
much.

• We assume that each module is composed as efficiently as possible. Thus,
if a module needed more than a single logic block in length before com-
paction, the logic within is most likely too complex to be reduced further
during compaction.

4.7.3 Fit into Target FPGA
Solutions with a length exceeding the length of the target FPGA are penalized
proportionally to the excess length

le = lsolution − lFPGA

4.7.4 Routability
As described in the introduction and Section 2.1, FPGAs have fixed routing
channel width. A solution requiring more routing resources will most likely
be unroutable or significantly slower. We compute an estimate of the required
channel width by calculating the total number of horizontal inter-module con-
nections passing by each column. When this number exceeds a certain frac-
tion of all available routing resources, we penalize the solution proportionally
to the excess channel width

ce = csolution − climit

Given the available horizontal routing resources per logic block of 10 single-
and double-length lines, and 5 horizontal long lines (Section 2.1), we estimate
that 2/3s will be available for inter-module connections, while the remaining
1/3 is assumed to be used within each module. A more precise metric could
use the actual module-specific routing density specifications (CHANNELand
LONGLINE, [Ditt95] [Sade95]), but this data is not evaluated in the current
floorplanner. Thus, we currently use climit = hdp · 10, where hdp is the height
of the datapath (Section 2.3.1).

4.8 Selection
The usual way to deal with the evaluation of multiple criteria is the com-
putation of a weighted sum, which then determines the overall quality of a
solution. However, the optimization is then heavily influenced by the weight

70

4.8 Selection

of each criterion. As shown in [EsKu96], this can lead to sub-optimal solu-
tions, especially when the user is unfamiliar with the optimization behavior
of the concrete problem.

Since a genetic algorithm considers a population of multiple solutions in
parallel, it can employ a different strategy for true multi-criteria optimization.

After the genetic algorithm has modified the existing population using
crossover (Section 4.2), mutation (Section 4.5), and possibly inversion (Sec-
tion 4.6) operators, each chromosome is then evaluated according to Section
4.7.

The following selection step determines the solutions that survive into the
next generation of the optimization process, and discards all others found un-
fit.

For multi-criteria optimization, we perform selection separately for each
evaluation criterion combined with selection based on a weighted sum. Thus,
in addition to the solutions that seem to have an overall good quality (at least
according to the current weights), we also consider solutions that objectively
(independent of weight choices) have a high quality in each specific criterion.
The intent is to allow these specialized solutions to eventually evolve into even
better general solutions (with an overall good quality).

The floorplanner applies a combination of the following strategies to select
the next solution generation.

4.8.1 Elite Selection
For each criterion (including the overall quality), the elite approach selects
the nelite best solutions for survival. While this would seem to be the only rea-
sonable procedure (we are, after all, interested in obtaining the best possible
solution), its use as the sole selector could lead to premature convergence of
the genetic algorithm (due to insufficient diversity in the “gene pool” of the
population). The result could be a sub-optimal solution.

4.8.2 Expected Value Selection
To increase the genetic diversity in the population, we select nexpect chromo-
somes, such that the number of occurrences of a single chromosome is propor-
tional to its relative fitness. This approach first computes the fitness sum Fq

over all chromosomes for each quality criterion q. Each chromosome k, with a
fitness fq(k) is then transferred into the next generation in bnexpect · fq(k)/Fqc
copies. Thus, the number of occurrences of k in the next generation matches
its relative fitness in the current generation. When the number of individu-
als selected in this manner is smaller than nexpect, we fill the remainder with
randomly selected individuals. In contrast to elite selection, individuals with
lower quality have a chance of surviving (albeit only in numbers proportional
to their low fitness).

Example 16 Assume that the current population contains the individuals {A, B, C, D}
with fq(A) = 4, fq(B) = 3, fq(C) = 2, fq(D) = 1. Using selection by expected value,

71

4 Module Selection and Floorplanning

we compute Fq = 10. Assuming we want to select nexpect = 8 individuals, A survives
in bnexpect · fq(A)/Fqc=b8 · 4/10c= 3 copies, B in b8 · 3/10c = 2 copies, C in b8 · 2/10c = 1,
and D in b8 · 1/10c = 0 copies (D is discarded). Since we have only obtained 3+ 2+ 1
individuals in this manner, we randomly pick another two chromosomes to create
a selection of nexpect individuals. E.g., we might pick B and D, resulting in the next
generation {A, A, A, B, B, C, B, D} (note that populations are multi-sets).

4.8.3 Fitness Selection

For even greater diversity, we introduce a random factor when defining the
selection by fitness. Here, we randomly pick a chromosome k from the current
population. It has a chance fq(k)/Fq (defined in previous section) to survive
into the next generation. We repeat this pick-and-gamble process until we
have obtained nfit survivors. In this manner, even solutions with very low
quality just might survive, and thus provide diversity for the optimization. On
the other hand, even very good solutions could be discarded purely by chance.
While selection by fitness helps to avoid premature convergence, relying on it
as the sole selection method would lead to very slow convergence.

4.8.4 Random Selection

Random selection disregards fitness altogether. It just selects nrandom individ-
uals for survival in the next generation. While this approach guarantees the
greatest diversity, it does not converge at all. Its primary use lies in complet-
ing a generation left under-populated by one of the other selection schemes
(e.g., Section 4.8.2).

4.9 Parameters and Dynamic Fuzzy-Control

The operation of the genetic algorithm is controlled by many parameters.
Among these are, e.g.,

• the number of individuals in the population,

• the application probabilities for each crossover operator,

• the application probabilities for each mutation operator,

• the probability of performing inversion,

• the number of individuals to select using each selection method,

• the maximum number of generations to process,

• the minimal requirements on each of the quality criteria,

• the weights for the weighted sum of quality criteria.

72

4.10 Capabilities and Limitations

if (gaCycNum is small) then (popSize is veryLarge);
if (gaCycNum is medium) then (popSize is large);
if (gaCycNum is large) then (popSize is normal);
if (gaCycNum is immense) then (popSize is normal);

Figure 4.1: Decaying population size during optimization

if (lastIncrease is verySmall) then (mutRate is veryHigh);
if (lastIncrease is small) then (mutRate is high);
if (lastIncrease is medium) then (mutRate is medium);
if (lastIncrease is large) then (mutRate is low);
if (lastIncrease is veryLarge) then (mutRate is low);
if (lastIncrease is immense) then (mutRate is low);

Figure 4.2: Increasing mutation rate after reaching local optimum

While the genetic algorithm can operate with static parameters (all values
fixed during the entire run-time), the dynamic adaptation of some parame-
ters at optimization time can lead to further improvements for some circuits
[Bode97]. The actual modification of parameters is performed by a fuzzy con-
troller.

E.g., it is advantageous to begin optimization with a large population size,
and then reduce it over time (when the optimization converges). Figure 4.1
shows the entries in the fuzzy rule-base expressing this behavior. gaCycNum
is the fuzzy variable for the current generation number.

Another rule might express the following strategy: When we have just
improved the best solution (according to one or more criteria), we raise the
mutation rates to explore the “surroundings” of this new local optimum. In
order to allow convergence, we then reduce the mutation rates again. Fig-
ure 4.2 show the appropriate fuzzy rules. The fuzzy variable lastIncrease
records the time (in generations) since the last quality improvement.

In this manner, even more complex adaptations may be specified. [Bode97]
describes a fuzzy rule base that reacts to a static population (no recent im-
provements) by briefly raising crossover and mutation rates, thus sending a
momentary “shockwave” through the population (increasing diversity), but
allowing the population to settle down immediately afterwards (emphasizing
convergence).

4.10 Capabilities and Limitations

While the current implementation of the floorplanner performs most of its
tasks according to specification, the actual performance falls somewhat short
of the expectations. The main weakness is the need for multiple floorplan-
ning runs1 to obtain a layout of acceptable quality. The “best-so-far optimum”
[RuPS91] differs wildly between runs. E.g., for the ALU (consisting of 26

1 Each run consists of thousands of GA generations.

73

4 Module Selection and Floorplanning

modules) of the SRISC processor [Bruc94] , floorplanning runs of 30000 gen-
erations have “best” overall quality values varying between 28.56 and 63.09
[Bode97]. This result is even more disappointing when considering that for
each generation in a single run, the floorplanner already processed 5 . . . 200
possible solutions (depending on fuzzy-controlled population size) in parallel.
While this misbehavior can be ameliorated by choosing the best layout from
a number of runs (10-20 seem to provide acceptable results), the run-time
requirements are no longer reasonable.

The actual implementation of FloorPlanner was performed independently
of the mainstream SDI research. While FloorPlanner provides the floorplan-
ning and selection functions required by SDI, the group responsible empha-
sized the general study of complex heuristics. In light of the practical results,
the current optimization heuristic thus seems to be more an interesting exper-
iment in the theory of genetic algorithms and fuzzy-control, than a successful
application of these techniques to a concrete VLSI optimization problem. Due
to the disbanding of the floorplanning group, further research into the cause
of the quality deviation, or the implementation of an alternate heuristic, was
unfortunately not possible.

Nevertheless, the fundamentals underlying SDI (such as 1-D module place-
ment, automatic alternative selection) are not invalidated by the deficiencies
of the current floorplanner. Given sufficient time and human resources, it
would easily be possible to realize an alternative optimization using more effi-
cient heuristics (e.g., [SaCh94] or simulated annealing). An optimizer relying
on simulated annealing (as used in Section 7.4) might use moves consisting
either of a two-exchange of modules, or the selection of an alternative imple-
mentation for a single module.

Another approach could use a simple preprocessing phase to perform al-
ternative selection independently from floorplanning: Since we are aiming at
a homogeneous bit-slice pitch, and the module generators usually offer imple-
mentations in any of the common BPLB values 1/2, 1, 2 (Explanation 3), we
might just assemble a layout containing only module implementations with
the minimum BPLB value over all possible implementations. In most practi-
cal cases, this procedure would make optimal implementation selections. The
floorplanning would then reduce to the well-known 1-D linear arrangement
problem.

74

5 Fundamentals for Compaction
and Microplacement

This chapter will introduce a more formal notation to allow a concise formu-
lation of algorithms later on. The informal explanations given in Chapter 2
will be refined and expanded upon here.

To this end, we will employ clarifications to clarify colloquially used terms
(e.g., circuit and gate), and definitions to formally define their underlying
mathematical representation (often graph-based). These definitions list the
components of a structure and their respective properties (e.g., constraints
and interdependencies). Many concepts will be demonstrated using selected
examples.

While this chapter follows a bottom-up approach to make the material ac-
cessible even to the uninitiated reader, a basic understanding of modern VLSI
design in general, and logic synthesis/physical design automation in particu-
lar, will prove helpful. Since most of the terminology and concepts defined
here are widely used in design automation and synthesis, almost any intro-
ductory text may be consulted for a broader background. Suggested sources
include [Sher95] [Leng90] for physical design automation, and [CoDi96] [MuBS95]
for logic synthesis. For a refresher in the basic graph theory underlying many
of the formal models, we refer the interested reader to standard textbooks
such as [Deo74] [Maye72].

5.1 Basics

This section defines fundamental mathematical entities and introduces basic
notational conventions.

Clarification 17 Z is the set of integers, N the set of natural numbers (ex-
cluding 0), N0 := N ∪ {0}, R the set of real numbers, and B is the set of boolean
truth values {TRUE, FALSE}. BOOL is the set of boolean functions of type
B n → B . The symbol ⊥ denotes an undefined value1. A sequence is an or-
dered set. A partition of a set is a cover by disjoint subsets, called parts of
the partition. Given a binary relation R, with domain dom R and range rg R,
R̃(C) = {b ∈ rg R | ∃a ∈ C : (a, b) ∈ R} is the set of direct successors of C.

1 Note that this will differ from the classical usage f (x) = ⊥ ⇔ x /∈ dom f .

75

5 Fundamentals for Compaction and Microplacement

Conversely, R∼ (C) = {a ∈ dom R | ∃b ∈ C : (a, b) ∈ R} is the set of direct

predecessors of C.

Clarification 18 Scalar values will be notated using small letters a, b, c, ...,
sets as capital letters A, B, C, ... and families (sets-of-sets) using gothic script
A,B,C, Functions returning sets will be notated with an initial capital
letter. Lexical symbols are assumed to be words 6+ over a common alpha-
bet 6 (we use the set of letters and digits) and notated in bold face, e.g,
a, b, carry, Names of entities are notated in a sans-serif font, e.g. mux,
sel, add2,

When referring to components of systems defined as tuples, e.g., G =
(V, E), we will add the name of the system in angle brackets if ambiguities
exist. Using this convention, V could be clarified as V〈G〉.

Example 19 a = a ∈ A ∈ A, where the value of the variable a is the lexical symbol
a.

5.2 Structure and Behavior of Digital Circuits

In this section, we introduce graph-based representations for hierarchical,
regular digital circuits.

Clarification 20 In SDI, hierarchy signifies a containment hierarchy of cir-
cuits composed from subcircuits. Regularity is the multiple occurence of sub-
circuits with a common structure and behavior (Section 2.2, [Leng86]). Each
occurence is termed an instance of a common master.

All representations will be based on graphs extended with application-
specific components.

Definition 21 An extended graph G = (V, E, c1, . . . , cn) is a graph (V, E) ex-
tended with additional components c1, . . . , cn.

We assume that different extended graphs may be substituted for one an-
other as long as they have the required components (similar to inheritance in
modern programming languages). E.g., if a structure is defined as a “class of
extensions of (V, E, A, B)”, the set may as well contain extended graphs of the
forms, e.g., (V, E, A, B, Q), or (V, E, A, B, Q, Z), but not, e.g., (V, E, A, X).

5.2.1 Hierarchy

The next two definitions allow the description of hierarchical structures. This
is done by imposing constraints on the components of the extended graph of
Definition 21.

76

5.2 Structure and Behavior of Digital Circuits

Definition 22 A graph hierarchy (T, hier) consists of a hierarchy function
hier defined on a set T = {G1, . . . , Gn} of extended graphs such that hier(Gi) :
V〈Gi 〉 → T ∪ {⊥}, 1 ≤ i ≤ n. hier(Gi)(v) descends into the node graph un-
derlying a node v ∈ V〈Gi 〉. If v is a leaf node, hier(Gi)(v) = ⊥. The tree TG

induced by the repeated application of hier is the hierarchy tree TG = (V, E),
with V = T and

E = {(G, hier(G)(v)) | G ∈ T ∧ v ∈ V〈G〉 ∧ hier(G)(v) 6= ⊥}
GT is the class of all hierarchy trees.

Definition 23 Given a hierarchy tree TG, r (TG) ∈ V〈TG〉 is the root of TG.

In order to refer to any node within the node graphs of the hierarchy tree,
we need to introduce a hierarchical naming scheme.

Definition 24 A hierarchical name has the form “(graph ’/’)* (node ’/’)* node”
in BNF. The semantics for Gi /v1/v2/ . . . /vk are v1 ∈ V〈Gi 〉, v2 ∈ V〈hier(v1)〉,
. . . , and vk ∈ V〈hier(vk−1)〉.

A

B

C

ED

w
y z

w x
w

x

y x

y

z

w x y

x

w

A

B C D E

GT(a) (b)

hier

Figure 5.1: (a) Graph hierarchy T and (b) hierarchy tree TG

Example 25 The graph hierarchy T shown in Figure 5.1.a has T = {A, B, C, D, E}.
The hier-relations of the node graphs induce the hierarchy tree TG in Figure 5.1.b.
The hierarchical name of the top-left node in A is A/w. Its underlying node graph is
hier(A/w) = B, with hier(A/w/w) = ⊥. Thus, the node w in the node graph B is a leaf
node. Analogously, the rightmost node in A is A/z, with an underlying node graph
hier(A/z) = E, and V〈E〉 = {w, x, y, z} (relative to E), or V〈E〉 = {z/w, z/x, z/y, z/z} (rel-
ative to A), or V〈E〉 = {E/w, E/x, E/y, E/z} (relative to TG), or V〈E〉 = {TG/E/w, TG/E/x,
TG/E/y, TG/E/z} (absolute).

77

5 Fundamentals for Compaction and Microplacement

5.2.2 Regularity
We now extend our hierarchical structures with additional components to al-
low the description of regularity relations.

Definition 26 We define the class GR of regular hierarchy trees with roots
RR recursively as follows:

A regular hierarchy tree RG = (TG, Tmaster, master) is a hierarchy tree TG

in which for all node graphs G′ ∈ V〈TG〉
Tmaster(G′) = (U, itno) ∈ (GR ∪ {⊥})× (N0 ∪ {⊥})

master(G′) = (mr, itno) ∈ (RR ∪ {⊥})× (N0 ∪ {⊥})
defines the master tree U, the master root mr and the iteration number itno

such that

• The hierarchy subtree U ′ rooted at G′ is isomorphic to the hierarchy
subtree U rooted at mr = corrG(G′) = r (U) by some correspondence
corrG : V〈U ′〉 → V〈U 〉.
• For all node graphs G′′ in U ′ and the corresponding G = corrG(G′′) in U ,

G′′ and G are isomorphic by some correspondence corrV : V〈G′′〉 → V〈G〉.
No subtree U ′ may contain a node graph that occurs as a master root when

transitively applying master to the G′′ in U ′.
U ′ is termed an instance of U . master(G) = ⊥means that no such relation-

ship between hierarchy subtrees is defined.

While Definition 26 allows to express the master-instance relation, regular
circuits are composed by the multiple occurence of subcircuits. These can be
grouped by their common master, and identified by different iteration num-
bers.

Definition 27 Building on Definition 26, for a subtree U ′ rooted at G′, master(G′) =
(mr, itno), and U as the subtree rooted at mr: If itno ∈ N0, U ′ is part of a re-
lated set of instances. In this context, U ′ is called an iteration of U . If itno = ⊥,
no such relationship is defined.

Note that Definition 26 imposes constraints only on the nodes and edges
(isomorphism), and on the component master(G). Constraints on other exten-
sion components c1, . . . , cn will have to be expressed on a case-by-case base.

Example 28 Figure 5.2.a shows a regularity tree RG. With the exception of RG/D
and RG/E, all node graphs Q ∈ V〈RG〉∪V〈RH〉∪V〈RI〉 are assumed to have master(Q) =
(⊥,⊥).

For RG/D ∈ V〈RG〉, master(RG/D) = (RH/X,⊥). The regular hierarchy subtree U ′
rooted at RG/D, with V〈U ′〉 = {RG/D, RG/E}, is isomorphic to the regular hierarchy
tree U rooted at mr〈master(RG/D〉) = RH/X, with V〈U 〉 = {RH/X, RH/Y}.

Furthermore, each of the node graphs in V〈U ′〉 is isomorphic to the corresponding
node graphs in V〈U 〉. E.g., the node graph corresponding to RG/D in the instance
is corrG(RG/D) = RH/X in the master. The node in the master corresponding to the
upper-right node RG/D/x in D of the instance is corrV(RG/D/x) = RH/X/x.

78

5.2 Structure and Behavior of Digital Circuits

w x

w x

D

w
x

y

F

E

x

y

z

w

A

B

w
y z

x

w
x

y

X

Y

G

H

C

w x y

R

R

x

y

z

w

Z

IR

H Imaster(D) = (R ,) master(E) = (R ,)

w x

Figure 5.2: Regularity tree RG.

5.2.3 Grouping Bits

Datapaths usually don’t operate on single-bit quantities, but on multi-bit
words representing scalar values like numbers, characters, pixels in an image
etc. To generate fast layouts for the processing units, this parallel evaluation
of multiple associated bits should be modelled.

Clarification 29 A word w with a width n ∈ N consists of n separate boolean
values wi , 0 ≤ i ≤ n − 1, which determine the value x(w) of w. This is done
by assigning each wi a significance si ∈ Z. x(w) is then computed as x(w) =∑n−1

i=0 2si · wi . Note that this definition allows to express dual fractions (using
si < 0).

Example 30 The value 4.75 can be expressed as the 5-bit word w = 10011when
viewing the rightmost bit as w0, and using s0 = −2, s1 = −1, s2 = 0, s3 = 1, s4 = 2. w is
then evaluated as x(w) = 1 · 22 + 1 · 2−1 + 1 · 2−2 = 4+ 0.5+ 0.25= 4.75.

Definition 31 A variable t = (sym, sig) ∈ 6+×(Z∪{⊥}) consists of the symbol
sym〈t〉, representing a boolean value, and its significance sig〈t〉, which may
be undefined. It may be abbreviated as sym〈t〉sig〈t〉, with the subscript being
ommitted if sig〈t〉 = ⊥.

79

5 Fundamentals for Compaction and Microplacement

5.2.4 Structure of Circuits: Network Skeleton
With the concepts defined thus far, we can now model the structure (intercon-
nection pattern) of hierarchical, regular circuits processing multi-bit words.

Clarification 32 In context of this text, a digital circuit of interconnected
hardware units is called a network. A unit u applies n(u) ∈ N0 local boolean
functions of type Bm(u) → B to m(u) ∈ N0 inputs to compute n(u) ∈ N0 outputs.
Inputs and outputs of units are collectively referred to as terminals. They
form the endpoints of connections between units within the network, such
that at most one output terminal connects to zero or more input terminals2.

Primary ports are inputs or outputs that are externally visible and could
be used to connect a given circuit to other circuits.

Networks that do not contain storage elements (flip-flops, latches, etc.), but
only boolean functions, are called combinational, otherwise they are called
sequential. When formulating functions, the “=” operator is used to denote
a combinational evaluation, while “:=” indicates the presence of a D-flipflop
(the only storage element treated in this text). This is still only a structural
notation, and should be identified with the assignment operator of imperative
programming languages.

The hierarchy and interconnection pattern between units in a network de-
termine the connectivity structure of a circuit. Together with the local func-
tions of its units, it determines the behavior of circuit. This behavior could be
expressed as a global function of primary input ports (PI) to primary output
ports (PO).

Example 33 y = ab is a combinational function computing the state of the output
y as a logic “and” of the states of the inputs a, b. Q := D models a basic D-flipflop
(the clock signal is not considered explicitly). A D-flipflop with clock enable e could be
expressed as Q := e′Q+ eD3.

Definition 34 A network skeleton NS = (V, E, Ttn, In, Pi, Po, Ui, Uo, ptype,
loc, h, l) is an extended graph.

1. A node in V is a unit or a primary port, with V being partitioned into the
set of primary input ports Pi, the set of primary output ports Po, and the
set of units In.

2. A node v ∈ V has a set of variables partitioned into the input variables
Ui(v) and the output variables Uo(v). Primary inputs have only a single
output variable and no input variables, primary outputs have only a
single input variable and no output variables.

3. For a node v ∈ V, To(v) = {v} × Uo(v) are its output terminals, Ti(v) =
{v} ×Ui(v) are its input terminals.

2 Note that dangling (unconnected) terminals may exist. 3 The prime (’) indicates inversion
(logical “not”).

80

5.2 Structure and Behavior of Digital Circuits

4. Ttn ⊆ {(to, ti) | ∃ u, v ∈ V : to ∈ To(u) ∧ ti ∈ Ti(v)} are the two-terminal
nets. For any input terminal ti , we must have | Ttn∼ (ti)| ≤ 1.

5. The edges are E = {(u, v) | ∃ p, q : ((u, p), (v, q)) ∈ Ttn}.
6. ptype : Pi∪Po→ {control, data, hybrid} determines the port type of each

primary port.

7. loc : V → (Z ∪ {⊥})2 assigns each node of NS a location (x, y) (Section
5.3.1).

8. h : V → (N0 ∪ {⊥}) is the height of each node (Section 5.3.1).

9. l : V → (N0 ∪ {⊥}) is its length (Section 5.3.1).

The constraint on the TTNs prevents short circuits by allowing at most a
single output terminal to connect to a given input terminal. An input terminal
may remain unconnected, however.

Data ports are usually connected horizontally within the datapath (Section
2.3.1). However, exceptions like carry-chains or the data propagation in a
shift-register have a vertical data flow. A control port always has a vertical
signal flow and can be used to connect the datapath to the external controller.
Note the hybrid ports that connect to both the datapath and the controller.

Definition 35 A network skeleton tree TS = (RG, port) consists of a regular
hierarchy tree RG and the functional port.

1. All node graphs in RG are network skeletons.

2. In any node graph G of RG, a unit v ∈ In〈G〉 with H = hier(v) 6= ⊥ is a
non-leaf unit. It must have Ui(v) = Ũo(Pi〈H〉) and Uo(v) = Ũi(Po〈H〉).

For the regularity relations in RG, we have to constrain the network skele-
tons:

3. Given any instance network skeleton I and its master network skeleton
M = corrG(I), the two-terminal nets correspond by

((u, p), (v, q)) ∈ Ttn〈I 〉 ⇔ ((corrV (u), p), (corrV (v), q)) ∈ Ttn〈M〉.

4. The instance primary inputs have ĉorrV (Pi〈I 〉) = Pi〈M〉 (analogously for
outputs).

5. The unit input variables (output variables) ports are constrained by
Ui〈I 〉 = Ui〈M〉 ◦ corrV (Uo〈I 〉 = Uo〈M〉 ◦ corrV).

6. Port types also have ptype〈I 〉 = ptype〈M〉 ◦ corrV .

81

5 Fundamentals for Compaction and Microplacement

For each node graph Gi , the functional port〈Gi 〉 assigns each non-leaf unit
v ∈ In〈Gi 〉 a function

p(v) : Ui〈Gi 〉(v) ∪Uo〈Gi 〉(v)→ Pi〈hier(v)〉 ∪ Po〈hier(v)〉,
which maps the variables of a terminal to the corresponding primary ports at
the next lower hierarchy level4. For leaf units v, p(v) = ⊥.

Definition 36 As a shorthand for working with terminals t = (u, (x, b)), we
define sig(t) = b, sym(t) = x, and nod(t) = u.

Definition 37 The set of terminal fanouts for an output terminal to is defined
as Pfo(to) = T̃tn(to). Conversely, the set of terminal fanins for an input termi-
nal ti is defined as Pfi(ti) =Ttn∼ (ti).

The set of fanouts of a unit u is defined as Fo(u) = Ẽ(u), the set of fanins is
Fi(v) =E∼ (v).

Definition 38 For an output terminal to in a network skeleton, n = {to} ×
Pfo(to) is a net n with pins Pins(n) = {to} ∪ Pfo(to), source source(n) = to, and
sinks Sinks(n) = Pfo(to). A multi-terminal net (MTN) is a net that may have
|Sinks(n)| ≥ 1. A two-terminal net always has |Sinks(n)| = 1.

Observe, that in this definition, NS is not required to be acyclic. This will
be used later on to allow feedback on sequential elements.

Example 39 In Figure 5.3, two network skeletons A, B are used as node graphs in
a larger regular hierarchy tree (not shown). E.g.,

V〈A〉 = {A/a, A/b, A/c, A/d, A/e, A/f, A/g}
, with Pi〈A〉 = {A/a, A/b}, and Po〈A〉 = {A/f, A/g}.

Consider the unit A/c ∈ In〈A〉: it has Ui〈A/c〉 = {(a, 0), (a, 1)}, and Uo〈A/c〉 =
{(x,⊥), (y, 0)}. This leads, e.g., to the output terminals To〈A/c〉 = {(A/c, (x,⊥)),
(A/c, (y, 0))}.

Using this notation, the two-terminal net ((A/b, (a, 0)), (A/c, (a, 0))) ∈ Ttn〈A〉
makes the output variable (a, 0) of the primary input A/b available as the input
variable (a, 0) of the unit A/c. Note that the solid arrows represent TTNs, not
edges. E.g., (A/c, A/e) ∈ E〈A〉. The primary ports have associated port types, e.g.,
ptype〈A/f〉 = control.

The unit A/c is a non-leaf unit, since hier(A/c) = B. Note that it has {(a, 0), (a, 1)}
= Ui〈A/c〉 = Ũo(Pi〈hier(A/c)〉) = Ũo(Pi〈B〉) = Ũo({B/a, B/b}) = {(a, 0), (a, 1)}. Analo-
gously, Uo〈A/c〉 = Ũi(Po〈hier(A/c)〉).

Furthermore, examples for terminal fanouts and fanins include Pfo((A/c, (x, ⊥)))

= {(A/d, (a,⊥)),(A/e, (a, 0))}, and Pfi((A/c, (a, 0))) = {(A/b, (a, 0))}. The correspond-
ing fanouts and fanins are Fo(A/c) = {A/d, A/e} and Fi(A/c) = {A/a, A/b}.
4 Note that the function nature of p(v) restricts the valid choices of variables for primary
ports.

82

5.2 Structure and Behavior of Digital Circuits

a,
f,

a,

a,

x,

x,

x,

primary
input

primary
output

two-terminal
net

a

b

d

e

f

g

a

b

c

d

e

f

data

data

data

data

data

controldata

data

a,0

a,1

a,1
a,0

y,0
a,0

b,0
x,0 g,0

a,1

a,0

x,

y,0

c

hier(c)

x,

unit

unit port

A

B

hier(d)

hier(e)

b,0

Figure 5.3: Network skeletons

An example for a multi-terminal net is n = {((A/c, (x,⊥)), (A/d, (a,⊥))), ((A/c,
((x,⊥))), (A/e, (a, 0)))}, with Pins(n) = {(A/c, (x,⊥)), (A/d, (a,⊥)), (A/e, (a, 0))},
source(n) = (A/c, (x,⊥)), and Sinks(n) = {(A/d, (a,⊥)),(A/e, (a, 0))}.

To given an example for the use of port, consider port〈A〉(A/c)(a0) = B/b, or
port〈A〉(A/c)(x) = B/e.

5.2.5 Behavior of Circuits: Network

By annotating the nodes of a network skeleton with the local functions men-
tioned in Clarification 32, we add a behavioral description.

Definition 40 A network N = (NS , F, seq) is a network skeleton NS extended
with the components F : T̃o(In)→ BOOL and seq : T̃o(In)→ B .

The functional F associates a boolean function F(to) with each output ter-
minal to = (v, q), such that F(to) : B |Ui(v)| → B . The support variables of F(to)
are Ui(v).

seq(to) is TRUE iff to is delayed by a storage element5.

Definition 41 A network tree is a network skeleton tree in which exactly the
leaves are networks, all other node graphs are network skeletons.

5 For simplicity, we consider only D-flipflops with a common implicit clock.

83

5 Fundamentals for Compaction and Microplacement

For the regularity constraints, the isomorphism is extended to F and seq
by

1. For the local functions of v ∈ In〈I 〉, q ∈ Uo(v), we require

F〈I 〉((v, q)) = F〈M〉((corrV (v), q)).

2. The sequential flag is also seq〈I 〉((v, q)) = seq〈M〉((corrV (v), q)).

This is an SDI specific restriction: behavior is explicitly defined only in
the leaves of the hierarchy, there are no hierarchical networks. Thus, in a
network N and v ∈ In〈N〉, hier(v) = ⊥.

Note that the local functions themselves are not changed: They are defined
in terms of the variables Ui(v) and Uo(v), which remain unaltered during
instantiation (Definition 35).

For brevity, we will refer to the components of the network skeleton un-
derlying a network without explicitly qualifying them with “NS〈N〉”. Thus, in
context of the network N, V refers to V〈NS〈N〉〉.
Example 42 Consider again the network skeleton B in Figure 5.3. It can be ex-
tended into a network by defining F〈B〉 and seq〈B〉. E.g., F〈B〉 : (B/c, (x,⊥)) 7→ g, and
F〈B〉 : (B/d, (x,⊥)) 7→ h, with g = ab0, h = a′6. Note that the support variables for
each function are the input variables: Ui(B/c) = {a, b0}, Ui(B/d) = {a}.

By also defining seq〈B〉 : {((B/c, (x,⊥))) 7→ TRUE(B/d, (x,⊥)) 7→ FALSE}, we
might express that the function g is delayed by a storage element, while the function
h is purely combinatorial.

Restrictions for Logic Synthesis

While the networks defined in Definition 40 are very general, common logic
synthesis and technology mapping methods only work on a more restricted
structure.

Definition 43 A gate network is a network in which

1. all units only have a single output terminal each, and

2. primary ports in the gate network are uniquely identified by their vari-
able, and

3. for each unit v ∈ In, s̃ym(To(v)) ∩ s̃ym(Ti(v)) = ∅, and

4. all variables (x, b) with a given variable symbol x either have signifi-
cances b ∈ Z, or all have b = ⊥.

6 We are now using the abbreviated notation for variables, see Definition 31.

84

5.2 Structure and Behavior of Digital Circuits

Items 1 and 2 allow the identification of units and primary ports by their
variables, item 3 distinguishes of input and output terminals by their symbols.
The use of item 4 will become evident in Definition 46.

Definition 44 A gate network tree is a network tree in which all leaves are
gate networks.

5.2.6 Master-Slices and Slices
Bit-sliced circuits are characterized by the multiple occurence of subcircuits
with the same connectivity structure and behavior, but varying bit-significances.

Definition 45 A master-slice Nms= (N, voffs, h) is a gate network N extended
with the vertical significance offset voffs, and the height h.

1.

voffs :
⋃
v∈V

(To(v) ∪ Ti(v))→ (Z\{0})∪ {⊥}

2. h ∈ N0 (see Section 5.3.3).

3. The variable and offset of a terminal t = (v, (x, b)), with voffs(t) = s, may
be referred to as xb,s, and is called a symbolic significance.

Definition 46 A master-slice tree is a gate network tree in which exactly the
leaves are master-slices.

Regularity for master-slices is defined by the rules

1. Master-slices are not only instantiated, but iterated. In the instance
z with iteration number i of a master-slice s in the master-slice tree,
master(z) = (s, i).

2. For an iteration si of a master-slice s, h〈si 〉 = h〈s〉.
3. voffs is not inherited by the instances, it is ignored when determining

isomorphism.

4. The vertical significance offset alters the significance of variables in the
networks of the instances depending on the iteration number. The sig-
nificance b′ of a terminal

(v, (x, b′)) ∈
⋃

v∈V〈si 〉
(Ti(v) ∪ To(v))

85

5 Fundamentals for Compaction and Microplacement

in the instance si relates to its corresponding terminal

(corrV (v), (x, b)) ∈
⋃

v∈V〈m〉
(Ti(v) ∪ To(v))

in the master m as

b′ = b+ itno〈si 〉 · voffs〈m〉((corrV (v), (x, b))).

Note that item 1 also alters the local function definitions, since they rely
on a unit’s input terminals as support variables.

a
u

v

w x

b

a

b

y

x

0,1

0,1

0,1

0,1

0,1

0,1

s 0

s 1

s 0

s 1

s 1vitno() = 1 s 1h() = 1

s 0h() = 1s 0

a
u

v

w x

b

a

b

y

x

a
u

v

w x

b

a

b

y

x

0

0

0

0

0

0

1

1
1

1

1
1

M

master() =

master() = (M,1)

(M,0)

h(M)=1

vitno() = 0

Figure 5.4: Iterating a master-slice to obtain slices

voffs assigns each terminal a value, by which its significance will be off-
set when the master-slice is iterated to produce slices. In Figure 5.4, M is a
master-slice. Note the variables annotated with voffs. E.g., voffs(b0,1) = 1.

Definition 47 A slice Ns is a gate network that is an iteration of the master-
slice mr〈master(Ns)〉.

In slices, the iteration number component itno〈master(Ns)〉 is referred to
as vertical iteration number, abbreviated vitno〈Ns〉 ∈ N0.

Figure 5.4 shows two slices s0, s1 of the master-slice M. Note that voffs〈M〉
has not been propagated into the instances.

Definition 48 A slice tree is a gate network tree in which exactly the leaves
are slices.

86

5.2 Structure and Behavior of Digital Circuits

Example 49 In Figure 5.4, we will follow the output terminal of unit M/w in the
master-slice M through an iteration to obtain the slice s1, with vitno〈s1〉 = 1. In the
master-slice, the terminal is t = (M/w, (y, 0)), with voffs〈M〉(t) = 1. The correspond-
ing terminal in s1 is t ′ = (s1/w, (y, b′)). We compute its bit-significance

b′ = sig(t)+ vitno〈s1〉 · voffs〈M〉(t) = 0+ 1 · 1= 1.

Thus, the output terminal of s1/w is t ′ = (s1/w, (y, 1)).
We proceed analogously for the input terminals to obtain (s1/w, (a, 1)), (s1/w, (b, 1)).

Now assume that F(M/w, y0,1)) = a0,1b0,1. Since this local function uses the input
terminals as support variables, and these have been changed during iteration, the
corresponding function in the slice becomes F((s1/w, (y, 1))) = a1b1.

Constraints on Master-Slices

We have to impose further constraints on master-slices to allow only the linear
or folded bit-sliced units as discussed in Section 2.3.1.

Definition 50 A terminal t ∈ ⋃
v∈V〈Nms〉(Ti(v) ∪ To(v)) with voffs〈Nms〉(t) = ⊥

has static significance, otherwise it has dynamic symbolic significance.

All constraints described in this subsection apply only to dynamic signifi-
cances.

Clarification 51 The set of significances S = {lsb, . . . , msb} ⊂ Z is logically
complete. It is delimited by its least-significant bit) lsb(S) and most-significant
bit) msb(S). Two sets of significances S1, S2 logically abut if either lsb(S1)+1 =
msb(S2) or lsb(S2)+ 1= msb(S1).

The datapaths treated in this text are required to consist only of logically
complete bit-sliced units. E.g., we will not consider a unit which processes bits
1, 4, 5, 7 in an 8-bit datapath. However, a unit processing bits 0, 1, 2, 3, 4, 5, 6, 7
in a 32-bit datapath is logically complete (all significances between its LSB 0
and MSB 7 are handled). Even though it processes only a subset of the 32 bits
in a word, the subset processed is contiguous.

One way to achieve this logical completeness in a bit-sliced datapath unit
would be to require the significances of all bit-slices in the unit to logically
abut, and each bit-slice itself to be logically complete. However, these con-
straints prove too restrictive to handle the valid case of a unit folded as in
Figure 5.5. While the entire unit is logically complete (all significances be-
tween 0 and 7 are being processed), an individual bit-slice is not logically
complete. E.g., the bottom-most bit-slice (iteration number 0) processes bits 0
and 7, but none of the bits in between. To handle the case of such alternately
folded units, a more complicated model is required.

Definition 52 1. Given the master-slice m, the set of ascending terminals
T+(m) is defined as

T+(m) = {t ∈
⋃

v∈V〈m〉
(Ti(v) ∪ To(v)) | voffs(t) ≥ 0}.

87

5 Fundamentals for Compaction and Microplacement

a0

a7

a1

a2

a3

a4

a5

a6

0

1

2

3
4

5

6

7 y7

y6

y5

y4

y2

y1

y3

y00

1

2

3

iteration numberbit-significance

0,1

7,-1 7,-1

0,1

Master-slice M

u

v

w

x

a

a y

y

Figure 5.5: Logical completeness and abutment in an alternately folded unit

2. The set of descending terminals T−(m) is defined analogously.

3. The least-significant ascending significance for a symbol x is defined as

lsb+sym(x, m) = min{sig(t) | t ∈ T+(m) ∧ sym(t) = x}.

4. Conversely, the most-significant descending significance is defined as

msb−sym(x, m) = max{sig(t) | t ∈ T−(m) ∧ sym(t) = x}.

With these concepts, we can now precisely formulate the constraints on
master-slices to build logically complete bit-sliced units.

Definition 53 A valid master-slice m is a master-slice that fulfills the follow-
ing constraints:

1. All terminals t ∈ T+(m) (t ∈ T−(m)) with the same symbol x = sym(t)
must have the same voffs(t), which is abbreviated to voffs+(x) (voffs−(x)).

2. For each symbol x occurring on any ascending terminal t ∈ T+(m), and
all significances b ∈ {0, . . . , voffs+(x)− 1}, there exists a terminal

(v, (x, lsb+sym(x, m)+ b)) ∈ T+(m).

3. For each symbol x occurring on any ascending terminal t ∈ T+(m),

voffs+(x) = |{(v, (x, b)) | ∃ v, b : (v, (x, b)) ∈ T+(m)}|.

4. For each symbol x occurring on any descending terminal t ∈ T−(m), and
all significances b ∈ {voffs−(x)+ 1, . . . , 0}, there exists a terminal

(v, (x, msb−sym(x, m)+ b)) ∈ T−(m).

88

5.2 Structure and Behavior of Digital Circuits

5. For each symbol x occurring on any descending terminal t ∈ T−(m),

voffs−(x) = −|{(v, (x, b)) | ∃ v, b : (v, (x, b)) ∈ T−(m)}|.

Gms is the class of valid master-slices.

In Definition 53, Item 1 is needed for logical completeness. Items 2 and 4
also enforce logical abutment. Items 3 and 5 are required to prevent signifi-
cance collisions between different iterations.

Example 54 Assume an invalid master-slice m containing the primary port vari-
ables and vertical significance offsets a0,2, a1,2, a2,2. m fulfills Definition 53.1 and .2.
However, when iterating m twice, we would find a variable a2 on ports both in iter-
ation 1 (due to the altered significance for a0,2: 0+ 1 · 2 = 2) and in iteration 0 (the
significance of a2,1 becomes 2+ 0 · 2= 2 during iteration).

Enforcing Item 3 on the example, we determine that a corrected set of symbolic
significances would be (a, 0, 3), (a, 1, 3), (a, 2, 3). Now, the significance collision doesn’t
occur.

From now on, we assume that all master-slices are valid.

Example 55 We now apply Definition 53 to the master-slice M in Figure 5.5. For
brevity, we will consider only the primary ports. The ascending terminals are T+(M) =
{(u, a0,1), (w, y0,1)}, the descending terminals are T−(M) = {(v, a7,−1), (x, y7,−1)}.

Consider, for example, the symbol a: Its least-significant ascending symbolic sig-
nificance is lsb+sym(a, M) = 0, while its most-significant descending symbolic signifi-
cance is msb−sym(a, M) = 7.

Since each of the symbols {a, y} in M occurs exactly on one ascending (descending)
terminal, Definition 53.1 holds by default.

Next, we demonstrate the application of Definition 53.2 on the symbol a. It occurs
on the terminals {(u, a0,1), (v, a7,−1)}, of which only terminal (u, a0,1) ∈ T+(M). The
interval for b is thus {0, . . . , voffs+(a)− 1} = {0}.

In order to fulfill Item 2, a terminal with the symbol a, and with the significance
0 (the sole value for b in the interval) must exist in T+(M). Since such a terminal
does indeed exist in the form of (u, a0,1) ∈ T+(M), we have fulfilled the requirements
of Definition 53.2 for a.

Definition 53.3 also holds, since the number of ascending terminals with the sym-
bol a is 1, and the single terminal has a voffs+ of 1.

By applying Definition 53.2 through 53.5 to the other symbols, we find that they
hold in all cases. Thus, M is a valid master-slice.

5.2.7 V-Zones: Multi-Iteration Circuits

We will now introduce circuits composed of multiple iterations of a single
master-slice. This intermediate step in the construction of circuits consist-
ing of instances of arbitrary master-slices reduces computation times by the
exploitation of regularity.

89

5 Fundamentals for Compaction and Microplacement

Definition 56 A v-zone Nv = (NS , vmaster, repl), is a network skeleton NS

extended with the components vmaster ∈ Gms, and repl ∈ N .7 It is composed
of repl iterations of the single master-slice vmaster. In context of a v-zone, a
master-slice iteration is referred to as a v-segment.

1. | In | = repl.

2. Internal nodes are the v-segments with vertical iteration numbers 0, . . . ,
repl−1 of the master-slice vmaster.

Consider the difference between vmaster〈Nv〉 and master(Nv). The first
specifies the network that is iterated inside the v-zone, while the second would
indicate that the entire v-zone is an instance of a “master-v-zone”, a concept
not required in SDI.

Definition 57 A v-zone tree is a slice tree that has a v-zone Nv at the root,
with each internal node of Nv having an underlying (via hier) slice.

a

a

b

b

3

3

4

4

a

a

b

b

1

1

2

2

c0

y

y

1

2

y

y
4

3

B0

B1

a

a

b

b

3

3

4

4

c1

a

a

b

b

1

1

2

2

c0

y

y
4

3

y

y

1

2

0
B

1B

0
B

1Bmaster()

= (, 1)B

B= (, 0)

y

y

b

a

b

a

c

B
2,2

2,2

1,2

1,2

0,1

1,2

2,2

N repl(N) = 2

master()

hier(B0) hier(B1)

vitno = 1

vitno = 0

v z

vvmaster(N)

Figure 5.6: v-zone tree with root Nv, showing hierarchy and regularity

7 For brevity, we ommit the “NS 〈Nv〉” qualifier (similar to the notation for components of a
network).

90

5.2 Structure and Behavior of Digital Circuits

Example 58 Figure 5.6 shows a v-zone tree rooted at Nv, composed of two v-segments
B0, B1 (with the same connectivity structure and behavior), and an internal connec-
tion between them (for clarity, we have ommitted the terminals in the figure). Nv has
the repl〈Nv〉 = 2 internal nodes B0, B1 representing the two v-segments and a TTN
((B0, (y, 2)), (B1, (c, 1))) for the inter-v-segment connection. Both nodes have the same
internal connectivity structure and behavior as the master-slice vmaster〈Nv〉 = B.
The networks underlying the v-segments of Nv are hier(B0) = B0 and hier(B1) = B1,
with vitno〈B0〉 = 0 and vitno〈B1〉 = 1. Since both slices have the same master-slice,
they share a common connectivity structure and behavior. This relationship is repre-
sented by mr〈master(B0)〉 = mr〈master(B1)〉 = B.

Note again the application of Definition 53 to ensure that B is a valid master-slice,
and the use of Definition 46 to calculate the bit-significances in the v-segments.

5.2.8 Stacks: Multi-v-zone Structures

With v-zones describing the iteration of instances of the same master-slice,
and the v-zone tree constraining their hierarchical composition, we now define
circuits composed of multiple v-zones, thus containing instances of different
master-slices. Following our aim of exploiting regularity, we also allow the
iteration of these structures. Due to the conceptual similarity to the relation
between master-slices and slices, we will defer all examples and figures until
Figure 5.7, which demonstrates some of these higher-level concepts in concert.

We will define a master-stack, which is a network skeleton that contains
one or more v-zones, and a stack, which is a network skeleton with the same
connectivity structure and behavior as its master-stack.

Definition 59 A master-stack NmS= (NS , hoffs, l, Vplace) is a network skele-
ton NS extended with the horizontal significance offset hoffs, the length l, and
the vertical topological placement Vplace.

1. hoffs ∈ N .

2. l ∈ N0 (Section 5.3.3).

3. Each v ∈ In is a v-zone.

4. The master-slice of each v-zone must be unique in the entire master-
stack.

5. Vplace is a sequence of the v ∈ In describing their bottom-top topological
placement (Definition 84).

Definition 60 A master-stack tree is a network skeleton tree with a master-
stack NmS at the root, and only v-zone trees as subtrees via h̃ier(In〈NmS〉).

All v-segments si within the entire master-stack tree have l〈si 〉 = l〈NmS〉.

91

5 Fundamentals for Compaction and Microplacement

Iterating a stack proceeds analogously to Definition 46 for master-slices.
For sake of brevity, we will abstain from explicitly defining the horizontal
iteration functions for stacks, with one important exception: The iteration of
a master-stack alters the bit-significance in the v-segments occuring as leaves.
This changes (by Definition 35) the variables of all primary ports.

Definition 61 A stack NS is a network skeleton that is an iteration of the
master-stack mr〈master(NS)〉.

In stacks, the iteration number component itno〈master〉 is referred to as
horizontal iteration number, abbreviated hitno〈NS〉 ∈ N0. A stack has the
same length as its master-stack.

Stacks are referred to using their master-stack and iteration number, no-
tated as masterhitno.

Definition 62 A stack tree is a network skeleton tree with a stack NS as root,
and only v-zone trees as subtrees via h̃ier(In〈Nms〉).

All bit-significances in the entire network skeleton tree U ′ rooted at NS are
offset by hoffs〈mr〈master〉〉·hitno over their corresponding significances in the
regular hierarchy tree rooted at mr〈master〉.

Note that, in contrast to master-slices, we don’t support descending bit-
significances for master-stack iteration, hoffs〈NmS〉 is always positive.

Example 63 Consider a terminal t = (M/u, a0,1) in a master-slice M whose in-
stances (=v-segments) occur in a v-zone z in a master-stack mS, with hoffs〈mS〉 = 4.

In the third vertical iteration s3 of M in z in mS, the corresponding terminal be-
comes (s3/w, a3) (significance computation during master-slice iteration, Definition
46).

In horizontal iteration S2 of mS (note: this is a master-stack iteration, not a
master-slice iteration!), the v-segment s′3 in v-zone z′ in S2 is assumed to be corre-
sponding to s3 in z in mS.

The variable significance for the underlying v-segments of S2 have been altered as
per Definition 62: After the stack iteration, the significance of our sample terminal
has been offset by hitno〈S2〉 · hoffs〈mS〉 = 2 · 4= 8, leading to (s′3/u, a11).

In another similarity between a v-zone (containing iterations of a master-
slice) and master-stack (containing v-zones), certain constraints have to be
imposed on the v-zones in a master-stack to guarantee logical completeness
and abutment between individual v-zones and stacks. Clashes of duplicate
variables (same symbol and same significance) also have to be avoided. For
brevity, we will define these constraints in prose. However, they could as well
be formulated more formally similar to Definition 52.

Definition 64 A valid master-stack NmS fulfills the criteria for logical abut-
ment and completeness. To this end, each symbol occuring at the top level of
NmS must occur with all significances between and including its least- and
most-significant occurrences. Furthermore, all variables on primary ports
must be unique before and after iteration.

GmS is the class of all valid master-stacks.

92

5.2 Structure and Behavior of Digital Circuits

5.2.9 H-Zones: Multi-Stack Structures
Analogously to the step from v-segments to v-zones, we now ascend to the
next higher level of hierarchy by introducing circuits composed of multiple
iterations of the same master-stack.

We will define the h-zone, a structure composed of one or more iterations
of a single master-stack8. In context of a h-zone, a master-stack iteration will
be referred to as a h-segment.

Definition 65 A h-zone Nh = (NS , hmaster, repl), is a network skeleton NS

extended with the components hmaster ∈ GmS and repl ∈ N .

1. | In | = repl.

2. Internal nodes are the h-segments with horizontal iteration numbers
0, . . . , repl−1 of the master-stack hmaster.

Definition 66 A h-zone tree is a network skeleton tree that has a h-zone Nh

at the root, with each internal node of Nh being the root of an underlying (via
hier) stack tree.

As before, we enforce our constraints for logical abutment, completeness,
and unique variables.

Definition 67 To guarantee logical abutment and completeness within a h-
zone Nh, each symbol x occurring at the top-level of Nh must occur with all sig-
nificances between and including its least- and most-significant occurrences.
Furthermore, all variables on primary ports must be unique.

Example 68 Figure 5.7 shows the hierarchy (hier) and regularity (master) rela-
tions from master-slice up to h-zone using the example of a left-shifter. As before, we
ommitted terminals and node names for clarity.

The instance hierarchy at the left side has the h-zone H′ at the top-level. It con-
sists of the repl〈H′〉 = 2 iterations H′/S0, H′/S1 of the master-stack hmaster〈H′〉 = S.
The structure underlying H′/S1 is the stack hier(H′/S1) = hmaster〈H′〉1 = S1.

This stack inherits the connectivity structure and behavior from its master-stack
master(S1) = S. Since S consists only of the single v-zone S/Z, so will the stack S1: it
consists only of S1/Z.

While connectivity structure and behavior of the of the v-zone in the master
and instance hierarchy are also identical, they are different but isomorphic graphs:
hier(S1/Z) = Z′, and hier(S/Z) = Z. This represents the constraint that hier-relations
may not cross between master and instance regular hierarchy trees.

With vmaster〈Z′〉 = vmaster〈Z〉 = s, and repl〈Z′〉 = repl〈Z〉 = 4, we describe the
internal structure of the v-zones as containing v-segments Z′/s0, Z′/s1, Z′/s2, Z′/s3 in
the instance, and Z/s0, Z/s1, Z/s2, Z/s3 in the master hierarchy.

8 Note that this hierarchy ordering is different from the one used in the module-generators

93

5 Fundamentals for Compaction and Microplacement

q = a sh’ + bot sh q = a sh’ + bot sh

a
a
a
a 4

5

6

7

a
a
a
a 0

1

2

1

3

6

7

0

1

2

3

y
y
y
y

5

4y
y
y
y

S

S

hier(S)

1

3

a
a
a
a

bot
sh ctl

0

1

2

3

hier(s)3

Master-slice

s

a

sh

top
ybot

0,1

0,1

0,1

0,1

ctl
0,1 0,1 0,1

0

master(s)3

hier(s)

q = a sh’ + bot sh

y
y
y
y
topa

a
a
a

bot
sh ctl

1S 1

7

6

5

4

7

5

6

4

Stack

1

Z repl(Z) = 4

V-zone

s

s

s

s

0

1

2

3

bot

top

a

a

a

a y

y

y

y
sh ctl

V-zone

s

s

0

1

2

3

bot

top

a

a

a

a y

y

y

y
sh ctl

7 7

6 6

5 5

4 4

Z’

s

s

H-zone

bot
sh ctl

top

H’

hmaster(H’)

repl(H’) = 2

repl(Z’) = 4

hier(Z)

y
y
y
y
top

0

1

2

3

S hoffs(S) = 4

Master-stack

hitno(S) = 1

Z

hier(Z)

master(S)

Z

=(S,1)

3

1

2

3

0

1

2

0

= (s,3)

vmaster(Z’)

3

a

sh

top
ybot

ctl

V-segment

s3 3vitno(s) = 3

3

3

3

3

3 3 3

a

sh

top
ybot

ctl

V-segment

3 3

7

7

7

7

7 7 7

vitno(s’) = 3

master(s’)

s’

vmaster(Z)

= (s,3)

h=1 l=

h=1 l=2 h=1 l=2

l=2l=2

Figure 5.7: From v-segment to h-zone: hierarchy and regularity relations

94

5.2 Structure and Behavior of Digital Circuits

Each of these v-segments has the same master-slice, e.g.

master(Z′/s3) = master(Z/s3) = vmaster〈Z〉 = vmaster〈Z′〉 = s.

Since s is a gate network, it can actually define behavior in terms of its local functions.
All other abstraction levels can express behavior only by the upwardly-propagated v-
segment functions and their own interconnection pattern.

After describing the hierarchical and regular structure composition, we will now
examine the computation of bit-significances, using the primary input port with the
symbolic significance a0,1 as an example. When considering it inside of s′3, it should
become the variable a3 (Definition 46). However, since s′3 (as shown in Figure 5.7) is
used in the larger context of S1, the bit-significances have been altered during stack-
iteration as described in Definition 61: Since hoffs〈mr〈master(S1)〉〉 = hoffs〈S〉 = 4,
each stack-iteration will offset its underlying significances by 4. Thus, with s′3 oc-
curing in the first iteration, the symbolic significance a0,1 will actually become the
variable a3+4 = a7. The hierarchical nature of this significance-alteration is also ap-
parent in h-zone Z′, which also has its significances offset by 4 over its corresponding
h-zone Z in the master hierarchy.

After this demonstration, we might question the use of separate v-zones
and h-zones. After all, we could just have iterated the master-slice s eight
times for the same result (after adding the required nets for sh, top, and
bot between the instances). However, the origins of the names v-zone (“verti-
cal zone”) and h-zone (“horizontal zone”), v-segment (“vertical segment”) and
h-segment (“horizontal segment”), as well as “vertical” and “horizontal sig-
nificance offsets” already hint at a dependency between these entities and
geometric layout, which will be revealed in Section 5.3.

5.2.10 Modules: Multi-h-zone Structures

Similar to the relation between v-zones and a stack, we now describe circuits
composed of iterations of different master-stacks. As before, we will allow the
instantiation of these structures to form even more complex circuits.

To this end we will define master-modules which contain one or more h-
zones. An instance of a master-module is called a module and has the same
connectivity structure and behavior as its master-module.

Definition 69 A master-module NmM = (NS , compactable, Hplace) is a net-
work skeleton NS extended with the components compactable ∈ B and the
horizontal topological placement Hplace.

1. Each internal node v is a h-zone.

2. For all v ∈ In, each hmaster〈v〉 may occur only once.

3. compactable is TRUE iff NmM represents a soft-macro (Explanation 5).

4. Hplace is a sequence of all v ∈ In describing their left-right topological
placement (Definition 84).

95

5 Fundamentals for Compaction and Microplacement

Definition 70 A master-module tree is a network skeleton tree with a master-
module NmM at the root, and only h-zone trees as subtrees via h̃ier(In〈NmM〉).

Note that master-modules are only instantiated, not iterated: All bit-sig-
nificances have already been computed and do not change between instances.

Definition 71 A module NM is a network skeleton. It has the same connec-
tivity structure and behavior as its master-module master.

Definition 72 A module tree is a network skeleton tree with a module NM at
the root, and only h-zone trees as subtrees via h̃ier(In〈NmM〉).

For purposes of regularity, the components compactable〈mr〈master(NM)〉〉
and Hplace are not propagated from master-module into modules, and dis-
regarded when establishing the isomorphism between master and instance.

Observe the difference between the master-module/module relation and,
e.g., the master-slice/slice relation: While the slices of the same master-slice
are related by their iteration numbers, no such link exists between modules of
the same master-module. Modules are only related by their common master-
module (Clarification 20 and Definition 26), no other kind of dependency ex-
ists.

As usual, we extend the logical abutment and completeness constraints to
encompass this level of the hierarchy.

Definition 73 A valid master-module NmM fulfills the criteria for logical abut-
ment and completeness. To this end, each symbol x occurring at the top-level
of NmM must occur with all significances between and including its least- and
most-significant occurrences. Furthermore, variables on primary ports must
be unique for all h-zones in NmM.

GmM is the class of all valid master-modules.

5.2.11 Datapaths: Multi-Module Structures

We have now reached the summit of the structural hierarchy, the datapath
itself.

Definition 74 A datapath ND = (NS , Hplace) is a network skeleton NS ex-
tended with the sequence Hplace.

1. Each internal node is a module.

2. Each master-module may occur more than once in the modules of ND.

96

5.2 Structure and Behavior of Digital Circuits

3. Hplace is the sequence of all v ∈ In and describes their left-right topo-
logical placement (Definition 84).

Definition 75 A datapath tree is a network skeleton tree with a datapath ND

at the root, and only module trees as subtrees via h̃ier(In〈ND〉).

Datapath

Modules

hier

H-zone

H-zones

Stacks

V-zones

Gates

V-zone

V-segments

hier

hier

hier

hier

Master-module

Master-stack

Master-slice

H-zone

V-segment

Module

H-zones

Stacks

Stack

V-zones

Gates

V-zone

V-segments

hier

hier

hier

hier

master

master

master

vmaster

hmaster

hmaster

vmaster

Figure 5.8: Regularity and hierarchy in a datapath

Example 76 Figure 5.8 shows the hierarchy and regularity relations for an entire
datapath. For clarity, only internal nodes are shown, and all names have been omit-
ted. Note the parallel hierarchies of masters (right) and instances (left). Further-
more, observe the alternating pattern of replicating (v-zone, h-zone) and instantiable
structures (master-slice, master-stack, master-module) in the master hierarchy. Reg-
ularity in SDI is thus expressed by the combination of master/instance relations and
replication (iteration) counts.

5.2.12 Flattening the Hierarchy
For reasons of brevity, we will abstain from formally defining operators for
flattening, relying on an informal description of the process instead. The in-
terested reader will easily be able to deduce the details from the example
given below.

97

5 Fundamentals for Compaction and Microplacement

Clarification 77 Flattening is the process of transforming a structure at level
n of the hierarchy into the externally equivalent structure at the next lower
level n − 1. Externally equivalent means that both structures have identical
primary ports, and show identical behavior as far as can be observed at the
primary ports.

E.g., a v-zone (nodes are v-segments) can be flattened into a gate network
(nodes are gates) by replacing each internal node v of the v-zone by its un-
derlying gate network hier(v). Note that the v-zone primary ports remain
untouched (as per Clarification 77). Nodes in the gate network will have to
be relabeled (e.g., by adding the iteration number of their original v-segment)
to avoid clashes, and their associated functions changed to refer to the rela-
beled nodes. TTNs at the v-zone level are turned into equivalent TTNs at
the v-segment level, and the v-segments’ primary ports are replaced by TTNs
directly between their connected nodes.

q = a sh’ + bot sh

q = a sh’ + bot sh

q = a sh’ + bot sh

q = a sh’ + bot sh

q = a sh’ + bot sh

Master-slice

sh

5

3hier(s)

5

ctl

4

5

6 6 6

3master(s)

7 7

4

7

V-segment

s3 itno(s) = 33

Z repl(Z) = 4

V-zone

s

s

s

s

0

1

2

3

bot

top

a

a

a

a y

y

y

y
sh ctl

7 7

6 6

5 5

4 4

s

a

sh

top
ybot

ctl

flatten

a
y

a
y

5

4

bot

a
y

6

4,1

4,1

4,1

4,1

4,1 4,1 4,1q = a sh’ + bot sh

a

sh

top
ybot

ctl

7

7

7

7 7 7

7

a top
y

7

7

6

5

4

vmaster(Z)

Figure 5.9: Flattening a v-zone into v-segments

Example 78 Figure 5.9 shows an example of such a flattening operation. Note how
multiple occurrences of the sh primary control input in the separate v-segments have
been replaced by a single port, and appropriate nets added in their stead. Conversely,
the bot and top primary ports (at the v-segment level) have been completely replaced
by TTNs. An example for a changed local function definition is fq4, where the vari-
able bot4 has been replaced by bot. All of the v-zone’s primary ports have remained

98

5.2 Structure and Behavior of Digital Circuits

intact. Thus, the resulting network shows the same externally visible behavior as the
original v-zone.

The primary flattening operation in SDI flattens datapaths into slices. It
can be implemented in a manner that allows us to keep track of the position
of each slice in the original hierarchy.

Definition 79 A datapath tree rooted at ND flattened down to the slice level
is the flattened network skeleton Nf = (NS, module, hzone, hitno, vzone, vitno),
which is a network skeleton NS extended with the components module, hzone,
hitno, vzone, and vitno.

1. In is the union of all v-segments of all v-zones of all stacks of all h-zones
of all modules in the module trees with roots In〈ND〉.

2. The top-level primary ports remain untouched during flattening, thus
Pi〈Nf 〉 = Pi〈ND〉 and Po〈Nf 〉 = Po〈ND〉.

3. Ui〈Nf 〉 (Uo〈Nf 〉) is the union of the Ui〈Nv〉 (Uo〈Nv〉) of the v-zones Nv in
ND.

4. E, Ttn, ptype, hier, sym, sig are computed during flattening (as sketched
in Figure 5.9).

5. Each internal node is a slice (former v-segment) with an underlying (via
hier) gate network describing its structure and behavior.

6. module : v ∈ In 7→ Nm associates a slice with its original module Nm.

7. hzone : v ∈ In 7→ Nh associates a slice with its original h-zone Nh within
its module Nm.

8. hitno : v ∈ In 7→ j ∈ N0 associates a slice with its original horizontal
(stack) iteration number j within its h-zoneNh.

9. vzone : v ∈ In 7→ Nv associates a slice with its original v-zone Nv within
its stack Nh j .

10. vitno : v ∈ In 7→ k ∈ N0 associates a slice with its original vertical
iteration number k within its v-zone Nvk .

Numerous examples for the use of flattened network skeletons will be pre-
sented in Chapter 6.

99

5 Fundamentals for Compaction and Microplacement

5.3 Topological and Geometrical Layout
In the previous sections, we have dealt only with structural and behavioral
information. However, SDI is a system which also includes physical design
automation functions. It thus needs a way to represent placement data.

Clarification 80 A layout is an arrangement of units on the plane Z2.

The Z2 placement grid is not completely arbitrary, it models the array of
underlying FPGA cells.

Clarification 81 Height is a vertical distance, length is a horizontal distance9.
The fundamental unit of distance in layouts is the cell (Explanation 7), it is
defined to have height 1 and length 1.

5.3.1 Representing Geometrical Layout
Geometrical layouts can be described by the loc, h, l components of network
skeletons (Definition 34)

The height h(v) of a node v is assumed to extend upwards from its location,
while its length l(v) extends to the left. Together, h(v) and l(v) delimit the
bounding box of v. Some details are notable in this definition: Units may be
unplaced (⊥) in one or both coordinates. Also, units with height and/or length
of zero are legal. This feature will be used to handle primary ports, which do
not consume chip area10, but only routing resources.

Definition 82 A geometrical layout tree is a network skeleton tree in which
all nodes v of all node graphs have loc(v) ∈ Z2, and l(v), h(v) ∈ N0.

All locations at hierarchy level n are specified relative to the location lc of
the containing unit at level n − 1. Thus, lc is projected at the origin (0, 0) in
level n. Hierarchy level 0 is assumed to have a location of (0, 0).

(b)Geometrical layout L(a)

1

1

0
b

Q R S

x
y
y0

Topological layout L

1 b
b

x
x
y1

a

b
a
a

0

1
y 0

1

0

0

3

4

161514131211109

5

876543210

9

0

2

1

8

7

6

0
0a

1a

0y

1y

A

B

C
ba

x

y

a

x
y

a

x

b

1b

g th

Figure 5.10: Geometrical (a) and topological layout (b) with representations

9 Remember that width is only a logical quantity, Explanation 2. 10 The exception are
chip-level pads, which will not be considered here.

100

5.3 Topological and Geometrical Layout

Example 83 Figure 5.10.a shows a geometrical layout Lg of a network 11. It rep-
resents the placement and has, e.g., loc〈a〉 = (0, 8), h〈a〉 = l〈a〉 = 0, loc〈C〉 = (10, 3),
h〈C〉 = 5, l〈C〉 = 4. Note how we modelled the point nature of primary ports. The
location of unit terminals is determined by the location of the corresponding primary
port at the next lower hierarchy level. E.g., for output variable x of C, the correspond-
ing primary port C/x would have loc〈C/x〉 = (0, 2). Since the placement origin in C is
loc〈C〉 in L, the coordinates of C/x in L become loc〈C〉 + loc〈C/x〉 = (10, 3) + (0, 2) =
(10, 5).

5.3.2 Representing Topological Layout

Another way to describe a layout is to specify the relative positions of units to
each other. The complexity of representable layouts depends on the relations
available. SDI requires only 1-D (linear) topological layouts, we can thus use
the order of elements in a sequence to describe the linear arrangement of
units.

Definition 84 A horizontal topological layout Lth = (NS, Hplace) is a net-
work skeleton NS extended with the sequence Hplace. The elements of Hplace
are the units of NS . The order in Hplace describes their horizontally abutting
left-to-right placement.

A vertical topological layout Ltv = (NS, Vplace) analogously defines a ver-
tically abutting bottom-to-top placement.

Definition 85 A topological layout tree is a regular hierarchy tree in which
all node graphs are topological layouts.

Example 86 The horizontal topological layout of units in Figure 5.10.b is described
as a left-to-right arrangement by the sequence Hplace〈Lth〉 = (Q, R, S).

5.3.3 Describing Regular Bit-Sliced Layouts

While Section 5.3.1 allows the representation of arbitrary geometric layouts,
the regular bit-sliced layout sketched in Section 2.3.1 can be composed in a
bottom-up manner with only a few general parameters using a combination
of topological and geometrical representations.

Clarification 87 A bit-sliced module layout is described by the heights of its
master-slices and the lengths of its master-stacks.

Note that the master-instance relation propagates the height of the mas-
ter to all of its instances. Furthermore, all v-segments in a stack have the
same length (propagated from master-stack to stack to v-zone to v-segment),
allowing directly abutting placement of stacks. We do not constrain the stack

11 Inter-unit connections are just shown for completeness, their locations are not actually
defined.

101

5 Fundamentals for Compaction and Microplacement

height, it is allowed to vary to accommodate folded modules (like a 12-bit mo-
dule implemented as an 8-bit and a 4-bit stack) or different datapaths widths.
However, to minimize wasted chip area, we will aim at a homogeneous data-
path height after processing (Chapter 7).

The previously defined quantities height and length will now be used: A
master-slice contributes solely a geometrical quantity (height) to the entire
placement, while a master-stack contains geometrical (length) and topological
(v-zone sequence Vplace〈NmS〉) information. Both master-modules and data-
paths specify only topological constraints (h-zone sequence Hplace〈NmM〉 and
module Hplace〈ND〉 sequence, respectively).

The extended skeletons themselves do not describe placement as defined in
Section 5.3.1. However, a geometric layout tree can be derived by interpreting
their data appropriately in a bottom-up manner. As before, we will refrain
from formally specifying the transformation, relying on a verbal description
of the process and a comprehensive example instead.

V-zone level A v-segment s is located at horizontal coordinate 0 and vertical
coordinate vitno〈s〉 · h〈vmaster〈Nv〉〉 in its enclosing v-zone Nv.

Stack level All v-zones in a stack NS and all of their v-segments have a length
of l〈master(NS)〉. The order in Vplace〈NS〉 describes an upward sequence
(increasing vertical coordinates) of abutting v-zones.

H-zone level A h-segment S is located at vertical coordinate 0 and horizontal
coordinate hitno〈S〉 · l〈hmaster〈Nh〉〉) in its enclosing h-zone Nh.

Module level The order in Hplace〈NmM〉 describes a left-to-right sequence
(increasing horizontal coordinates) of abutting h-zones.

Datapath level The order in Hplace〈ND〉 describes a left-to-right sequence
(increasing horizontal coordinates) of abutting modules.

Algorithm 1: Deriving geometrical layout

Algorithm 1 finally spells out the origin of the names v-zone (“vertical
zone”) and h-zone (“horizontal zone”) etc., as already pointed out at the end
of Section 5.2.9: v-segments and v-zones describe a vertical, upwardly grow-
ing layout, while stacks and h-zones are responsible for horizontal layouts,
growing from left-to-right.

Definition 88 The geometrical layout tree computed by applying Algorithm
1 is called a bit-sliced geometrical layout tree. The resulting layout is valid in
that no v-segments overlap.

The layout derived in this manner only specifies placement down to the v-
segment level, the placement of individual gates inside a v-segment remains
unspecified. V-segments form the atomic components of our bit-sliced struc-
tures, they are not bit-sliced themselves. Thus, their placement is irregular

102

5.3 Topological and Geometrical Layout

and cannot be computed by simple rules like Algorithm 1. It will be deter-
mined by the methods shown later in Chapter 7.

Example 89 Figure 5.11 shows the hierarchical composition of a datapath layout.
The height of each v-segment is determined at the master-slice level. V-segment
locations inside a v-zone ascend with the iteration number. E.g., v-segment 0 of v-
zone vA has the location (0, 0), v-segment 1 is placed at (0, 2). The length of v-zones
and their v-segments is determined at the master-stack level. E.g., master-stack
SA fixes a length of 4 for v-zones vA, vB, and their v-segments msA0, msA1, msB0.
The upwards topological arrangement of v-zones in SA is defined by the sequence
Vplace〈SA〉 = (vA, vB), leading to loc〈vA〉 = (0, 0), and loc〈vB〉 = (0, 4). The layout at
the h-zone level yet again depends on the iteration number, with each stack displaced
by its length to the right. E.g., loc〈SA1〉 = (4, 0). In master-modules, the layout is
defined by the left-to-right sequence of h-zones Hplace〈M〉 = (hA, hB), yielding, e.g.,
loc〈hB〉 = (8, 0). At the datapath level, another left-to-right sequence determines the
layout Hplace〈D〉 = (mA, mB).

Using this hierarchical method of layout composition, and the fact that the lo-
cation of each element is the origin of the next lower hierarchy level, we can now
determine the geometrical position of each element by applying Algorithm 1. E.g.,
to determine the location of v-segment 1 of v-zone vA in h-segment 1 of h-zone hA
within module mB at the datapath level, we proceed in a top-down manner: Using
Hplace〈D〉, we find that loc〈mB〉 = (14, 0). Descending to the master-module level,
we compute loc〈hA〉 = (0, 0). In the h-zone hA, h-segment 1 has loc〈hA1〉 = (4, 0).
The corresponding master-stack SA contains two v-zones, with loc〈vA〉 = (0, 0). In-
side this v-zone v-segment 1 has loc〈msC4〉 = (0, 2). The absolute location is now
determined by ascending through the hierarchy, and adding the relative locations
(0, 2) + (0, 0) + (4, 0) + (0, 0) + (14, 0) = (18, 2). As demonstrated by Figure 5.11, that
is indeed the location of the v-segment. By performing these computations for each
element, a complete geometrical layout tree can be assembled.

At this point, we have built a conceptual framework for the representa-
tion of structural, behavioral, geometrical, and topological information. The
description of the SDI algorithms in the next chapters will be based on these
fundamentals.

103

5 Fundamentals for Compaction and Microplacement

3

0
1
2

3
2

5
6
7

0
1
2
3
4

1

0
1

5
6
7

0
1
2
3
4

5
6
7

0
1
2
3
4

7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

4

0
1
2
3
4
5

0

Master-stacks

6
7

5
6

2
3
4

0

6543210

2

6

3 6541

8

43210 87

543210

87

Master-modules

repl(hB)=1repl(hA)=2
hA hB

l(SA)=4 l(SB)=6

repl(vA)=2
repl(vB)=1

h(msC)=1

h(msB)=3
h(msA)=2

repl(vC)=7

vC

vB

vA

7

65

4

4 65432103210

M

6

D

5

0

2
1

Master-slices

2

msB

3

4

vC

1

V-zones

vB
vA

3

SA

msC

hA hB

9 1011121314

Datapath

9 1011121314

0

0 0

00

00

msA

0

0

0

H-zones

SB

6

4

mBmA

282726

2

25

0

24232221201918171615

5

3

3
2
1

0

6

1

0

1

0

1

0 0

1

1

0

0

0
0

0 0

0

0 11 1 0

1 0

1

1 1 0

0
1
0

2
3
4
5
6

0

0

1

1

1

4
5
6

1
2
3
4
5
6

0
1
2
3
4
5
6

0

0

Figure 5.11: Hierarchical bottom-up layout of a datapath

104

6 Regular Compaction

After the floorplanner has created a linear placement of module instances,
and selected an actual implementation for each instance, the coarse-grain ar-
chitecture of the XC4000 FPGAs requires an additional optimization phase to
improve layout density and circuit performance (Section 2.6).

The regular compaction phase searches the datapath floorplan for sets of
optimizable module instances, builds a map of the topological structure across
all instances in each set, and then tries to find regularity in the map. The re-
sult is a new stack (Explanation 6) for each module set. Any regularity thus
determined is then exploited to reduce computation time, and preserved in
the optimized layout. Area and delay reductions are achieved by locally apply-
ing logic synthesis and technology mapping algorithms to the newly created
master-slices.

Note that the approach described here is dramatically different from that
introduced in the section “Zone analysis and merging” of [Koch96b]. That
algorithm worked by running a horizontal scanline across the geometrical
layout of the subdatapath under compaction. While it completely preserved
the vertical topological placement of slices, it did not consider connectivity is-
sues. The current procedure uses an improved graph-based approach that can
recognize more complicated forms of regularity (e.g., regular bit-permutations
or shift registers) 1 . However, since it loses the vertical topological placement,
we had to extend the microplacement step (Section 7.1) with a preprocessing
phase that quickly redetermines vertical arrangements from the still-intact
interconnection patterns.

Since our target structure is a stack, we are only interested in extracting
vertically arranged structures from the datapath. Thus, h-segments will play
only a minor role, and are flattened into v-segments early in the process.

6.1 Finding Optimizable Areas

As outlined in Section 2.6.3, the datapath is not processed indiscriminately,
only soft-macros are affected. The optimization occurs in the scope of the
soft subdatapath. Since the order of subdatapaths (soft and hard) reflects the
module ordering in the original floorplan, the planned topology is preserved.

Algorithm 2 is used to collect the largest contiguous soft-macro sequences

1 Should you get lost in the complexity of this multi-step process, Section 6.6 gives a top-level
summary explaining the relations between different circuit structures and views.

105

6 Regular Compaction

Algorithm 2: Find largest contiguous soft subdatapaths of datapath D
Require: D is a datapath
Ensure: CD is the sequence of longest contiguous soft-macro sequences in D

CD ← ∅
d← ∅ {work subdatapath}
for all m ∈ Hplace(D) do {run left-to-right over all modules}

if compactable(m) then {is m a soft macro?}
append element m to d

else if d 6= ∅ then {m is a hard-macro, any soft-macros found yet?}
append sequence d to CD {yes, close the working subdatapath}
d← ∅

end if
end for
if d 6= ∅ then {close a trailing subdatapath}

append sequence d to CD

end if

in a datapath D. It scans across all modules in D from left-to-right and re-
members soft-macros in the temporary sequence d. When it hits a hard-macro
(or the right edge of the datapath), it closes the temporary sequence d and en-
ters the newly found soft subdatapath into the output sequence CD.

Example 90 Consider the example using Figure 2.22.a as D, giving

In(D) = (M1, H1, M2, M3, M4, M5, H2, M6, M7),

with compactable(m) = TRUE for m ∈ {H1, H2}, FALSE otherwise. Applying the al-
gorithm to D yields ((M1), (M2, M3, M4, M5), (M6, M7)) as the sequence of largest con-
tiguous soft-macro sequences of D. The ordering of the soft-macro sequences, and of
the modules within, still reflects the original floorplan.

Each of these module sequences in CD can be turned into a datapath graph
by applying Algorithm 3.

The optimization process shown in Figure 2.20 is then performed sepa-
rately for each soft subdatapath. Due to their data independence, this opti-
mization may also be executed in parallel for each subdatapath (not taken
advantage of in the current SDI implementation).

Example 91 Figure 6.1 shows an example for the application of Algorithm 3 to
build a subdatapath from the largest contiguous soft-macro sequence (in the example,
(B, C)). Note how the variables of the newly created primary ports are qualified
(using “.”, to avoid confusion with the “/” separator in hierarchical names) with their
original node to prevent conflicts. E.g., without the qualification, B.b and C.b would
become indistinguishable (just b). This would violate the function requirement on
port at the next higher hierarchy level.

106

6.1 Finding Optimizable Areas

Algorithm 3: Determine datapath DQ for the the module sequence Q ∈ CD

Require: D is a datapath , Q ∈ CD

Ensure: DQ is a datapath with In(DQ) = Q

{the internal nodes are just the modules in the input sequence}
In〈DQ〉 ← Q
{turn all TTNs with a sink outside of DQ into POs}
for all ((u, p), (v, q)) ∈ Ttn〈D〉 ∧ v /∈ In〈DQ〉 do

create new primary output w

Po〈DQ〉 ← Po〈DQ〉 ∪ {w}
{propagate variable and ptype from fanin terminal into new primary port}
Ui〈DQ〉(w)← {(u. sym(p), sig(p))}
ptype〈DQ〉(w)← ptype(port〈D〉(v)(p))

{add TTN connecting the new primary and old unit ports}
Ttn〈DQ〉 ← Ttn〈DQ〉 ∪ {((u, p), (w, (u. sym(p), sig(p))))}

end for
{turn all TTNs with a source outside of DQ into PIs}
for all ((u, p), (v, q)) ∈ Ttn〈D〉 ∧ u /∈ In〈DQ〉 do

create new primary input w

Pi〈DQ〉 ← Pi〈DQ〉 ∪ {w}
{propagate variable and ptype from fanout terminal into new primary
port}
Uo〈w〉 ← {(v. sym(q), sig(q))}
ptype〈DQ〉(w)← ptype(port〈D〉(v)(q))

{add TTN connecting the new primary and old unit ports}
Ttn〈DQ〉 ← Ttn〈DQ〉 ∪ {((w, (v. sym(q), sig(q))), (v, q))}

end for
{build union to get all nodes}
V〈DQ〉 ← In〈DQ〉 ∪ Po〈DQ〉 ∪ Pi〈DQ〉
{add TTNs internal to the subdatapath}
Ttn〈DQ〉 ← Ttn〈DQ〉 ∪ {((u, p), (v, q)) ∈ Ttn〈D〉 | u, v ∈ In〈DQ〉}
{determine edges from TTNs as per Definition 34}
E〈DQ〉 ← {(u, v) | ∃ p, q : ((u, p), (v, q)) ∈ Ttn〈DQ〉}
{Ui, Uo, hier and port are restricted to the subdatapath}
Ui〈DQ〉 ← (Ui〈D〉 restricted to V〈DQ〉)
Uo〈DQ〉 ← (Uo〈D〉 restricted to V〈DQ〉)
hier〈DQ〉 ← (hier〈D〉 restricted to V〈DQ〉)
port〈DQ〉 ← (port〈D〉 restricted to V〈DQ〉)
{we don’t support instances of entire datapaths}
master〈DQ〉 = (⊥,⊥)

107

6 Regular Compaction

a

b

c

x

y

z

a

b

c

a
b

c

d

y

z

w
x

b

c

ax

y

z

cin cout

A D
compactable compactable

b

B C

x

x

x

a

a

a0

1

2

0

1

2

ctl ctlb

a

B C

b

c

d

x

y

z

w
x

x

x

a

a

a0

1

2

0

1

2

ctl ctlctl

C.b

B.a
B.b

B.c

B.d

C.w
C.x

C.y

C.z

Figure 6.1: Applying Algorithm 3

6.2 Flattening the Subdatapath
After extracting the contiguous soft-macro sequences, and turning them into
subdatapaths, we now flatten the subdatapaths down to the v-segment level
for structure extraction and regularity analysis.

As outlined in Section 5.2.12, flattening is implemented in a manner that
preserves information on the original location of each v-segment in the former
hierarchy.

Example 92 Figure 6.2.a shows the soft subdatapath D consisting of the three
modules A, B and C. Flattening turns it into the flattened network skeleton D f

shown in Figure 6.2.b. Note how the ports of intermediate hierarchy levels have
vanished: Only the primary ports of the entire subdatapath, and the terminals of the
v-segments remain.

The former hierarchy information has been preserved during flattening. E.g.,
assume the top v-segment in the second column of Figure 6.2.b is called g. In the
example, module(g) = A, hzone(g) = H1, hitno(g) = 0, vzone(g) = V0, and vitno(g) =
3.

For clarity, terminal labels etc. have been omitted in Figure 6.2. The legend in
the bottom-right corner shows the terminal names and symbolic significances for each
master-slice.

6.3 Structure Extraction
As the first step in the optimization, the connectivity structure of the sub-
datapath under compaction is extracted. This is done by discovering circuits
that are possible master-slices, usable for regularly composing the entire com-
pacted subdatapath (Section 2.6.4).

108

6.3 Structure Extraction

g2

g1

g0

r

p
q

f7
f6

f5
f4

f3
f2

f1
f0

g3

A B C

M
S

C
 1

M
S

C
 0

c

ya
b0,1

0,1 0,1

0,1

a1,2

a0,2

y

y

1,2

0,2

a0,1 y0,1

a y

x0,1
0,1

0,1c

0

0

0

A.00.03 C.00.03

M
S

C
 0

M
S

C
 1

0

(a) (b)

(c)

(e)

1

2

3

1

2

3

1

1

2

3

A BModule

H-Zone
V-Zone

C

H0 H0 H0H1

A/H0/V0

A/H1/V0

B/H0/V0

C/H0/V0

V0 V0V0V0

Initial master-slices Terminal configurations

A.00.02

A.00.01

A.00.00

A.10.01

A.10.00

A.10.02

B.00.01

B.00.00

C.00.00

C.00.01

C.00.02

A.10.03 (d)

f0
f1

q

p

f2
f3

f4
f5

f6
f7 r

g0

g1

g2

g3

Figure 6.2: Flattening, structure extraction and regularity analysis

109

6 Regular Compaction

While each of the module instances in the subdatapath already has a
known v-segment-based bit-slice structure2, this stage collects data across
module boundaries. In its current implementation, extraction relies on, and is
limited by, the known regular structure of each module instance. Using SDI,
this information is provided by the module generators (Section 3.2.2).

6.3.1 Requirements on Master-Slice Candidates
The extraction of potential master-slices, called master-slice candidates (MSC),
aims at discovering bit-sliced structures across module-instance boundaries.
It is performed under two conflicting requirements:

1. MSCs should contain as much interconnected logic as possible. The po-
tential gains during logic optimization increase with the size of the cir-
cuits being processed. The processing of larger MSCs will lead to faster,
smaller compacted modules.

2. MSCs should be small in terms of contained logic, and offer high poten-
tial for regular replication. The smaller problem size will reduce compu-
tation times (e.g., for logic optimization and microplacement), while the
emphasis on replication will lead to very regular compacted structures.

We use the basic datapath topology (Section 2.3.1) to devise a compromise
between these conflicting objectives. As an intermediate step, we determine
raw master-slice candidates.

A raw master-slice candidate (rMSC) in the flattened network skeleton N f

is a flattened network skeleton whose internal nodes, edges and TTNs are re-
stricted to those occurring in a connected subgraph (disregarding the direction
of edges) of the graph

(In〈Nf 〉, {(v1, v2) ∈ E〈Nf 〉 | module(v1) 6= module(v2) ∧ v1, v2 ∈ In〈Nf 〉}).
Mr (N f) is the set of rMSCs of N f .

Algorithm 4: Finding raw master-slice candidates

We achieve the first requirement of larger MSCs by building the rMSCs
across module boundaries (inter-module connections are being followed). Aim-
ing at the second requirement, MSC size is limited by disregarding intra-
module edges, which are often inter-bit-slice connections.

Example 93 Continuing the last example, Figure 6.2.c shows the undirected graph
corresponding to the directed graph

(In〈D f 〉, {(v1, v2) ∈ E〈D f 〉 | module(v1) 6= module(v2) ∧ v1, v2 ∈ In〈D f 〉}).
2 Remember that more complex, non-bit-sliced modules are treated as hard-macros (Expla-
nation 5).

110

6.3 Structure Extraction

Note how the intra-module edges have disappeared. In the figure, the label of a node
(=v-segment) v has the form

module(v) “.” hzone(v) vzone(v) “.” hitno(v) vitno(v).

After finding the rMSCs, we turn them into MSCs by recovering those
intra-module connections that are also intra-rMSC connections. Furthermore,
since an rMSC doesn’t have any primary ports (it is defined only on the units
in In〈Nf 〉), they have to be recovered, too.

Algorithm 5: Refining an rMSC into an MSC
Require: Nf is a flattened network skeleton, R ∈Mr (N f)

Ensure: R is an MSC

{inherit MSC-internal TTNs from Nf and add MSC primary ports}
Ttn〈R〉 ← ∅
for all n ∈ {((u, p), (v, q)) ∈ Ttn〈Nf 〉} do

if (u, v) ∈ E〈R〉 then {MSC-internal net?}
Ttn〈R〉 ← Ttn〈R′〉 ∪ {n}

else {connection to primary port}
if u 6∈ V〈R〉 then {source outside}

create new primary input port u′ with terminal
(u′, (u. sym(p), sig(p))) in R
Pi〈R〉 ← Pi〈R〉 ∪ {u′}
Ttn〈R〉 ← Ttn〈R′〉 ∪ {((u′, (u. sym(p), sig(p))), (v, q))}

else {sink outside}
create new primary output port v′ with terminal
(v′, (v. sym(q), sig(q))) in R
Po〈R〉 ← Po〈R〉 ∪ {v′}
Ttn〈R〉 ← Ttn〈R〉 ∪ {((u, p), (v′, (v. sym(q), sig(q))))}

end if
end if

end for
{collect all nodes}
V〈R〉 ← In〈R〉 ∪ Pi〈R〉 ∪ Po〈R〉
{update edges from TTNs}
E〈R〉 = {(u, v) | ∃ p, q : ((u, p), (v, q)) ∈ Ttn〈R〉}

The result of applying Algorithm 5 to each rMSC in Mr (Nf) yields M(Nf),
the set of master-slice candidates in the flattened network skeleton N f . Note
that a new primary port, whose variable is qualified with the original node,
is created for each TTN that connects to a primary port outside of the rMSC.
Each of the newly created primary ports has a fanin (fanout) of exactly 1.
Figure 6.3 shows an example for this connectivity.

Example 94 Figure 6.2.d shows the result of applying Algorithm 5 to the rMSCs
of Figure 6.2.c. Note that intra-MSC intra-module edges have been recovered (shown

111

6 Regular Compaction

Connectivity in MSCOriginal connectivity Raw MSC

newly created MSC primary port

Figure 6.3: Creating new primary ports in MSCs

with wider lines), and that inter-MSC intra-module edges are still disregarded (shown
with a dashed line).

Furthermore, all nets crossing MSC boundaries (this includes those connected to
primary ports of the subdatapath) now end at newly created primary ports within the
MSC (compare with Figure 6.2.b and Figure 6.3).

By now, we have extracted the connectivity structure from the original
subdatapath in a manner that still allows to backwards-trace each component
to the original flattened network skeleton. No information has been lost in the
process.

6.4 Regularity Analysis
Next, we will search for regular structures by looking for similarities between
master-slice candidates. This analysis is based on the detection of special
forms of isomorphism between MSCs.

However, it is not sufficient to perform the isomorphism tests on the MSCs:
Since the edges in an MSC may represent multiple TTNs, they are too coarse
(Figure 6.4), we need the finer granularity obtained by expanding each node
v in the MSCs into separate nodes for the terminals of v. This representation
is the terminal graph GTtn = (VTtn, ETtn) of the MSC.

Example 95 Figure 6.4 shows a smaller example for the structure extraction and
regularity analysis process. Figure 6.4.b shows the rMSCs extracted from the soft-
subdatapath in Figure 6.4.a. Note that the two rMSCs are isomorphic, even though
the corresponding portions of the datapath clearly aren’t. After expanding the rMSCs
via an intermediate MSC step (not shown) into the more detailed terminal graphs,
this false isomorphism can be recognized using the techniques of the next section.

Definition 96 The tuple (module, hzone, vzone, sym, sig, hoffs, voffs, hitno, vitno)

is a terminal label.

1. module is a module.

2. hzone is a h-zone.

112

6.4
R

egularity
A

nalysis

A.00.03

A.00.01

B.00.03

B.00.01

A.00.02 B.00.02

A.00.00 B.00.00a

b

y

y

y

y

y

y

y

y

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0,1b

0,1a

y

y
1,2

0,2

0,1b

0,1a

y

y
1,2

0,2

a

b

a

b

a

b

a

b y

y

y

y

y

y

y

y

0

1

2

3

4

5

6

7

(A,0,0,y,0,0,2,0,3)

(A,0,0,y,1,0,2,0,3)

(A,0,0,y,0,0,2,0,2)

(A,0,0,y,1,0,2,0,2)

(B,0,0,a,0,0,1,0,0)

(B,0,0,a,0,0,1,0,1)

(B,0,0,b,0,0,1,0,0)

(B,0,0,b,0,0,1,0,1)

(A,0,0,y,0,0,2,0,0)

(A,0,0,y,1,0,2,0,0)

(A,0,0,y,0,0,2,0,1)

(A,0,0,y,1,0,2,0,1)

(B,0,0,a,0,0,1,0,3)

(B,0,0,b,0,0,1,0,3)

(B,0,0,a,0,0,1,0,2)

(B,0,0,b,0,0,1,0,2)

(PI_A,0,0,b,0,0,1,0,3)

(PI_A,0,0,b,0,0,1,0,2)

(PI_A,0,0,a,0,0,1,0,3)

(PI_A,0,0,a,0,0,1,0,2)

(PI_A,0,0,b,0,0,1,0,1)

(PI_A,0,0,b,0,0,1,0,0)

(PI_A,0,0,a,0,0,1,0,0)

(PI_A,0,0,a,0,0,1,0,1)

(PO_B,0,0,y,0,0,2,0,3)

(PO_B,0,0,y,1,0,2,0,3)

(PO_B,0,0,y,0,0,2,0,2)

(PO_B,0,0,y,1,0,2,0,2)

(PO_B,0,0,y,0,0,2,0,0)

(PO_B,0,0,y,1,0,2,0,0)

(PO_B,0,0,y,0,0,2,0,1)

(PO_B,0,0,y,1,0,2,0,1)

(A,0,0,a,0,0,1,0,3)

(A,0,0,b,0,0,1,0,3)

(A,0,0,a,0,0,1,0,2)

(A,0,0,b,0,0,1,0,2)

(A,0,0,a,0,0,1,0,0)

(A,0,0,a,0,0,1,0,1)

(A,0,0,b,0,0,1,0,0)

(A,0,0,b,0,0,1,0,1)

(B,0,0,y,0,0,2,0,3)

(B,0,0,y,1,0,2,0,3)

(B,0,0,y,0,0,2,0,2)

(B,0,0,y,1,0,2,0,2)

(B,0,0,y,0,0,2,0,0)

(B,0,0,y,1,0,2,0,0)

(B,0,0,y,0,0,2,0,1)

(B,0,0,y,1,0,2,0,1)

(a) (b)

rM
S

C
 0

rM
S

C
 1

A

a

a

b

b

b

0

0

1

1

2

2

a3

3
f

f

f

f

f

f

f

f

Master-slices

B

0

0

1

1

2

2

3

3 g

g

g

g

g

g

g

g 0

1

2

3

6

4

5

7

0,1

0,2

0,3

0,0 0,0

0,1

0,2

0,3

(c)

T
T

N
T

T
N

G

0
G

1

F
igu

re
6.4:

In
creased

precision
of

term
in

algraph
s

113

6 Regular Compaction

3. vzone is a v-zone.

4. sym ∈ 6+.

5. sig ∈ Z.

6. hoffs ∈ N0.

7. voffs ∈ (Z\{0})∪ {⊥}.
8. hitno ∈ N0.

9. vitno ∈ N0.

Each node in the terminal graph is a terminal label. We expand the origi-
nal TTNs to have terminal labels as source and sink, thus obtaining the edges
in the terminal graph.

(|M|2− |M|)/2 isomorphism tests are required to check similarity between
all MSC pairs in M (Section 6.3). By exploiting sorted sequences of the ter-
minal labels, each isomorphism test can be performed in O(|VTtn | + |ETtn |)
instead of the usual NP-complexity [Deo74].

6.4.1 Building Terminal Graphs

A fundamental operation during the creation of terminal graphs from MSCs
is the creation of terminal labels from terminals. This is straightforward for
units, since all information is available in the flattened network skeleton of
the MSC. For the primary input (output) ports newly created by Algorithm 5,
however, it has to be propagated from their fanout (fanin) terminal.

Algorithm 6 determines the label for the given terminal. Note that sig(l)
is the original significance of the terminal in the master-slice. It is recom-
puted by reversing the significance-altering operations of Definition 46 and
Definition 62.

Example 97 The effect of Algorithm 6 can be seen in Figure 6.4. Consider the a3 in-
put terminal of the top (hitno = 0, vitno = 3) v-segment of module A. Since it is located
on a unit, the hierarchy information is already available in the flattened network
skeleton. Only the original significance in the master-slice has to be recomputed. The
example assumes that each module only has a single h-zone (with hoffs = 0) contain-
ing a single v-zone. In this context, combining the known hoffs = 0, voffs = 1 of the
terminal with the known hitno = 0, vitno = 3, we backtrace a3 to the symbolic signif-
icance a0,1 in the master-slice. The result is the terminal label (A, 0, 0, a, 0, 0, 1, 0, 3)

in the terminal graph.
For the newly created primary ports, the required information is propagated from

their connected unit terminals. E.g., the TTN in the network skeleton that connects
the primary datapath input f5 with the unit input terminal (A, a3), thus crossing the
MSC boundaries, leads to the creation of a new input primary port during Algorithm
5. When determining the terminal label for the output terminal of this primary port
in Algorithm 6, we inherit most of the data from the sink. In this case, the unit input

114

6.4 Regularity Analysis

Algorithm 6: Create a terminal label
Require: t is a terminal of a node in MSC m
Ensure: return a valid terminal label

GENLABEL(t,m):terminal label
w← nod(t)
l ← create new terminal label
if w ∈ In〈m〉 then {terminal on a unit?}

M ← mr〈master(w)〉
module〈l 〉 ← module(w)

hzone〈l 〉 ← hzone(w)

vzone〈l 〉 ← vzone(w)

sym〈l 〉 ← sym(t)
hoffs〈l 〉 ← hoffs〈hzone(w)〉
voffs〈l 〉 ← voffs〈M〉(t)
hitno〈l 〉 ← hitno(w)

vitno〈l 〉 ← vitno(w)

{compute initial significance (may be ⊥)}
sig〈l 〉 ← sig(t)− hoffs〈l 〉 · hitno(w)− voffs〈l 〉 · vitno(w)

else {terminal is on a primary port}
if w ∈ Pi〈m〉 then {on a primary input?}

{inherit hierarchy data from sink}
∃(t, (v, q)) ∈ Ttn〈m〉 {t always has single fanout, Algorithm 5}
module〈l 〉 ← “PI_” module(v) {prefix module name}

else {it’s a primary output port}
{inherit hierarchy data from source}
∃((v, q), t) ∈ Ttn〈m〉
module〈l 〉 ← “PO_” module(v) {prefix module name}

end if
{now propagate other hierarchy data}
M ← mr〈master(v)〉
hzone〈l 〉 ← hzone(v)

vzone〈l 〉 ← vzone(v)

sym〈l 〉 ← sym(q)

hoffs〈l 〉 ← hoffs〈hzone(v)〉
voffs〈l 〉 ← voffs〈M〉(q)

hitno〈l 〉 ← hitno(v)

vitno〈l 〉 ← vitno(v)

{compute initial significance (may be ⊥)}
sig〈l 〉 ← sig(q)− hoffs〈l 〉 · hitno(v)− voffs〈l 〉 · vitno(v)

end if

115

6 Regular Compaction

terminal (A, a3). The only change occurs on the module component of the terminal:
The module containing the sink is prefixed with “PI_”. In this manner, all primary
input (output) ports will be assigned to a pseudo-module with a “PI_” (“PO_”) prefix.
This procedure yields (PI_A, 0, 0, a, 0, 0, 1, 0, 3) as the final terminal label.

Using Algorithm 6, we can now build a terminal graph (VTtn, ETtn) for each
MSC in M(Nf).

Algorithm 7: Building terminal graphs
Require: Nf flattened network skeleton,
M(Nf) = {m1, . . . , mn} set of master-slice candidates,

Ensure: VTtn is an array of sequences of terminal labels
ETtn is an array of sequences of terminal labels pairs

MAKETTNGRAPHS:void
for j = 1 to n do {init TTN graphs for all MSCs}

{expand v-segments into their terminals and determine labels}
VTtn[mj] ← sort

⋃
v∈V〈mj 〉

⋃
t∈(To(v)∪Ti(v)){GENLABEL(t, mj)}

{expand TTNs into edges by determining labels for source and sink}
ETtn[mj]← sort

⋃
(to,ti)∈Ttn〈mj 〉{(GENLABEL(to, mj), GENLABEL(ti , mj))}

end for

Algorithm 7 builds the terminal graph for each MSC in M. Note how v-
segments and their terminals are expanded into terminal labels. VTtn and
ETtn are arrays of sequences of terminals labels and terminal label pairs, re-
spectively. The sort order may be arbitrary, as long as it is consistent. The key
consists of all components of the terminal label, such that the order of compo-
nents within a terminal label is also their priority during the sort operation.

Example 98 In this example, the relevant features in Figure 6.2 have been high-
lighted with a dashed rounded rectangle. For clarity, node labels have been omitted
in the terminal graphs shown in Figure 6.2.e. However, the legend in the bottom
left corner shows the master-slices with their corresponding terminal configurations.
E.g., the left dot of the terminal configuration for the master-slice of C/H0/V0 corre-
sponds to the terminal a0,1. The original v-segment boundaries have been highlighted
with a light grey background.

Consider the top-left v-segment of Figure 6.2.b. In Figure 6.2.c, it is labeled
C.00.03. When expanding this node into the terminal graph Figure 6.2.d, it results
in the nodes (C, H0, V0, a, 0, 0, 1, 0, 3), (C, H0, V0, y, 0, 0, 1, 0, 3). Analogously, the TTN
connecting its output with the MSC primary output port (created during Algorithm
5) becomes ((C, H0, V0, y, 0, 0, 1, 0, 3), (PO_C, H0, V0, y, 0, 0, 1, 0, 3)).

6.4.2 Constrained Isomorphism

We will be using a constrained form of isomorphism tests, relying on node
labels, to avoid the NP-complexity of a general isomorphism test.

116

6.4 Regularity Analysis

For two terminal graphs to be isomorphic in this context, nodes at the same
position in the sort order of VTtn must have equal values for all components
except vitno and hitno (Algorithm 8). The reasoning behind this constraint is,
that these nodes will have the same underlying logic (gate network), which is
independent of the specific iteration numbers.

Algorithm 8: Isomorphism constraints on terminal labels
Require: p, q are terminal labels
Ensure: return TRUE if all non-iteration number components are equal

LABELEQUAL(p, q):boolean

LABELEQUAL ←module〈p〉= module〈q〉 and
hzone〈p〉 = hzone〈q〉 and
vzone〈p〉 = vzone〈q〉 and
sym〈p〉 = sym〈q〉 and
sig〈p〉 = sig〈q〉 and
hoffs〈p〉 = hoffs〈q〉 and
voffs〈p〉 = voffs〈q〉

When checking for isomorphism with regard to connectivity, iteration num-
bers do have to be considered, though. Multiple iterations of the same logic
may be wired differently, thus resulting in different functions when merged.
However, since a simple equality comparison of iteration numbers would fail
(the terminals are usually located in different iterations, after all), we com-
pare relative iteration numbers. These are determined by comparing the off-
set between the iteration numbers of the source and sink terminal of a TTN
(Algorithm 9).

Example 99 Using these isomorphism requirements, the terminal label (A, 0, 0, y,
0, 0, 2, 0, 0) would correspond to (A, 0, 0, y,0, 0, 2, 0, 2), but not to (A, 0, 0, y, 1, 0, 2, 0, 0).

For edges, the TTN e1 = ((A, 0, 0, y, 1, 0, 2, 0, 0), (((B, 0, 0, b, 0, 0, 1, 0, 0))) would
correspond to e2 = ((A, 0, 0, y, 1, 0, 2, 0, 1), (((B, 0, 0, b, 0, 0, 1, 0, 1))), but not to e3 =
((A, 0, 0, y, 1, 0, 2, 0, 2), (((B, 0, 0, b, 0, 0, 1, 0, 3))). In the first case, both TTNs e1, e2

have 1 hitno = 0 and 1 vitno = 0, while in the second case, e3 has 1 hitno = 0 and
1 vitno = 1.

The entire isomorphism test algorithm is listed in Algorithm 10. It applies
Algorithm 8 and Algorithm 9 to all nodes and edges in the terminal graph. Iff
all requirements are fulfilled, it returns TRUE.

At this stage, we have introduced all parts of the isomorphism test, and
can now proceed to define the entire regularity analysis algorithm.

After the execution of Algorithm 11, those MSCs with master = (⊥,⊥) will
be considered as the merged master-slices (mmS) of the combined modules (the

117

6 Regular Compaction

Algorithm 9: Isomorphism constraints on terminal labels in TTNs
Require: n1, n2 are edges in the TTN graph
Ensure: return TRUE if all non-iteration number components and the offsets

between source and sink are equal

LABELEQUALREL(n1, n2):boolean

LABELEQUALREL ←
LABELEQUAL(to〈n1〉, to〈n2〉) and
LABELEQUAL(ti 〈n1〉, ti 〈n2〉) and
(hitno〈to〈n1〉〉 − hitno〈ti 〈n1〉〉) = (hitno〈to〈n2〉〉 − hitno〈ti 〈n2〉〉) and
(vitno〈to〈n1〉〉 − vitno〈ti 〈n1〉〉) = (vitno〈to〈n2〉〉 − vitno〈ti 〈n2〉〉)

Algorithm 10: Label-based test for constrained isomorphism
Require: m MSC (potential master), i MSC (potential instance of m)
Ensure: return TRUE is i could be an instance of m

ISISOMORPHIC(m, i):boolean
{run cheap tests first ...}
if (|VTtn〈m〉| 6= |VTtn〈i 〉|) or (|ETtn〈m〉| 6= |ETtn〈i 〉|) then

ISISOMORPHIC ← FALSE
else {more expensive tests}

{check terminals (nodes), but disregard iteration numbers}
for l = 1 to |VTtn[m]| do

{elementwise comparison in sorted lists}
p← VTtn[m][l]
q← VTtn[i][l]
if not LABELEQUAL(p,q) then {see Algorithm 8}

ISISOMORPHIC ← FALSE
end if

end for
{check TTNs (edges), compare relative iteration numbers}
for l = 1 to |ETtn[m]| do

{elementwise comparison in sorted lists}
s← ETtn[m][l]
t ← ETtn[i][l]
if not LABELEQUALREL(s,t) then {see Algorithm 9}

ISISOMORPHIC ← FALSE
end if

end for
end if
ISISOMORPHIC ← TRUE

118

6.5 Logic Optimization and Mapping

Algorithm 11: Regularity analysis
Require: M = {m1, . . . , mn} set of master-slice candidates
Ensure: master(m1), . . . , master(mn) set to an isomorphic master-slice candi-

date, or (⊥,⊥) if no such candidate exists in M.

{setup data structures for TTN graphs, Algorithm 7}
MAKETTNGRAPHS
{now check for similarities between MSCs}
for j = 1 to n do {potential master}

for k = j + 1 to n do {potential instance}
master(mk)← (⊥,⊥) {pessimism: no isomorphic master}
if ISISOMORPHIC(mj , mk) then {compare MSCs using Algorithm 10}

master(mk)← (mj ,⊥){found one, remember the master}
end if

end for
end for

entire subdatapath under compaction), while the other MSCs are treated as
their instances.
Mm(N f) is the set of merged master-slices for the network skeleton N f .

Example 100 The application of Algorithm 11 to Figure 6.2.c detects that MSC 1 is
isomorphic to MSC 0 even at the terminal graph level. Thus, the entire subdatapath
is composed only of instances of a single merged master-slice (mmS 0). It suffices
to apply all further optimization operations to the logic functions of mmS 0, and
propagate them into the isomorphically corresponding elements of the terminal graph
for MSC 1 (the only instance of mmS 0).

In Figure 6.4.c, however, the algorithm doesn’t discover such regularity: While
both MSCs consist of the same v-segments (the MSCs are already isomorphic, and
the terminal labels in the terminal graphs also correspond), the interconnection pat-
tern (as seen in the terminal graphs) is different. Both of the MSCs are thus mMSs
implementing different logic functions, and will have to be optimized individually.

6.5 Logic Optimization and Mapping

Once the merged master-slices (mmS) spanning the subdatapath under com-
paction have been determined from the MSCs, each mmS is processed using
conventional logic synthesis, optimization, and mapping methods (general-
ized as logic processing) [CoDi96] [MuBS95]. This step actually merges and
compacts the logic functions originating in different modules, but only within
mmS boundaries. The result are optimized master-slices (omS), with Mo(N f)

being the set of optimized master-slices for the flattened network skeleton N f .
Each instance (determined by Algorithm 11) is called an optimized slice (oS).

119

6 Regular Compaction

6.5.1 Tool Integration
By proceeding in this manner, the regular architecture of the datapath itself is
preserved. Since mapping is FPGA-architecture dependent, logic processing
is the first truly technology-specific step in the SDI design flow. However, it is
only loosely coupled with SDI and relies on standard tools. SIS 1.3 [Sent92] is
used for logic synthesis and optimization, and optionally FlowMap [CoDi94]
for technology mapping to 4-LUTs. By choosing between the “xl” (MIS-PGA)
commands in SIS, or FlowMap, the user can make a trade-off between de-
lay over area minimization (Chapter 8). The integration of other tools in this
phase is just a matter of netlist format compatibility. E.g., one could easily
embed the Synopsys FPGA Compiler [Syno96a] for logic synthesis and map-
ping, or Tech. Univ. of Munich’s TOS-TUM [LeWE96] dedicated technology
mapper.

For logic processing, each of the mMSs is flattened down from v-segment
level into individual gates, and separately optimized and mapped (possibly
in parallel, Figure 2.20). If external tools were to be used, the gate networks
could be exported using one of the netlist formats supported by SIS, and would
be imported again after optimization. In the current implementation, this is
not required since all algorithms (even FlowMap) are integrated in SIS, and
thus operate on the internal circuit representation.

6.5.2 Pre- and Post-Compaction Isomorphism

While synthesis, optimization and mapping might entirely change the inter-
nal structure of the gate networks, primary ports are always left intact. They
still match the pre-optimization ports in the mmS, which in turn have iso-
morphically corresponding primary ports in their instances in the flattened
network skeleton.

We may thus define the network skeleton No(Nf) as the optimized network
skeleton of the flattened network skeleton N f . No has the same global func-
tion as Nf , but is composed of instances (note: not iterations) of the optimized
master-slices in Mo(N f). Each instance, called an optimized slice in this con-
text, consists of logic processed and mapped cells (4-LUTs for the XC4000).
The TTNs connect the terminals isomorphically corresponding between N f

and No (Figure 6.6). Furthermore, each optimized slice in In〈No〉 has a mas-
ter in Mo(Nf). In this manner, the optimized slices, which now make up the
subdatapath, can be embedded in the entire datapath.

The complex hierarchical and regular constructs used during structure ex-
traction and regularity analysis are mostly discarded now: Each compacted
subdatapath will consist simply of a vertical arrangement of instances of one
or more mMSs. The entire compacted subdatapath will thus consist only of a
single h-zone. Even the v-zone concept is not valid anymore, since the same
mMSs may occur as master-slice multiple times (using the isomorphism ob-
tained during regularity analysis, not iteration).

Example 101 Figure 6.5.a shows the gate network of the mmS from Figure 6.2.e.

120

6.5 Logic Optimization and Mapping

g2

g1

g0

r

p
q

f7
f6
f5
f4

f3

f2

f0
f1

(c)

a1
b1

a0
b0

c
d

z
y1
y0

y0

g3

a1
b1

a0
b0

c
d

z
y1

b1

a1

u0=d*!t0 + !d*t0

v0=!d*t0 w0=!v0*v1 x0=!w0

t1=a1*b1 + u0

v1=!d*t1 w1=v0*!v1 x1=!w1

y0

y1

(a)

(b)

u1=d*!t1 + !d*t1 z

a0

b0

c

y1

y0

"1"

d

d

z

v=u + !a1 + !b1 + d

u=a0*b0+c

w=!a1*u + !b1*u + a1*b1*!d

b1

a1

c

b0

a0

t0=a0*b0+c

Figure 6.5: Effects of logic processing: (a) original, (b) processed circuit, (c)
compacted subdatapath

121

6 Regular Compaction

MSCsflattened network skeleton optimized network skeleton

v-segment 4-LUT cell

Figure 6.6: Isomorphic correspondence between terminals on N f ,M, and No

The original v-segments have been highlighted with a light grey background. Note
how the primary ports still correspond between these hierarchy levels, and how a
single v-segment may contain multiple gates. This gate network would use 10 4-
LUTs (cells) on an XC4000, and has a total delay of 6 LUT levels.

Optimization using the SIS procedure script followed by a technology mapping
using the “xl” commands produces the omS in Figure 6.5.b. Its area has been reduced
to 4 4-LUTs (possibly down to 3 LUTs, if a logic “high” signal is available elsewhere,
e.g. VCC), and the delay is shortened to 2 LUT levels.

Figure 6.5.c sketches the resulting topology after compacting the subdatapath
Figure 6.2.a. Note how the optimized slices (instances of the omS) are connected with
the original subdatapath primary ports, making up the optimized network skeleton
No. All significance information has remained on the subdatapath primary ports, it
is not considered during logic processing.

Figure 6.6 also demonstrates the isomorphic correspondence of terminals on pri-
mary ports and units (=oSs) between Nf and No.

6.6 Summary and Relations between Structures

After determining a soft-subdatapath to compact (Algorithm 2 and 3), we flat-
ten it down to v-segment level, obtaining the flattened network skeleton N f .

The structure of N f is extracted by searching the units and their inter-
module connections of N f for connected subgraphs, which we have called raw
master-slice candidates (rMSC, Algorithm 4).

Next, we add intra-rMSC connections from N f to the rMSCs, and create
new primary ports on the rMSCs for each TTN in N f crossing rMSC bound-

122

6.7 Effects on Placement

aries to obtain master-slice candidates (MSCs, Algorithm 5).
We look for regularity (master-instance relations) between MSC pairs by

testing them for a constrained isomorphism (Algorithm 11). For each iso-
morphically unique structure, we isolate a merged master-slice (mmS) that
contains logic originating in different modules, but within MSC boundaries.

After applying logic processing operations to each of the mmS, we obtain
optimized master-slices (omS) with reduced area and delay. With the isomor-
phism relations computed during regularity analysis, we can determine those
parts of Nf corresponding to instances of the omS. Thus, we are able to as-
semble the optimized network skeleton No from the optimized slices (oS). The
result is a regular circuit with the same global function as the initial soft-
subdatapath, but reduced area and delay.

6.7 Effects on Placement
Logic processing yields a set of optimized gate networks that have to be in-
stantiated and interconnected isomorphically corresponding to the original
subdatapath in order reproduce its global function. However, all placement
information has been lost during the process: The original placement of cells
inside of a v-segment (provided by the module generators) has been invali-
dated by the structural changes during logic processing. The arrangement of
the v-segments themselves was lost during structure extraction, since the con-
nected subgraphs might span multiple geometrically non-adjacent v-segments.
Since the v-segments inside of a connected subgraph will be merged, their in-
dividual placement also becomes invalid.

123

6 Regular Compaction

124

7 Microplacement

This chapter will examine the re-placement phase already introduced in Sec-
tion 2.7 in greater detail1. As described in Section 6.7, logic processing invali-
dates both the vertical topological placement of v-segments (now instances of
merged master-slices, Section 6.5) as well as the geometrical cell placement
(Section 2.7.3) inside of each v-segment.

7.1 Vertical Topological Placement

The restoration of a vertical topological placement is based on the significance
information for the primary ports of the subdatapath, and the fundamental
topology of the datapath (Section 2.3.1). The procedure runs in

O((1+max|Fo |) · (msb− lsb)),

where msb (lsb) are the maximal (minimal) significances of primary ports in
the subdatapath, and max|Fo | is the maximal fanout of primary input ports.
However, it cannot generate an optimal placement for circuits that have very
irregular (non-bit-sliced) interconnection patterns.

In the first phase, Algorithm 12 attempts to build a vertical topological
placement by ordering the optimized slices (oSs) in In〈No〉 by their connec-
tions to primary outputs. This ordering proceeds from bottom to top with
ascending significances. Within a given significance, the sequence of multiple
oSs is arbitrary. After aiming at a homogeneous oS-to-PO arrangement, the
remaining unplaced oSs are inserted into the existing topological placement
by following their connectivity to primary inputs, also with ascending signif-
icance. When all PIs and POs are static (Definition 50), Algorithm 12 cannot
obtain a regular topological placement. This may occur, e.g., when a module
has a local controller. In that case, the control logic is separated from the re-
gular part of the module and added to the main controller (Section 2.3.2). It
is no longer subject to regular processing by SDI.

For bit-sliced circuits, the result is a very regular arrangement, where es-
pecially the output side is kept free of significance permutations. Applying
Algorithm 12 to non-bit sliced circuits (with many non-contiguous or non-
abutting significances on the MSCs), yields very inefficient layouts, however.
Were SDI to be extended to also process these circuits, a full linear place-

1 Though the actual SDI implementation is even more complex than described here.

125

7 Microplacement

Algorithm 12: Restoring vertical topological placement after compaction
Require: No is an optimized network skeleton.
Ensure: Vplace(No) is vertical topological placement of oSs in No

{work sequence, pairs (u, b) of oS u and significance b}
tempplace(M)← ()

placed[∗] ← FALSE{init all items}
{determine significance bounds for No}
lsb← minv∈(Pi〈No〉∪Po〈No〉),t∈(Ui〈v〉∪Uo〈v〉) sig(t)
msb← maxv∈(Pi〈No〉∪Po〈No〉),t∈(Ui〈v〉∪Uo〈v〉) sig(t)

{scan for POs at significance b}
for b = lsb to msb do

Tpo← all terminals of Po〈No〉 with significance b
for all t ∈ Tpo do

if ((u, p), t) ∈ Ttn〈No〉 then {POs only have single fanin}
if not placed[u] then

{add it to the topological placement}
append (u, b) to tempplace
placed[u] ← TRUE

end if
end if

end for
end for

{now scan PIs at significance b}
for b = lsb to msb do

Tpi ← all terminals Pi〈No〉 with significance b
for all t ∈ Tpi do

for all (t, (v, q)) ∈ Ttn〈No〉 do {PIs may have multiple fanouts}
if not placed[v] then

insert (v, b) into tempplace = (. . . , (ui , bi), (v, b), (ui+1, bi+1), . . .)

such that bi ≤ b ≤ bi+1

placed[v]← TRUE
end if

end for
end for

end for
{get rid of significance, project only oS component}
Vplace(No)← ũ〈(u, b) ∈ tempplace〉

126

7.2 ILP for Horizontal Geometrical Node Placement

ment phase (similar to the approach sketched for horizontal floorplanning in
Chapter 4) would be required.

y2

y0

y1

y0

y1

y2

b0

a2

b1

b2

a0

a1

Merged master-slices

b0

a2

b1

b2

a0

a1

(a) (b) (c)

(d)

Subdatapath under compaction Raw MSCs

Post-compaction vertical topology

Figure 7.1: Post-compaction vertical topological re-placement

Example 102 Figure 7.1 shows an example for the application of Algorithm 12.
The three rMSCs in (b) have been extracted from the subdatapath in (a). Further
analysis discovers that two of the MSCs share a master-instance relation (highlighted
with a grey background), while the third one (marked with a dashed border) seems
to stand alone. Logic processing the masters results in the omSs in (c). Note how
all placement (both topological and geometrical) has been lost. The algorithm deter-
mines the vertical topology shown in (d) for the arrangement of oSs. Observe the
emphasis on keeping the output side significance permutation-free.

7.2 ILP for Horizontal Geometrical Node
Placement

With a restored vertical topology of the optimized slices in the compacted sub-
datapath, we now proceed to place the units inside of each omS. As already de-
scribed in Section 2.7.2, this placement is performed in a timing-driven man-
ner, operates on a regular array of cells instead of the possibly irregular FPGA
logic blocks (Section 2.7.3), and occurs in two phases (Section 2.7.4).

The first phase simultaneously processes all omSs to align units with con-
trol lines spanning the entire height of the subdatapath (Section 2.7.4, Figure
2.31). To compute optimal results, it has initially been implemented as a 0-1
integer linear program (ILP). For basics on the formulation of ILPs in general,

127

7 Microplacement

and constraint-logic programming (CLP) problems in particular, see [Will93]
[BeCo93] [Bart95] [Bart96].

However, even with optimizations [Bart95], the 0-1 ILP models become too
unwieldy for larger circuits. Thus, an alternative heuristical implementation
based on simulated annealing has also been provided. In our tests, it always
reached the optimal placement (using the ILP solutions as reference) in very
reasonable amounts of time (Section 7.4.3).

7.2.1 Determining the Placement Area
Since we are aiming at a geometrical placement, we require the extent of the
placement area for each omS. It is calculated from the Floorplanner-specified
BPLB-value (Explanation 3) using Algorithm 13.

Algorithm 13: Determining the placement area per omS
Require: M ∈ Mo(N f) is an optimized master-slice, bp is the target-BPLB

value, No(Nf) is the optimized network skeleton for the flattened network
skeleton Nf .

Ensure: h〈M〉, l〈M〉 specify the extent of the placement area.

h〈M〉 ← 0
{get terminals connected to instances of M}
I ← {(u, p) | ∃ v, q :

((u, p), (v, q)) ∈ Ttn〈No〉 ∧ u ∈ Pi〈No〉 ∧mr〈master(v)〉 = M}
O← {(v, q) | ∃ u, p :

((u, p), (v, q)) ∈ Ttn〈No〉 ∧ v ∈ Po〈No〉 ∧mr〈master(u)〉 = M}
S← logically complete sets of significances for the terminals I ∪ O
{determine height to match target BPLB value in bp}
for all S∈ S do

h〈M〉 ← max(h〈M〉, d(msb(S)− lsb(S))/bpe)
end for
{calculate length to fit all units into the now-fixed height}
l〈M〉 ← d| In〈M〉|/ h〈M〉e
{determine length of entire No}
l〈No〉 ← maxM∈Mo(Nf) l〈M〉

Algorithm 13 calculates the height in cells by determining the largest com-
plete significance intervals on primary ports in No, and dividing them by the
fixed BPLB value. The length of the placement area is then calculated such
that the placement area accommodates all units in the mMS (see Section 7.6
for an exception to this rule).

Example 103 After compaction, the subdatapath Figure 6.4.a will be composed
of two optimized master-slices, each having a single oS (no isomorphic TTN graphs
found, Section 6.4). The first omS 0 (shown in Figure 6.4.c as its pre-logic processing
terminal graph GTtn0) connects to the primary output ports with variables g0, g1, g2, g3,

128

7.2 ILP for Horizontal Geometrical Node Placement

and the primary input ports f0, f1, f2, f7. S thus is {{0, 1, 2, 3}, {0, 1, 2}, {7}}. Assuming
a target BPLB value of bp = 2, the height will computed be h〈omS0〉 = d3/bpe = 2
(due to msb({0, 1, 2, 3}) − lsb({0, 1, 2, 3}) = 3 − 0 = 3). Furthermore, assuming a
post-compaction | In〈omS0〉| = 6, the length of the placement area would become
l〈omS0〉 = d6/2e = 3.

Analogous computations would result in h〈omS1〉 = 2 and l〈omS1〉 = 3 (assuming
the same BPLB value and number of post-logic processing units as for omS0).

7.2.2 Node Placement
GivenMo as the set of optimized master-slices being microplaced, the solution
variable xv, j ,m is 1 iff the node v ∈ V〈m〉, m ∈ Mo is being placed in column
1≤ j ≤ l〈m〉 of the placement area.

First, we want to ensure that in each omS m, each node

v ∈ {u ∈ V〈m〉 | u ∈ In〈m〉 ∨ x〈loc(u)〉 = ⊥}
is placed exactly in one column j with 1 ≤ j ≤ l〈m〉. v is thus either a unit, or
a primary port without a pre-specified horizontal location (a floating port):

∀m ∈Mo, v ∈ In〈m〉 :
l〈m〉∑
j=1

xv, j ,m = 1 (7.1)

The second set of constraints in the ILP enforces the height limit on the
placement areas for each omS. It ensures for each mMS m that at most h〈m〉
units in In〈m〉 are placed in each column j with 1≤ j ≤ l〈m〉.

∀m ∈Mo, 1≤ j ≤ l〈m〉 :
∑

v∈In〈m〉
xv, j ,m ≤ h〈m〉 (7.2)

Note that multiple floating primary ports may be placed in the same col-
umn (they do not consume area in the layout, Section 5.3.1).

7.2.3 Control Signal Routing
The next constraint deals with the limited number (10 for the XC4000) of ver-
tical long lines available for control routing in each vertical channel (Section
2.7.1, Section 2.7.4). Since control lines span multiple omS, they are handled
at the level of the optimized network skeleton No.

The solution variable l p, j is 1 iff the control signal connected to primary
port p ∈ (Pi〈No〉 ∪Po〈No〉)∧ptype(p) 6= data occurs on a VLL in column j with
1≤ j ≤ l〈m〉 + 12.

∀ 1 ≤ j ≤ l〈m〉 + 1 :
∑

p∈(Pi〈No〉∪Po〈No〉)∧ptype〈No〉(p) 6=data

l p, j ≤ 10 (7.3)

2 The term “+1” is explained in Section 2.7.4.

129

7 Microplacement

The following constraints will establish connectivity between control sig-
nals and their source or sink units. As sketched in Section 2.7.4, a con-
trol line routed in vertical channel column n can reach units on both sides
of the channel (in columns n and n − 1). This relation will be expressed
using intermediate variables: cRv,m,p, j is 1 iff the unit v ∈ In〈m〉, placed
in column j with 1 ≤ j ≤ l〈m〉, could connect to the primary control port
p ∈ (Pi〈No〉 ∪Po〈No〉)∧ ptype(p) 6= data using a VLL in column j + 1 (the VLL
is located right of the unit).

xv, j ,m+ l p, j+1− 2 · cRv,m,p, j ≤1 (7.4)
xv, j ,m+ l p, j+1− 2 · cRv,m,p, j ≥0

Analogously, the intermediate variable cLv,m,p, j is 1 iff a VLL lying left of
v could provide the required connectivity.

xv, j ,m+ l p, j − 2 · cLv,m,p, j ≤1 (7.5)
xv, j ,m+ l p, j − 2 · cLv,m,p, j ≥0

Combining Constraints 7.4 and 7.5, we are able to constrain a new inter-
mediate variable cv,m,p, j such that it is 1 iff v ∈ In〈m〉 placed in column j could
be connected to p ∈ (Pi〈No〉 ∪ Po〈No〉) ∧ ptype(p) 6= data from the left or right
side (or both sides).

cLv,m,p, j + cRv,m,p, j − 2 · cv,m,p, j ≤0 (7.6)
cLv,m,p, j + cRv,m,p, j − 2 · cv,m,p, j ≥− 1

For each required connection between a unit v ∈ In〈m〉, and a control port
p ∈ (Pi〈No〉 ∪ Po〈No〉), we can now enforce that at whatever column j the unit
v is placed, at least one way of connecting v to p must exist.

l〈m〉∑
j=1

cv,m,p, j ≥ 1 (7.7)

We will apply these constraints once for

1. each primary control input port p of No,

2. each primary input port i in the master m corresponding to the input
terminal (w, q) in the instances w of m through which a w is connected
to p

3. each of the units (=4-LUTs) v ∈ In〈m〉 connected to i (and thus p) by
v ∈ Fo(i),

130

7.2 ILP for Horizontal Geometrical Node Placement

4. all of the columns j inside the placement area.

Each relevant (=with instances connected to p) master is constrained only
once per connected terminal, even though the master may occur with multiple
instances in No.

When formulating the constraints, we have to cross a hierarchy and a regu-
larity level: The primary control input ports are located at the No-level (nodes
are optimized slices), while the units we are trying to place are located at the
omS-level (nodes are LUTs). The somewhat obscure Item 2 makes the leap
from a terminal (w, q) on an instance (=optimized slice) w in No to the pri-
mary input in its optimized master-slice m by first using port to determine the
primary input in w underlying the terminal (Definition 35), and then com-
puting the corresponding primary input in the master using corrV (Definition
26).

Algorithm 14: Generating constraints for input control signal VLL routing
for all p ∈ Pi〈No〉 ∧ ptype(p) 6= data do

Q← {(mr〈master(w)〉, corrV (port〈No〉(w)(q))) |
∃q, r, w : ((p, r), (w, q)) ∈ Ttn〈No〉}

for all (m, i) ∈ Q do {omS, primary control input pairs}
for all v ∈ Fo(i) do

for all 1≤ j ≤ l〈m〉 do
enforce Constraint 7.4 for v, m, p, j
enforce Constraint 7.5 for v, m, p, j
enforce Constraint 7.6 for v, m, p, j

end for
enforce Constraint 7.7 for v, m, p

end for
end for

end for

Example 104 Algorithm 14 is sufficiently complex to deserve further examination.
An optimized network skeleton No is shown at the left side of Figure 7.2. Some pri-
mary input nodes are labeled within the rounded rectangles, bold labels outside the
rectangles are variables (symbol and significance).

No has In〈No〉 = {oS0, oS1, oS2}, and g ∈ Pi〈No〉, with ptype(g) = control. Consider
the TTNs

{((g, g), (oS0, a0)), ((g, g), (oS1, a1)), ((g, g), (oS2, a2)),

((g, g), (oS0, b0)), ((g, g), (oS1, b1)), ((g, g), (oS2, b2))}.
The outer loop of Constraint 14 will set p to g. The set Q iterated over by the

next nested loop is constructed as follows: Consider the first TTN, it will have p = g,
r = g, w = oS0, and q = a0. Thus, with mr〈master(oS0)〉 = A, port〈No〉(oS0)(a0) = y,
and corrV(y) = e, (m, i) becomes (A, e). Note that this same value will result when

131

7 Microplacement

No

g

0 0

1 1

2 2

u v

w x

y z

oS
 1

 m

r(
m

as
te

r)
 =

 A
oS

 2

 m
r(

m
as

te
r)

 =
 A

oS
 0

 m

r(
m

as
te

r)
 =

 A
α β
e f

a b

a b

a b

A

control

Figure 7.2: Control signal connectivity via VLL

processing the second and third TTNs (all end up at the primary input e ∈ Pi〈A〉).
The fourth through sixth TTNs, however, will evaluate (m, i) to (A, f).

In this manner, the six TTNs on the optimized slices will only cause the generation
of two constraint sets, consisting of Constraints 7.4 through 7.7, for their optimized
master-slice.

Analogously, for primary control outputs, we define Algorithm 15.

Algorithm 15: Generating constraints for output control signal VLL routing
for all p ∈ Po〈No〉 ∧ ptype(p) 6= data do
∃q, r, w : ((w, q), (p, r)) ∈ Ttn〈No〉 {PO p only has single fanin}
m← mr〈master(w)〉
o← corrV (port〈No〉(w)(q))

∃ v : v ∈ Fi(o){PO o has only single fanin}
for all 1 ≤ j ≤ l〈m〉 do

enforce Constraint 7.4 for v, m, p, j
enforce Constraint 7.5 for v, m, p, j
enforce Constraint 7.6 for v, m, p, j

end for
enforce Constraint 7.7 for v, m, p

end for

The differences between Algorithms 14 and 15 are caused by the fact that
primary inputs may have multiple fanouts, while primary outputs always

132

7.2 ILP for Horizontal Geometrical Node Placement

have a single fanin each. Thus, most of the loops reduce to a single iteration
for primary outputs.

7.2.4 Critical Path Segment Delay Computation
Using the delay-tracing and backannotation process outlined in Section 2.7.2,
we have obtained a set of critical paths P(m) for each optimized master-slice
m ∈ Mo(N f). Each critical path begins at a primary input of the optimized
master-slice, then runs through a number of units, and ends at a primary
output. It is described by the sequence (a, v1, . . . , vn, y), where a ∈ Pi〈m〉, vk ∈
In〈m〉, y ∈ Po〈m〉, for 1≤ k ≤ n.

Fixing Horizontal Port Locations

Since the critical path delay in our model is primarily based on the distance
between two nodes in the critical path, we need to consider the node locations.
For units, they will be determined by the ILP model, e.g., by Constraint 7.1.
For output ports on optimized slices that connect to primary ports of the entire
optimized network skeleton, their horizontal locations can be fixed in advance
by considering the compacted subdatapath in context of the entire datapath:
When an instance of m has a connection to the left side of the subdatapath3

through a port p ∈ (Pi〈m〉 ∪ Po〈m〉), p is assumed to have x〈loc〈m〉(p)〉 = 0 (it
is located at the left edge of the placement area). Analogously, if connections
from instances to the right edge of the datapath exist through p, it will be
placed at the right edge of the placement area with x〈loc〈m〉(p)〉 = l〈m〉 +
1. Primary ports that are only connected within the subdatapath (inter-oS
connections) are left floating, with x〈loc〈m〉(p)〉 = ⊥. The special case of a
port being connected to both sides is handled by duplicating the port with its
connectivity, and locking one copy to the left and the other to the right side.
For brevity, we assume this is handled transparently (as implemented), and
will not complicate the constraint formulations.

To improve clarity, we will show the formulation of the following con-
straints as an ILP (not restricted to 0-1) whenever feasible. Remember that
any ILP can be transformed into a 0-1 ILP by an appropriate binary encoding
of variables [Will93].

Assume that we wish to calculate the length of the critical path segment
(u, v), with u, v ∈ V〈m〉, and (u, v) a subsequence of P ∈ gP. We have to handle
the following cases4:

1. If one or both nodes are in In〈m〉, their locations are determined by the
0-1 x variables, e.g. xv, j ,m (Constraint 7.1).

2. If one of the nodes is a primary port p ∈ (Pi〈m〉 ∪ Po〈m〉) that occurs on
instances in In〈No〉 which are connected to subdatapath primary ports

3 The horizontal topological placement at the datapath level is still intact, Section 6.1 4 The
current SDI implementation can handle even more complicated cases crossing omS bound-
aries. They will be omitted here, since the vertical alignment constraints discussed in the
next section provide a similar functionality.

133

7 Microplacement

Pi〈No〉 ∪ Po〈No〉, the horizontal location x〈loc(p)〉 is constant, and has
been fixed depending on subdatapath context.

3. If a node is a primary control port, it is disregarded here (it was already
handled during control routing).

To determine the distance between two units u, v ∈ In〈m〉, we model |x〈loc(u)〉−
x〈loc(v)〉|with two intermediate integer variables. If d = x〈loc(u)〉−x〈loc(v)〉 ≥
0, then dpu,v,m = d, otherwise dpu,v,m = 0. If d < 0, dnu,v,m = −d, otherwise
dnu,v,m = 0. In this manner, the absolute value is expressed as dpu,v,m+dpu,v,m.

If both nodes are units, this results in the constraint

(

l〈m〉∑
j=1

j · (xu, j ,m− xv, j ,m))− dpu,v,m+ dnu,v,m = 0. (7.8)

If u ∈ Pi〈m〉 ∧ x〈loc(u)〉 6= ⊥, we enforce

(

l〈m〉∑
j=1

− j · xv, j ,m)− dpu,v,m+ dnu,v,m = −x〈loc(u)〉. (7.9)

If v ∈ Po〈m〉 ∧ x〈loc(v)〉 6= ⊥, the constraint becomes

(

l〈m〉∑
j=1

j · xu, j ,m)− dpu,v,m+ dnu,v,m = x〈loc(v)〉. (7.10)

These are the valid node combinations, all others will be avoided in higher-
level constraints (Section 7.2.5).

We accept partially inconsistent variable values in the model, caused by
the separate representation of positive and negative components of distance
(an absolute value). E.g., 5− dp+ dn = 0 could erroneously result in dp =
10, dn = 5. However, since we will be minimizing the maximal distance com-
puted as dp+dn, those terms contributing to the maximum will be constrained
implicitly. The example would have dp = 5, dn = 0 in order to minimize
dp+ dn.

The next constraint is employed to compensate for inaccuracies due to the
two-phase nature of microplacement (first horizontally, then vertically) . We
introduce an 0-1 indicator variable eu,v,m that becomes 1 if both nodes u, v are
placed in the same column (dpu,v,m+ dnu,v,m = 0).

dpu,v,m+ dnu,v,m + eu,v,m ≥ 1 (7.11)

If eu,v,m = 1, we will add an estimate of the vertical distance within the
column (Section 2.7.4). Otherwise, the horizontal model would attempt to op-
timize delay by placing all nodes on critical paths in the same column (which
would appear to give zero delay).

134

7.2 ILP for Horizontal Geometrical Node Placement

At this point, we can generate the required constraints for all critical path
segments in Algorithm 16. Note that we create only one set of constraints for
each segment, regardless how often it appears in different critical paths.

Algorithm 16: Generating constraints for all segments on critical paths
done[∗] ← FALSE
for all m ∈Mo do

for all P ∈ P(m) do
for all (u, v) ∈ P do

if not done[(u, v)] then
enforce appropriate one of Constraints 7.8, 7.9, 7.10 for u, v, m
enforce Constraint 7.11 for u, v, m
done[(u, v)]← TRUE

end if
end for

end for
end for

7.2.5 Maximal Critical Path Delay
After determining the individual segment delays by Algorithm 16, we pro-
ceed to compute the delays of entire critical paths (including the estimates
for vertical distance, Constraint 7.11), and determine their maximal delay in
the integer variable dm. While doing so, we skip all path segments (u, v) that
either contain a control port, or an unplaced port. The first case was handled
in the control routing constraints, the second case will be described during
vertical inter-slice alignment5.

VALIDSEG(u, v)← (7.12)
(u /∈ Pi〈m〉 ∨ (ptype(u) = data∧x〈loc(u)〉 6= ⊥))

∧(v /∈ Po〈m〉 ∨ (ptype(v) = data∧x〈loc(v)〉 6= ⊥)))

The helper function VALIDSEG evaluates to TRUE if the segment (u, v)

should be included in the path delay computation.

∀m ∈Mo∀ P ∈ P(m) : dm−
∑

(u,v)∈P
∧VALIDSEG(u,v)

(dpu,v,m+ dnu,v,m+ bh〈m〉/4c · eu,v,m) ≥ 0

(7.13)

Note how the estimated vertical distance adds another unit of distance per
four cells of height in the placement area if the two nodes in the segment were
placed in the same column (eu,v,m = 1).
5 The implementation contains special code to handle unplaced ports by tracing connectivity
to the next placed element. An in-depth description, however, would only detract from the
keypoints of model composition

135

7 Microplacement

7.2.6 Vertical Inter-omS Alignment

The only inter-omS constraints defined up to now concern the routing of con-
trol signals from primary ports of No to the optimized slices on vertical long
lines. In addition, however, it is beneficial to also consider inter-oS signals.
Examples for these signals include the bit propagation in shifter-like struc-
tures, or the carry signal in a ripple-carry adder. As shown in Figure 2.31,
these signals should be routed by abutment (sink and source cells in same
column) if possible, or at least with only minimal horizontal offset.

To this end, we will consider placement for

1. Floating primary ports p of the optimized network skeleton (x〈loc(p)〉 =
⊥).

2. Units in the optimized master-slices.

Note the omission of primary ports at the omS-level: They become irrel-
evant when the entire compacted subdatapath is assembled from oSs. We
determine placement only for those components that actually appear at that
level. Similar to the approach used for control signal routing (Figure 7.2),
we analyze connectivity in the optimized network skeleton No, and isomor-
phically map it to the optimized master-slices. In this manner, regularity is
employed to constrain only the master instead of each separate instance.

Before formulating the constraints, we need to determine which circuit
elements need alignment:

1. A floating primary input port of No connected to an optimized slice will
be aligned with the fanout units of the corresponding master primary
input port.

2. A connection between two optimized slices will align the fanin unit of
the corresponding master primary output port with all fanout units of
the corresponding master primary input port. Note that the omS of both
oSs may be identical.

3. A floating primary output port of No connected to an optimized slice will
be aligned with the fanin unit of the corresponding master primary out-
put port.

Example 105 In Figure 7.3, the floating primary input port o ∈ Pi〈No〉 is connected
via TTN ((o, o), (A, a)) to the optimized slice A. The primary port inside this instance
corresponding to terminal (A, a) is port〈No〉(A)(a) = α.

To exploit regularity, we have to leave the instance view, and look into the master
mr〈master(A)〉 = X, which specifies the innards of A. We find that the primary port
in the master corresponding to α in the instance is corrV(α) = p ∈ Pi〈X〉. There, p
connects to the two units Fo(p) = {u, v}. Thus, we will want to make sure that the
horizontal offset between o and u, as well as between o and v, is as small as possible.

136

7.2 ILP for Horizontal Geometrical Node Placement

a o,u= 1 a o,v = 1

x

w

u v

optimized slices

o

master

master

a w,x = 0

a w,v = 1a w,u = 1

optimized master-slices

A

B

C Y

X

a

a

cb

b

r

q

pα

β

γ

δ

ε

master

a

b

c

o

No

Figure 7.3: Vertical inter-optimized master-slice alignment

The next TTN considered in No is the inter-oS TTN ((A, b), (B, a)). In the oSs,
we determine the primary ports corresponding to the source and sink terminals as
port〈No〉(A)(b) = β, and port〈No〉(B)(a) = γ . Changing to the master mr〈master(A)〉 =
X and mr〈master(B)〉 = X, we determine the corresponding primary ports as corrV(β) =
q, and corrV(γ) = p. We need to align the fanin unit of the primary output q,
Fi(q) = w, with the fanouts of the primary inputs p, Fo(p) = {u, v}. Thus, the
horizontal offset should be minimized between units w and u, and w and v.

Finally, the inter-oS TTN ((B, b), (C, c)) is analyzed. Following our previous ap-
proach, we determine the primary ports in the instances as port〈No〉(B)(a) = δ and
port〈No〉(C)(c) = ε. The optimized master-slices are found as mr〈master(B)〉 = X,
mr〈master(C)〉 = Y, with the primary ports in the masters being corrV(δ) = q and
corrV(ε) = r. Following the connectivity in the masters, we find Fi(q) = w and
Fo(r) = {x}. Thus, the resulting alignment should minimize the offset between the
units w and x.

The set A, consisting of all node/master (floating primary port and unit)
pairs to be aligned, is computed by the formula in Figure 7.4.

The first subset collects all primary inputs of No that have to be aligned
with units in the omS, the second subset contains all units in omS that have
to be aligned with each other, and the third subset holds all units in omS that
have to be aligned with primary outputs of No.

For primary ports at the No-level, we use No as the master. This sub-
stitution is valid since the constraint formulation will only use the network
skeleton-components. Note how the set-nature of A automatically removes
duplicates, ensuring that each alignment will be expressed only once.

Following our previous approach of encoding the absolute value in separate

137

7 Microplacement

A = (7.14)
{((u, No), (v, mr〈master(v′′)〉)) |
∃ p, q : ((u, p), (v′′, q)) ∈ Ttn〈No〉 ∧ u ∈ Pi〈No〉 ∧ x〈loc〉(u) = ⊥
∧ ∃ v′ : v′ = corrV (port〈No〉(v′′)(q))

∧ ∃ v : v ∈ Fo(v′)}
∪{((u, mr〈master(u′′)〉), (v, mr〈master(v′′)〉)) |
∃ p, q : ((u′′, p), (v′′, q)) ∈ Ttn〈No〉 ∧ u, v ∈ In〈No〉
∧ ∃u′, v′ : u′ = corrV (port〈No〉(u′′)(p)) ∧ v′ = corrV (port〈No〉)(v′′)(q)

∧ ∃u, v : u = Fi(u′) ∧ v ∈ Fo(v′)}
∪{((u, mr〈master(u′′)〉), (v, No)) |
∃ p, q : ((u′′, p), (v, q)) ∈ Ttn〈No〉 ∧ v ∈ Po〈No〉 ∧ x〈loc〉(v) = ⊥
∧ ∃u′ : u′ = corrV (port〈No〉(u′′)(p))

∧ ∃u : u = Fi(u′)}.

Figure 7.4: Computing the set of nodes to align

positive and negative components, the computation of the alignment offset
reduces to

∀((u, m), (v, n)) ∈ A : (

max(l〈m〉,l〈n〉)∑
j=1

j (xu, j ,m− xv, j ,m))− apu,m,v,n + anu,m,v,n = 0

(7.15)

Note that the solution variables xv, j ,m now encompass the placement of
floating ports (which occur in A). We compute the maximum alignment error
am as

∀((u, m), (v, n)) ∈ A : am− apu,m,v,n − anu,m,v,n ≥ 0 (7.16)

7.2.7 Objective Function

At this stage, we have described all constraints required to formulate the ob-
jective function expressing our placement aims (Section 2.7.4).

minimize wc · (
∑

p∈(Pi〈No〉∪Po〈No〉)∧ptype(p) 6=data

l〈No〉∑
j=1

l p, j)+ wd · dm+ wa · am (7.17)

138

7.3 Efficiently Solving 0-1 ILPs

The first term is the total number of VLLs used for control routing (includ-
ing duplicated signals, Constraint 7.3), the second term is the delay of the
slowest optimized master-slice (Constraint 7.13, note: not the critical path de-
lay of the entire subdatapath), and the third term is the maximal alignment
error for vertical inter-slice connections (Constraint 7.16).

wc, wd, wa ∈ R are user-defined weights. They could be used, e.g., to favor
a faster circuit over one using fewer VLLs. For the benchmark circuits, the
terms were of the same magnitude, and all weights were left at default values
of 1.0.

7.3 Efficiently Solving 0-1 ILPs

7.3.1 Preprocessing and Constructive Enumeration

To efficiently solve larger 0-1 ILPs, we use a three-step procedure: In the first
phase, the model is simplified using techniques specific to pseudo-boolean op-
timization problems (e.g., literal fixing, inter-literal equations, coefficient re-
duction, etc. [Bart96]). Next, a constructive enumeration (Davis-Putnam for
constraint logic programs [Bart96] [Bart95]) quickly generates feasible solu-
tions for the model. After obtaining the first feasible solution, the procedure
artificially decreases the current value of the objective function to create an
additional constraint for a next iteration. If yet another feasible solution (with
the lowered objective value) is found, the process continues. The first and sec-
ond phases are realized using the opbdp solver [Bart95].

In this manner, we obtain solutions with a steadily improving quality. In
some cases, the constructive approach alone reaches a provably optimal solu-
tion in a reasonable amount of time, which is then used directly for the second
(vertical) phase of microplacement (Section 7.5).

7.3.2 Pruned Branch-and-Bound

In other cases, however, the nature of the model (after simplification) is un-
suitable for a fully constructive optimization, and the time and memory re-
quirements of each improvement become impractical. After exceeding user
defined limits for these quantities, the constructive approach is aborted.

As the last attempt at ILP solving, we then switch to the conventional
branch-and-bound based solver cplex [Cple94] to process the simplified model
(obtained in the first phase). In addition, we use the objective function value of
the best feasible solution found using the constructive approach as an initial
upper cutoff to prune the solution tree of the branch-and-bound algorithm: All
branches that have a best possible solution (for the LP relaxation of the prob-
lem) worse than the predetermined upper cutoff will not be explored further
(reducing time and memory requirements).

Further speedups are achieved by also generating specially-ordered-sets
[Will93] [Cple94] for the xv, j ,m solution variables.

139

7 Microplacement

7.3.3 Capabilities and Limitations

By employing this hybrid strategy consisting of both enumeration and branch-
and-bound techniques, we exploit that some 0-1 ILPs which are very difficult
to solve by one approach, may be quite easy for the other one [Bart95]. The
current implementation solves 0-1 ILPs of, e.g., 1128 constraints and 981 0-
1 variables (a 32-bit 74181-based ALU) in less than 15 minutes on a Sun
SparcStation 20/71 (64MB RAM). Even further speedups could be realized
by extracting the longest common subpaths from the critical paths, and then
computing the delay along an entire subpath only once.

However, the ILPs resulting from some circuits are not optimally solv-
able with reasonable time and memory limits, even using the hybrid strat-
egy. Furthermore, since the exact solution of 0-1 ILPs is a problem with
NP-complexity, computation times and memory requirements will, despite all
preprocessing and optimization efforts, eventually skyrocket with increasing
problem size. To make SDI usable even for larger circuits, we have imple-
mented a heuristic alternative to the exact ILP model.

7.4 Heuristic for Horizontal Geometrical Node
Placement

7.4.1 Ensemble-Based Annealing

In order to increase the problem size processable by SDI, we have provided
an alternative heuristic algorithm to the 0-1 ILP. It is based on ensemble-
based simulated annealing [RuPS91], which calculates multiple solutions in
parallel. Statistics collected across these domain elements are then used to
dynamically adapt annealing parameters during the optimization process.

The model processed by the heuristic has the same optimization aims as
the 0-1 ILP (Section 2.7.4). A domain element consists of the complete cell
placement for an entire compacted subdatapath (across all optimized master-
slices). Each domain element is initialized to a random cell placement. To
ensure a smooth solution landscape, moves are currently limited to simple
pairwise exchanges of two locations (units or empty cells) within the place-
ment area of each optimized master-slice.

7.4.2 Optimization Cost Function

Each placement is then evaluated in terms of delay and number of control
lines needed for routing. The dedicated alignment term of the 0-1 ILP model
(Section 7.2.6) has been replaced by directly considering the horizontal dis-
tance for inter-omS connections in the critical path delay computations. The
cost function thus becomes

minimize wd · dm+ wc · el,

140

7.5 ILP for Vertical Geometrical Node Placement

where wd, wc ∈ R are user-defined weights, dm is the slowest critical path
delay through any optimized master-slice, and el is the excess number of VLLs
for control routing. el is computed as the difference between the number of
VLLs actually used, and the number of different control signals in the entire
subdatapath under compaction. An optimal solution will have el = 0 (each
control signal is only routed on a single VLL each), with the optimization
then becoming purely timing-driven.

Apart from the annealing parameters, the speed of an annealing-based
approach is heavily influenced by the efficiency of the cost function, which
must be evaluated after every move. Since the computation of all critical path
delays for a large number of paths with many segments, in addition to control
routing, would take an inordinate amount of time, we have implemented an
incremental algorithm: We compute only the changes in segment delay caused
by each exchange, and then selectively update the path delays only for those
paths that actually contain the changed segment. A complex data structure
cross-referencing all nodes, segments and paths is built at initialization time,
and reduces the determination of the circuit components affected by a move
to simple lookups.

The core of the annealing algorithm itself based on the EBSA 2.1 library
[Frost93], which had to be heavily modified to allow for the fast incremental
cost computation.

7.4.3 Capabilities and Limitations

As a result of the powerful dynamic parameter adaptation by ensemble sta-
tistics (which avoids the usual problems of hardcoded annealing schedules
[RuPS91]), and the fast cost evaluation, the heuristic lifts the problem size
restrictions imposed by ILPs, and avoids the case of ILPs with a structure
not amenable to either solver. E.g., a sample 0-1 ILP problem with 1200 con-
straints and 930 variables could only be processed in 7300s by the combined
solvers. Using annealing, the placement problem was solved in 600s. Fur-
thermore, for all models that were exactly solvable at all, the heuristic also
found a provably optimal solution. Our current experience suggests that the
annealing-based placer is not subject to any limitations when used in context
of SDI6.

7.5 ILP for Vertical Geometrical Node Placement

Analogously to Section 7.2, we proceed to formulate constraints for the verti-
cal geometrical placement model described in Section 2.7.4. With the problem
size reduced to a single optimized master-slice, we can afford here to process a
far more detailed model exactly, instead of resorting to a heuristical solution.
The second placement phase finally assigns the units to CLBs. We thus have

6 The restricted size of subdatapaths under compaction, and the exploitation of regularity
leads to problem sizes of dozens of nodes, instead of millions of gates.

141

7 Microplacement

to distinguish between two different measurements for distance and coordi-
nates: cells and CLBs. This was not required for horizontal placement, since
horizontally, each CLB contains only a single cell. Vertically, however, a CLB
holds two cells (Figure 2.32).

7.5.1 Node Placement

Given an optimized master-slice m ∈ Mo to be microplaced, the 0-1 solution
variable yv,i is 1 iff the node v ∈ In〈m〉 is being placed in cell row 1 ≤ i ≤ h〈m〉
of the placement area.

First, we want to ensure that each node v is placed in exactly one row i .

∀ v ∈ In〈m〉 :
h〈m〉∑
i=1

xv,i = 1 (7.18)

The second set of constraints of the ILP ensures that each row i is used at
most once by all units previously placed in a column j .

∀ 1≤ j ≤ l〈m〉 ∀1 ≤ i ≤ h〈m〉 :
∑

v∈In〈m〉
∧x〈loc(v)〉= j

yv,i ≤ 1 (7.19)

7.5.2 Vertical Distance in CLBs

When determining the vertical distance in CLBs between two connected nodes
u, v, we just halve the distance in cells. The absolute value of the CLB distance
will be expressed as the intermediate variables dcpu,v for the positive part,
and dcnu,v for the negative part.

Fixing Vertical Port Locations

At this stage, the locations of all omS primary ports are fixed, there are no
floating ports left: The vertical location of ports connecting the subdatapath
with the entire datapath is fixed during floorplanning. It depends, e.g., on the
location of ports on adjacent hard-macros, or on the assignment of signals to
chip-level pads.

Ports used as terminals for inter-oS connections within the subdatapath
are locked to the top or bottom sides of the omS placement area. If an oS has
a connection to an oS located above it (Section 7.1), we lock the port to the
top of the omS (at CLB position dh〈m〉/2e for primary inputs, or dh〈m〉/2e + 1
for primary outputs). If a connection to a lower oS exists, we lock the port to
the bottom of the master of the originating oS (at CLB position 1 for primary
inputs, and position 0 for primary outputs). The differentiation between pri-
mary inputs and outputs reflects the longer “reach” of output pins beyond the
placement area itself (Figure 2.32). We thus model the delay of oS-external

142

7.5 ILP for Vertical Geometrical Node Placement

connections at their source terminals, and assume zero delay at the inputs. If
an oS is connected to oSs both above and below it, we transparently duplicate
the primary port with its connectivity, and lock one copy to the top, the other
one to the bottom of the omS (as in Section 7.2.4).

For clarity of modeling, we assume the existence of two helper functions.
For a port p ∈ (Pi〈m〉 ∪ Po〈m〉), TOP(p) is 1 if p is top-locked, 0 otherwise.
Analogously, BOT(p) is 1 if p is bottom-locked, 0 otherwise.

The computations for the vertical CLB distance between two nodes u, v ∈
V〈m〉 depend on the nature of u, v. For u ∈ Pi〈m〉, we formulate

−(

dh〈m〉/2e∑
i=1

i · (yv,2·i−1+ yv,2·i))− dcpu,v + dcnu,v = −TOP(u) · dh〈m〉/2e − BOT(u) · 1
(7.20)

Note that the application of the helper functions occurs statically at con-
straint-generation time. The resulting constraint will consist only of purely
linear terms and contains just the yv,i , dcpu,v, dcnu,v variables at solution time.

If both u, v ∈ In〈m〉, the distance computation constraint becomes

(

dh〈m〉/2e∑
i=1

i · (yu,2·i−1− yv,2·i−1 + yu,2·i − yv,2·i))− dcpu,v + dcnu,v = 0. (7.21)

For v ∈ Po〈m〉, we use

(

dh〈m〉/2e∑
i=1

i · (yu,2·i−1+ yu,2·i))− dcpu,v + dcnu,v = TOP(u) · (1+ dh〈m〉/2e)− BOT(u) · 0
(7.22)

Note the modeling of locked port locations depending on input/output char-
acteristics and top/bottom locking.

The actual implementation generates two separate inequalities for posi-
tive and negative distance components, instead of the larger combined equal-
ity, to improve solving efficiency.

7.5.3 Recognizing Linear Horizontal Placement
As shown in Section 2.7.4 and Figure 2.32 (e.g., (A, E) and (B, E)), we need
to recognize the special case of two connected nodes being placed in the same
CLB row. To this end, we introduce the intermediate 0-1 variables oru,v, which
become 1 iff u, v have zero vertical CLB distance.

dcpu,v + dcnu,v + oru,v >0 (7.23)
dcpu,v + dcnu,v + h〈m〉 · oru,v ≤h〈m〉

143

7 Microplacement

Together, these two constraints express an AND-clause: The first one forces
oru,v to 1 if the distance is zero, the second one forces oru,v to 0 if the distance
is non-zero.

7.5.4 Recognizing Horizontally Abutting Cells
Another special case are connected cells in horizontally adjacent CLBs in the
same row ((A, C), (C, B) in Figure 2.32). By varying the vertical position of
the source cell in the CLB (between F and G-LUT), we aim at exploiting asym-
metries in the FPGA routing network to achieve zero switch matrix (SM) con-
nectivity. We set intermediate 0-1 variables nlu,v (nru,v) to 1 iff u is directly left
of (right of) v, and u is placed in the appropriate LUT for the direction: If u is
left of (right of) v, u should be placed in the G-LUT (F-LUT).

First, we define the constraint if u lies left of v (remember that all horizon-
tal locations are known by now).

(

bh〈m〉/2c∑
n=1

yu,2·n)− dcpu,v − dcnu,v − (h〈m〉 + 1) · nlu,v ≥ −h〈m〉 (7.24)

The first sum term becomes 1 if u was placed in any G-LUT (vertical cell
coordinates 2, 4, 6, . . .). As long as only this term is 1, nlu,v may become 1
with the right-hand side of the inequality still holding. If u is not placed in a
G-LUT (the sum term is 0), or either of the distance components becomes > 0,
nlu,v cannot be 1 without violating the inequality. We define the constraint for
the u right of v analogously.

(

dh〈m〉/2e∑
n=1

yu,2·n−1)− dcpu,v − dcnu,v − (h〈m〉 + 1) · nru,v ≥ −h〈m〉 (7.25)

Here, the first sum term only becomes 1 if u was placed in any F-LUT
(vertical cell coordinates 1, 3, 5, . . .).

7.5.5 Recognizing Vertically Abutting Cells
As with horizontal abutments (Section 7.5.4), we need to handle special cases
with connected cells in vertically adjacent CLBs in the same column ((A, D),
(B, D) in Figure 2.32). The intermediate 0-1 variables nau,v (nbu,v) will become
1 iff u is in the CLB directly above (below) v, and placed in the F-LUT (G-LUT).

The vertical CLB distance is only computed at solution time (Section 7.5.2),
not constant as in Section 7.5.4. Thus, we have to perform the test if the verti-
cal distance is exactly 1 within the constraint. To this end, we will exploit the
binary representation of distances (which was disregarded up to this point,
Section 7.2.4). The distances are thus modeled as

dcpu,v =
bld h〈m〉c∑

b=0

2b · dcpu,v,b,

144

7.5 ILP for Vertical Geometrical Node Placement

analogously for dcnu,v. For the distance to be exactly 1, we are thus imposing
the subconstraint

(

bld h〈m〉c∑
b=1

(1− db))+ d0 = bld h〈m〉c + 1

on the individual “bits” of a distance d. We use dcpu,v as d for the relation u
above b (the vertical CLB distance is positive), and dcnu,v as d for u below b
(negative vertical CLB distance).

With this intention, me may formulate the constraint for u above v as

(

dh〈m〉/2e∑
n=1

yu,2·n−1)+ (

bld h〈m〉c∑
b=1

(1− dcpu,v,b))+ dcpu,v,0 − (bld h〈m〉c + 2) · nau,v ≥ 0

(7.26)

Thus, nau,v may become 1 only if the source unit was placed in an F-
LUT (the first sum is 1), and vertical CLB distance is +1 (in dcpu,v , the bits
1 . . . bld h〈m〉c are 0, and bit 0 is 1). We define the constraint for u below v

analogously.

(

bh〈m〉/2c∑
n=1

yu,2·n)+ (

bld h〈m〉c∑
b=1

(1− dcnu,v,b))+ dcnu,v,0 − (bld h〈m〉c + 2) · nbu,v ≥ 0

(7.27)

Here, u must be placed in a G-LUT, and the vertical CLB distance from
source to sink must be -1 (dcpu,v = 0, dcnu,v = 1) for nbu,v to become 1.

We have to add two “guard” constraints to make sure that either dcpu,v > 0
or dcnu,v > 0. Since the dcpu,v and dcnu,v are not minimized directly (see
Objective 7.39), they could float. E.g., 5 − dp + dn = 0 could erroneously
result in dp= 10, dn= 5. However, this would produce invalid results for the
nau,v, nbu,v calculations: In contrast to all other constraints, Constraints 7.26
and 7.27 don’t just minimize a value, they compare it exactly (test if distance
is equal to 1). Thus, floating variables (even if their sum is correct) would
invalidate the exact comparison.

The 0-1 intermediate guard variables will be gpu,v (1 iff dcpu,v > 0) and
gnu,v (1 iff dcnu,v > 0). Only one of the gpu,v, gnu,v may be 1 for a valid absolute
value computation.

dcpu,v − h〈m〉 · gpu,v ≤0 (7.28)
dcnu,v − h〈m〉 · gnu,v ≤0

gpu,v + gnu,v ≤1

Note how we compute a value larger than the maximal distance (the CLB
height of the placement area) simply by using the height in cells. With these
constraints, absolute values will always be computed correctly.

145

7 Microplacement

7.5.6 Vertical SM Distance in a Single Column

The following constraint computes the distance in SMs if a source u and sink
v of a TTN were placed within the same column by the horizontal microplace-
ment phase. Normally, the distance is the CLB distance, but may become 0 if
the source is a unit, and both cells are abutting vertically (Section 7.5.5). The
intermediate variable dsu,v will hold the distance in SMs.

dsu,v − dcpu,v − dcnu,v + h〈m〉 · (nau,v + nbu,v) ≥ 0 (7.29)

dsu,v thus assumes the value of the absolute CLB distance, or 0 if one of
nau,v, nbu,v is 1. If the source wasn’t a unit, the optimizations by vertically
abutting placement cannot be performed, and the constraint reduces to

dsu,v − dcpu,v − dcnu,v ≥ 0, (7.30)

the simple CLB distance.

7.5.7 Arc-Based Unit-to-Cell Assignment

If the horizontal distance between connected units is≥ 1, zero SM delay place-
ment is impossible by vertical abutment (Section 7.5.5), possible by horizontal
abutment for a distance of 1 (Section 7.5.4), and impossible again for all longer
distances.

However, by proper assignment of the source unit to a cell inside a CLB,
we can avoid an additional delay penalty (Section 2.7.4, cases (B,H) and (I,H)).
The intermediate 0-1 variables pau,v will be set to 1 iff the source unit is as-
signed to the cell whose reach covers the proper arc to the sink, or the as-
signment doesn’t matter at all: If the source lies left of the sink, the source
should be placed in the G-LUT, except if the sink lies below the source (cell
assignment doesn’t matter in this case). Analogously, if the source lies right
of the sink, the source should be placed in the F-LUT, except if the if the sink
lies above the source (no effect on delay).

For a horizontal distance of 1 and u lying left of v, we arrive at the con-
straint

(

bh〈m〉/2c∑
n=1

yu,2·n)+ dcpu,v − pau,v ≥ 0. (7.31)

The first sum term becomes 1 if the source unit is placed in any G-LUT,
and the second term becomes > 0 if u lies above v (the vertical CLB distance
is > 0). pau,v is thus set to 1 if one (or both) of the conditions are true. We
define the constraint for the case of u lying right of v analogously.

146

7.5 ILP for Vertical Geometrical Node Placement

(

dh〈m〉/2e∑
n=1

yu,2·n−1)+ dcnu,v − pau,v ≥ 0. (7.32)

For horizontal distances > 1, we have to consider the special case of both
units being placed in a single row (Section 7.5.3). In this situation, cell assign-
ment also becomes irrelevant (Section 2.7.4, (A,E) and (B,E)), and we force
pau,v to 1. The resulting constraints are

(

bh〈m〉/2c∑
n=1

yu,2·n)+ dcpu,v − pau,v + oru,v ≥ 0 (7.33)

for the u-left-of-v arrangement, and

(

dh〈m〉/2e∑
n=1

yu,2·n−1)+ dcnu,v − pau,v + oru,v ≥ 0. (7.34)

in the u-right-of-v case.

7.5.8 SM Distance in Adjacent Columns
With these constraints, we formulate the calculation of the SM distance when
two connected nodes are placed in adjacent columns. The computed distance
will consist of both the vertical distance and the horizontal distance. As in
Section 7.5.6, we will compute the SM distance in dsu,v. If a unit u lies left of
v, we use

dsu,v − dcpu,v − dcnu,v + pau,v + h〈m〉 · nlu,v ≥ 1. (7.35)

This constraint has the following effect: Initially, dsu,v will be the absolute
value of the CLB distance. However, if the source unit was not assigned to
the cell appropriate for this placement arc (pau,v = 0), the SM distance dsu,v

will be increased by 1 (due to the right-hand side of the inequality being 1). If,
on the other hand, a direct (zero SM) connection by horizontal abutment was
possible (indicated by nlu,v = 1), dsu,v will become 0. As before, we use h〈m〉 as
a value guaranteed to be greater than dcpu,v + dcnu,v.

The analogous constraint for a unit u lying right of v thus becomes

dsu,v − dcpu,v − dcnu,v + pau,v + h〈m〉 · nru,v ≥ 1. (7.36)

If u is a primary port, the detailed cell assignment calculations are super-
fluous, and the separate constraints reduce to a simple

dsu,v − dcpu,v − dcnu,v ≥ 0. (7.37)

147

7 Microplacement

7.5.9 Computing Net Delay in SMs

To compute the delay in SMs of an arbitrary TTN ((u, p), (v, q)), we introduce
a utility array HDIST[(u, v)], used to store the horizontal distance of a node
pair (u, v) for later use in Section 7.5.11. We then proceed as shown in Algo-
rithm 17.

Algorithm 17: Generating constraints for vertical TTN delay in SMs
{compute vertical CLB distance}
enforce one of Constraint 7.20, 7.21, 7.22

depending on whether u is a PI, unit, or PO.
{do further optimizations if source is a unit}
if u ∈ In〈m〉 then

{direct vertical connection in same column possible?}
if x〈loc(u)〉 = x〈loc(v)〉 then

enforce Constraints 7.26 and 7.27 {vertical adjacency}
enforce Constraint 7.29 {vertical SM distance}
HDIST[(u, v)]← 0{u, v in same column}

else if |x〈loc(u)〉 − x〈loc(v)〉| = 1 then {adjacent columns?}
if x〈loc(u)〉 − x〈loc(v)〉 < 0 then {u left-of v}

{check adjacency and placement arc}
enforce Constraints 7.24 and 7.31
{compute hybrid vertical and horizontal SM distance}
enforce Constraint 7.35

else {u right-of v}
{check adjacency and placement arc}
enforce Constraints 7.25 and 7.32
{compute hybrid vertical and horizontal SM distance}
enforce Constraint 7.36

end if
HDIST[(u, v)]← 0{horizontal distance in hybrid distance}

else {horizontal distance > 1}
enforce Constraint 7.23 {test for single row-placement}
{check for proper placement arc with test for single row}
if x〈loc(u)〉 − x〈loc(v)〉 < 0 then {u left-of v?}

enforce Constraint 7.33
else {u right-of v}

enforce Constraint 7.34
end if
{remember actual horizontal distance}
HDIST[(u, v)]← |x〈loc(u)〉 − x〈loc(v)〉|

end if
else {u is a PI, no further optimizations}

HDIST[(u, v)]← |x〈loc(u)〉 − x〈loc(v)〉|
end if

148

7.5 ILP for Vertical Geometrical Node Placement

Note that we always calculate the vertical CLB distance. Further opti-
mizations by appropriate cell assignments can only be performed if the source
node is a unit. In the first case, the horizontal distance is always zero, and
the vertical distance is either 0 or 1 (depending on whether direct intercon-
nections by abutment were possible). In the second case, the horizontal dis-
tance between adjacent columns is 1. However, it also might be reduced to
0 by appropriate placement. Thus, the horizontal distance is also computed
in the constraints (7.35, 7.36), and set to zero in the utility array. In the last
case, we always have a non-zero horizontal distance, which we remember in
HDIST. We just avoid even further delays by aiming at proper unit-to-cell
assignment. If the source node was a PI, none of the optimizations is possible,
we just remember the horizontal distance for later use.

7.5.10 Computing Path Delay in SMs

Using Algorithm 17, we can proceed to generate constraints to compute the
SM delay along entire critical paths in P(m) (cf. Section 7.2.4).

Algorithm 18: Generating constraints for path delay in SMs
done[∗] ← FALSE
for all P ∈ P(m) do

for all (u, v) ∈ P do
if not done[(u, v)] then

enforce Constraints of Algorithm 17 for u, v {segment delay for u, v}
done[(u, v)] ← TRUE

end if
end for

end for

7.5.11 Computing Maximal Critical Path Delay

Now that we have assembled all constraints to compute the delay of each
segment on a critical path, we have to determine the maximal SM delay dsm
over all critical paths (Figure 7.5). Since we are using different methods to
express horizontal distances, the computation of the maximal delay in this
second phase of microplacement is more complicated than in Section 7.2.5.

The first sum term spans the delays of segments with a source unit and
possible optimizations by abutting placement (vertically Section 7.5.5 and
7.5.6, and horizontally Section 7.5.4 and 7.5.8). The second sum term con-
siders all segments with a horizontal distance > 0. Those of these segments
with a source unit are further optimized by the third sum term, which evalu-
ates proper placement arcs (Section 7.5.7) and the special case of both nodes
being placed in the same row (Section 7.5.3). The last term sums all constant
horizontal distances along the path.

149

7 Microplacement

∀ P ∈ P(m) : dsm− (
∑

(u,v)∈P
∧u∈In〈m〉

∧HDIST[(u,v)]=0

dsu,v) (7.38)

− (
∑

(u,v)∈P
∧HDIST[(u,v)]>0

dcpu,v + dcnu,v)

+ (
∑

(u,v)∈P
∧HDIST[(u,v)]>0
∧u∈In〈m〉

pau,v − oru,v)

−
∑

(u,v)∈P

HDIST[(u, v)]

≥ 0

Figure 7.5: Computing maximal critical path delay dsm

7.5.12 Objective Function

Since the vertical placement phase is purely timing driven, the objective func-
tion reduces to a minimization of the maximal critical path delay.

minimize dsm (7.39)

7.5.13 Solving the Vertical Microplacement 0-1 ILP

With the problem scope being restricted to a single optimized master-slice,
the model complexity is small enough to be exactly solved. E.g., the vertical
placement phase of the larger problem mentioned in Section 7.4.3 had only
416 variables and 253 constraints, and was solved in 471s on the SparcSta-
tion 20/71. Under these circumstances, we have refrained from implement-
ing an alternative heuristic. For larger problem sizes, though, a simulated
annealing-based heuristic implementing the same placement model could eas-
ily be implemented.

7.6 Handling Sequential Elements

While the integration of SDI with UCB SIS has many advantages in terms of
code reuse and robustness, it does incur some disadvantages. The most impor-
tant one concerns the handling of sequential elements (flip-flops and latches):
In SIS, all combinational components and primary ports are represented as
gate network in the network_t data structure, with each port or gate being
a node.

150

7.6 Handling Sequential Elements

Sequential components, however, which were only retrofitted into SIS (based,
in turn, on the purely combinational MIS), do not appear in the gate network.
Instead, they are stored in an external table (latch table Ff 〈m〉). The sequen-
tial elements are related to the combinational circuit by “dummy” primary
ports in the gate network, which correspond to the ports on the sequential
component (e.g., D, Q, CLOCK etc.). As a result, operations on all components
of a circuit must be implemented both on the network and the latch table.
Instead, it would have been preferable to build on a unified data structure
containing all circuit components in a graph-based representation.

However, due to the current implementation specifics, the microplacement
of sequential elements was not performed in the first two phases (horizontal
and vertical microplacement), but is undertaken in two dedicated substeps.
In contrast to microplacement in general, the separation is not based on hori-
zontal and vertical geometries, but on flip-flop connectivity.

All operations are performed at the level of the optimized master-slice,
inter-slice relations do not need to be considered. An additional complication,
however, is caused by circuits that contain more flip-flops than LUTs. In this
case, the length of the placement area has to be increased (not shown) in
Algorithm 13 until l〈m〉 · h〈m〉 ≥ max(| In〈m〉|, |Ff 〈m〉|).

7.6.1 Placing Bound Flip-Flops

0,0 2,01,0

FFY

FFX

FFY

F

G

a
b

c

x

y

FFX

z

Figure 7.6: Placing bound and floating flip-flops

Bound flip-flops are those connected directly to a unit. Following our cell-
based target architecture (Section 2.7.3), we place such flip-flops in the same
cell as their fanin LUT (if that location is still unoccupied). Figure 7.6 shows
an example for a bound flip-flop in the FFY connected to the G-LUT in CLB
0,0. The placement procedure for bound flip-flop just iterates over the latch
table, and greedily assigns all unplaced bound flip-flops to the appropriate
cell.

151

7 Microplacement

7.6.2 Placing Floating Flip-Flops
Bound flip-flops for which the greedy approach fails (optimal location already
occupied), or those flip-flops either connected to another flip-flop, or a primary
input port, are considered floating flip-flops. In Figure 7.6, both FFX and FFY
in CLB 2,0 are floating flip-flops.

Floating flip-flops are placed using a simulated annealing-based heuristic
(similar to Section 7.4). The evaluation function computes two kinds of SM
distances for each flip-flop: The distance from the fanin node to the flip-flop
input, and all SM distances from the flip-flop output to fanout nodes. The
optimization then aims at minimizing the maximum of all these SM distances
for all floating flip-flops in the circuit.

Algorithm 19: Computing switch matrix distances between arbitrary nodes
#define CLB_Y(r) (((r)+1)/2) /* row (1-based): cells to CLBs*/
#define LEFTOF (dx > 0) /* dst left of src */
#define RIGHTOF (dx < 0) /* dst right of src */
#define BELOW (dy > 0) /* dst below src */
#define ABOVE (dy < 0) /* dst above src */
#define HORIZ ((dx == 0) && (ady > 1)) /* dst and src in same row */
#define VERT ((adx > 1) && (dy == 0)) /* dst and src in same col */

/* distance metric (as used in vplace) */
int
sdi_ff_distance(sdi_loc *a, sdi_loc *b)
{

short dx = a->col - b->col; /* horizontal distance */
short dy = CLB_Y(a->row) - CLB_Y(b->row); /* vert. CLB dist. */
X = a->row & 1; /* src is X output ? */

#define Y (!X) /* src is Y output ? */
short adx = ABS(dx); /* distance is computed as */
short ady = ABS(dy); /* absolute value of displacement */

return (
adx + ady - /* std. cartesian dist. */

((((LEFTOF || BELOW) && X) /* reduce dist if proper arc */
||((RIGHTOF || ABOVE) && Y))

&& !(HORIZ || VERT)) /* but not if in same row/col */
);

}

Algorithm 19 lists the actual C code to quickly compute the SM distance
between arbitrary nodes a, b in the cell-based architecture overlaid on the
XC4000. Due to the high evaluation speed, we have not implemented incre-
mental delay calculations, but recompute all flip-flop delays after each move.
The moves of the simulated annealing are two-exchanges of flip-flop locations
(either already occupied by a flip-flop, or currently empty).

In this manner, microplacement generates a complete placement of com-
binational and sequential elements in the optimized master-slices, such that
their instances are suitable for stacking to assemble the compacted subdatapath.

152

7.7 Design Integration

7.7 Design Integration
Because of the limitations of the current floorplanner implementation Section
4.10, and the file format change from LCA to XNF in the Xilinx tools7, design
integration requires manual intervention. We currently import all generated
netlists into SIS, export them again in EQN format, which is then converted to
XNF format [Xili95a] using the tool EQN2XNF [KoCS90]. Since EQN format
describes neither sequential elements, nor placement and partitioning, this
data is written separately (directly in XNF) using a custom extension to SIS,
and merged with the converted EQN data. The result is an XNF file contain-
ing combinational and sequential elements with partitioning and placement
specifications.

Next, the datapath is imported into the Viewlogic Powerview design frame-
work [View94a]. This is done by converting the XNF file into Viewlogic WIR
format using the XACT tool XNF2WIR [Xili95b], and automatically generat-
ing symbols and schematics using VIEWGEN [View94b].

The SDI-processed datapath may now be merged with an irregular con-
troller (either generated in, or imported into Viewlogic), and fed into the
XACT designflow.

7 Note that by now (June 1997), yet another change to EDIF is imminent.

153

7 Microplacement

154

8 Experimental Results

Since no standard corpus of benchmarks exists for regular datapaths, we eval-
uate our approach using four custom circuits. To this end, we concentrate on
circuits whose speed can actually be influenced by proper floorplanning and
compaction.

Two cases have to be considered: If the performance of a design depends
only on the critical path through a specific (hard) macro, e.g., an adder’s ripple-
carry chain, it may be improved only by locally speeding up the module, and
not by floorplanning and compaction1. On the other hand, performance gains
by floorplanning and compaction are realized by minimizing the routing de-
lays in an optimized regular placement. The number of logic levels on the
critical path is generally not reduced as compared to that of flattened irre-
gular circuits. Thus, when describing performance gains, we will quote two
numbers, both in nanoseconds (ns): The routing delay consists only of the to-
tal interconnect delay between, but excluding logic blocks, the total delay also
includes logic blocks. For each quantity, the improvement in quality will be
expressed as a percentage (e.g., 25% means that the SDI design has only 75%
of the delay of the XACT solution).

The partioning, placement and routing program PPR of the XACT tool-
suite, which is also used for SDI routing, relies heavily on heuristics, and
produces solutions widely varying in quality. Thus, we have run PPR multi-
ple times to better explore the design space, and to observe the reproducibility
of results2. Note, however, that only a single execution of the core SDI design
cycle (floorplanning, compaction and microplacement) is performed for each
experiment. Multiple SDI runs are not required, since the optimization prob-
lems are either solved exactly by ILPs, or with a heuristic tuned to reliably
converge to an optimum (ensemble-based simulated annealing, Section 7.4).

All runtimes are listed in seconds, and apply to an otherwise unloaded
SPARCstation 20/71 with 64MB RAM and local disk storage. The XACT ver-
sion used was 5.2. Differences between the measurements given here and
those in [Koch96a] [Koch96b] are due to changes in SDI and the earlier XACT
version 5.1 used before.

1 However, since the efficient realization of such modules is often dictated by the FPGA ar-
chitecture (e.g., carry chains), only few alternatives exist for their implementation. 2 How
many runs have to be performed to approach the upper performance limit?

155

8 Experimental Results

8.1 Tools Used

Logic processing, placement, and routing in the Xilinx XACT-based designflow
are performed by the program PPR [Xili94c]. For the placement and routing
phases, PPR accepts parameters specifying the optimization effort. To obtain
high-quality results, we always run PPR with maximal optimization settings
(placer_effort = 5, router_effort = 4). These values put PPR in a timing-driven
mode, where it tries to fulfill user-defined constraints on path delays [Xili94b].
The delays are specified separately, e.g., for paths beginning and ending at
pads (dp2p), or beginning at a flipflop output and ending at a pad (dc2p). For
each circuit, we determine the precise nature of the critical paths by using
the XDELAY static timing analyzer (also part of XACT) [Xili94d]. Since PPR
ignores delay constraints it deems infeasible, we experimentally determined
the shortest delay limits actually respected by the program, and then let it
optimize towards these shortest constraints.

In one case, we also use the Synopsys FPGA Compiler to resynthesize a
logic unit after extending its word width from 8 to 32 bits [Xili94f]. As before,
we run the tool with maximal optimization setting (map effort high) to ob-
tain high-performance circuits [Syno96a]. Furthermore, this experiment also
employs the XACT X-BLOX module generators [Xili94a] to generate regular
modules in the XACT-based designflow.

In the SDI-based designflow, logic processing is performed by MIS-PGA
[MSBS91a], FlowMap[CoDi94] or TOS-TUM [LeWE96]. Due to the multi-step
nature of logic processing, scripts are used to describe each processing step
and its parameters. For MIS-PGA and FlowMap, we use the scripts suggested
in [Sent92] for optimization and mapping to LUT-based architectures. TOS-
TUM is used with the high-effort performance-directed mapping for 4-LUTs
described by its script mmap_h_p_4.scr. As suggested, we collapse the circuit
prior to script execution.

The horizontal phase of the SDI two-phase placement step may either be
performed using a 0-1 ILP (Section 7.2), or using a simulated annealing-based
heuristic (Section 7.4). The vertical placement phase is always performed us-
ing a 0-1 ILP. The ILPs are solved using a hybrid strategy, combining the con-
structive OPBDP [Bart96] and branch-and-bound CPLEX [Cple94] solvers.
The simulated-annealing is of the ensemble-based kind [RuPS91], and imple-
mented building on a heavily modified version of the EBSA library [Frost93].

Design integration occurs as described in Section 7.7. It relies on the tools
EQN2XNF [KoCS90], and XNF2WIR [Xili95b] for netlist conversion, VIEW-
GEN [View94b] for symbol generation, and Viewlogic Powerview [View94a]
as front-end to the XACT tools.

Since SDI does not contain a dedicated router, it uses PPR for the rout-
ing phase. As usual, PPR is run with maximal timing driven optimization
settings.

156

8.2 Generic 16-bit Datapath

8.2 Generic 16-bit Datapath

8.2.1 Circuit

The circuit implemented is a 16-bit datapath consisting of two instances of
a sample combinational module with a structure common to many bit-slices
(shared control lines, vertical inter-slice signals). Each instance has four
stacked segments of a single hzone of 16 4-LUTs (Figure 8.1).

Figure 8.1: Single bit-slice of the example circuit

8.2.2 Processing

In order to directly compare placement results, technology mapping and mini-
mization have been disabled both in SDI and PPR. PPR is run with maximum
optimization in performance-driven mode (dp2p) with all pads floating. Both
SDI and PPR placements were routed by PPR, also using maximum optimiza-
tion.

Each placement and routing iteration of PPR takes an average of 307s.
SDI takes 77s for horizontal placement, 8s for vertical placement and 55s
for pad placement and routing via PPR for a total of only 140s on the same
platform. The 0-1 ILP-based placement steps consisted of 392 variables and
436 constraints in the horizontal phase, and 240 variables and 155 constraints
in the vertical phase.

157

8 Experimental Results

8.2.3 Performance

Figures 8.2 and 8.3 show two layouts of the same circuit, one conventionally
generated by the Xilinx tool PPR, the other one processed by our SDI. Figure
8.2 shows the best layout generated after 77 PPR iterations, Figure 8.3 shows
the results of a single SDI run.

2
9

P3 5P3 5 P3 6 U5 8 P3 7 P3 8 XB2 U5 4 U5 3 YB2 WB2 ZB2 CP1 U4 8 U4 7 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1P5 1

5
7

2
9

2
8 $ 1 N7 4 9 $ 1 N7 4 7 $ 1 I 7 6 8

/ M3 2
Z2 WI 2 $ 1 N8 0 3 $ 1 N7 9 3 $ 1 I 7 9 6

/ M3 2
Z1 WI 1

5
6

5
7

6
3

2
7 $ 1 I 7 6 8

/ M3 1
$ 1 N7 4 6 $ 1 I 7 6 8

/ M3 3
Y2 YI 2 $ 1 I 7 9 6

/ M3 1
$ 1 N7 4 8 $ 1 I 7 9 6

/ M3 3
Y1 Z I 1

5
8

3
7

2
6

2
5 C2 D2 CL B_ R8

C3
CL B_ R8
C4

CL B_ R8
C5

C1 CL B_ R8
C7

CL B_ R8
C8

CL B_ R8
C9

CL B_ R8
C1 0

5
9

6
0

6
7

6
8 $ 1 N3 6 0 $ 1 N3 6 2 $ 1 I 3 2 3

/ M3 2
$ 1 N2 9 0 CL B_ R7

C5
$ 1 N5 4 2 $ 1 N3 8 5 $ 1 I 3 8 1

/ M3 2
$ 1 N4 1 1 CL B_ R7

C1 0

3
4

3
3

2
4

2
3 $ 1 I 3 2 3

/ M3 1
$ 1 N3 4 5 $ 1 I 3 2 3

/ M3 3
$ 1 N2 9 1 CL B_ R6

C5
$ 1 I 3 8 1
/ M3 1

$ 1 N3 6 1 $ 1 I 3 8 1
/ M3 3

$ 1 N4 1 4 A1

6
1

6
2

2
0

1
9 C3 D3 B2 Z I 3 CL B_ R5

C5
B0 B1 CL B_ R5

C8
XI 0 CL B_ R5

C1 0

6
5

6
6

7
3

7
4 $ 1 N3 4 7 $ 1 N3 4 9 $ 1 I 2 1 9

/ M3 2
$ 1 N2 6 3 CL B_ R4

C5
M4 1 - 0 A M4 2 - 0 A $ 1 I 5 3 7

/ M3 2
$ 1 N4 8 6 C0

2
8

2
7

1
8

1
7 $ 1 I 2 1 9

/ M3 1
M1 1 - 3 A $ 1 I 2 1 9

/ M3 3
$ 1 N2 6 1 B3 $ 1 I 5 3 7

/ M3 1
$ 1 N3 8 6 $ 1 I 5 3 7

/ M3 3
$ 1 N4 8 7 Z I 0

6
7

6
8

1
6

1
5 $ 1 N7 9 0 $ 1 N7 9 1 $ 1 I 7 4 5

/ M3 2
Z3 CTL 1 M4 1 - 0 B M4 2 - 0 B $ 1 I 7 9 7

/ M3 2
Z0 WI 0

6
9

7
0

1
4

1
3 $ 1 I 7 4 5

/ M3 1
M1 1 - 3 B $ 1 I 7 4 5

/ M3 3
Y3 YI 3 $ 1 I 7 9 7

/ M3 1
$ 1 N7 9 2 $ 1 I 7 9 7

/ M3 3
Y0 CTL 2

7
1

7
2

P1 0

1
3

P1 0 P9 P8 BP1 P6 ZB3 U7 U8 P4 WB3 P8 4 YB3 U1 3 U1 4 C1 P P8 1 P8 0 P7 9 CP0 C2 PCP0

7
2

Figure 8.2: Placement and routing solely by PPR

Even at first glance, the SDI-generated solution is markedly more regular,
since the natural structure of the datapath is exploited. The SDI layout is less
congested than the PPR one, especially in the first quadrant. Table 8.1 shows
the performance statistics for both layouts.

158

8.2 Generic 16-bit Datapath

2
9

P3 5P3 5 DP1 U5 8 P3 7 P3 8 P3 9 U5 4 U5 3 C1 P P4 1 C2 P P4 5 U4 8 U4 7 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1P5 1

5
7

2
9

2
8 CL B_ R1

0 C1
CL B_ R1
0 C2

CL B_ R1
0 C3

CTL 1 CTL 2 CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

CL B_ R1
0 C1 0

5
6

5
7

6
3

2
7 D0 M4 1 - 0 A M4 2 - 0 A $ 1 I 5 3 7

/ M3 2
$ 1 N4 8 6 M4 1 - 0 B M4 2 - 0 B $ 1 I 7 9 7

/ M3 2
Z0 Z I 0

5
8

3
7

2
6

2
5 A0 $ 1 I 5 3 7

/ M3 1
$ 1 N3 8 6 $ 1 I 5 3 7

/ M3 3
$ 1 N4 8 7 $ 1 I 7 9 7

/ M3 1
$ 1 N7 9 2 $ 1 I 7 9 7

/ M3 3
Y0 WI 0

5
9

6
0

6
7

6
8 C1 $ 1 N5 4 2 $ 1 N3 8 5 $ 1 I 3 8 1

/ M3 2
$ 1 N4 1 1 $ 1 N8 0 3 $ 1 N7 9 3 $ 1 I 7 9 6

/ M3 2
Z1 Z I 1

3
4

3
3

2
4

2
3 B1 $ 1 I 3 8 1

/ M3 1
$ 1 N3 6 1 $ 1 I 3 8 1

/ M3 3
$ 1 N4 1 4 $ 1 I 7 9 6

/ M3 1
$ 1 N7 4 8 $ 1 I 7 9 6

/ M3 3
Y1 XI 1

6
1

6
2

2
0

1
9 C2 $ 1 N3 6 0 $ 1 N3 6 2 $ 1 I 3 2 3

/ M3 2
$ 1 N2 9 0 $ 1 N7 4 9 $ 1 N7 4 7 $ 1 I 7 6 8

/ M3 2
Z2 Z I 2

6
5

6
6

7
3

7
4 B2 $ 1 I 3 2 3

/ M3 1
$ 1 N3 4 5 $ 1 I 3 2 3

/ M3 3
$ 1 N2 9 1 $ 1 I 7 6 8

/ M3 1
$ 1 N7 4 6 $ 1 I 7 6 8

/ M3 3
Y2 WI 2

2
8

2
7

1
8

1
7 D3 $ 1 N3 4 7 $ 1 N3 4 9 $ 1 I 2 1 9

/ M3 2
$ 1 N2 6 3 $ 1 N7 9 0 $ 1 N7 9 1 $ 1 I 7 4 5

/ M3 2
Z3 YI 3

6
7

6
8

1
6

1
5 B3 $ 1 I 2 1 9

/ M3 1
M1 1 - 3 A $ 1 I 2 1 9

/ M3 3
$ 1 N2 6 1 $ 1 I 7 4 5

/ M3 1
M1 1 - 3 B $ 1 I 7 4 5

/ M3 3
Y3 XI 3

6
9

7
0

1
4

1
3 CL B_ R1

C1
CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

7
1

7
2

P1 0

1
3

P1 0 BP2 AP3 P7 P6 P5 U7 U8 P4 P3 P8 4 P8 3 U1 3 U1 4 P8 2 P8 1 P8 0 P7 9 P7 8 XB3P7 8

7
2

Figure 8.3: SDI placement with PPR routing

Design Average #Runs Routing delay Total delay %Improvement
flow runtime best worst best worst routing total

XACT 307 77 30.4 37.6 118.4 123.7
SDI 140 821 27.9 30.8 113.3 116.0 8 - 16 5 - 9

Table 8.1: Performance of generic 16-bit datapath

159

8 Experimental Results

8.2.4 Comments

Note the improved reproducibility of results using SDI: Over trial 821 runs,
the best-to-worst interval for SDI is just 2.8ns (10% from optimum). Thus,
only very few SDI iterations (usually only a single one) are required to reli-
ably determine the performance of a given circuit. For PPR, the best-to-worst
interval after just 77 iterations is already 7.2ns wide (25% from optimum),
and would grow steadily wider with an increasing number of runs.

8.3 74181-based 32-bit ALU

8.3.1 Circuit

The second example is a 32-bit ALU with registered inputs. It is composed of
8 4-bit 74181 slices in ripple-carry configuration. In this second example, both
tools (SDI and XACT) perform their own technology mapping on a description
of the ALU as shown in [Hwan79].

8.3.2 Processing

For SDI, mapping is performed by FlowMap or MIS-PGA (the “xl” commands
in SIS). The mapped netlists are then placed by PPR or SDI, and all three
circuits are routed by PPR. The design target is an XC4008PG191-5 chip.

As always, PPR is run with maximum optimization in performance-driven
mode (dp2p, dc2p). For the XACT designflow, all pad placements were left
floating. Both SDI and PPR placements were routed by PPR, also using max-
imum optimization.

In SDI horizontal placement is performed both by ILP and simulated an-
nealing. The ILP model (Section 7.2) consisted of 913 variables and 1236
constraints, and unfortunately had a structure unsuitable even for the hybrid
solver (Section 7.3). The required solution time of almost two hours was the
main inspiration for implementing the annealing-based placement heuristic
(Section 7.4) as an alternative. In contrast, the horizontal placement ILP
for the ALU mapped with MIS-PGA (1128 constraints, 981 variables) is ef-
ficiently solved in only 570s. For both approaches, the vertical placement
ILPs (372 variables/253 constraints for MIS-PGA/ILP, 426 variables/297 con-
straints for FlowMap/SA) were solved in 19s and 11s, respectively.

8.3.3 Performance

Table 8.2 shows the results for a number of PPR runs. Thus, the result of
applying SDI with FlowMap/SA is an ALU (Figure 8.5) running 29% to 33%
faster than the XACT-produced circuit (Figure 8.4), generated in one half to
one third of the run-time of XACT, and with a reproducibility of 2% from opti-
mum over hundreds of runs vs. 6% after two dozen runs for XACT.

160

8.3 74181-based 32-bit ALU

Design Average #Runs Routing delay Total delay %Improvement
flow runtime best worst best worst routing total

XACT 1710 24 51.4 56.5 158.9 168.8
SDI

Flow/ILP 7311 135 37.0 40.1 115.4 118.6 29 - 35 28 - 32
Flow/SA 604 309 38.3 40.6 114.3 117.7 26 - 33 29 - 33
PGA/ILP 925 596 35.9 38.3 115.5 117.2 31 - 37 28 - 32

Table 8.2: Performance of 74181-based 32-bit ALU

Draw World: talu32r2-xact-best.lca (4008PG191-5), xact 5.2.0, Fri Jun 13 19:28:16 1997

1
6

CL KCL K E1 6 C1 7 D1 7 B1 8 E1 7 F1 6 FB1 E1 8 FB1 FB1 DP2 F B1 F B1 H1 8 DP2 DP8 F B9 F B1 DP1 F B2 DP9 L 1 7 F B1 F B1 F B1 F B1 P1 8 T 1 8 P1 7 N1 6 T 1 7 R1 7 P1 6 U1 8 T1 6T1 6

1
6

1
6

1
7 CL B_ R1

8 C1
CL B_ R1
8 C2

CL B_ R1
8 C3

CL B_ R1
8 C4

CL B_ R1
8 C5

CL B_ R1
8 C6

CL B_ R1
8 C7

CL B_ R1
8 C8

CL B_ R1
8 C9

CL B_ R1
8 C1 0

CL B_ R1
8 C1 1

CL B_ R1
8 C1 2

CL B_ R1
8 C1 3

CL B_ R1
8 C1 4

CL B_ R1
8 C1 5

CL B_ R1
8 C1 6

CL B_ R1
8 C1 7

CL B_ R1
8 C1 8

1
5

1
6

1
4

1
5 CL B_ R1

7 C1
CL B_ R1
7 C2

CL B_ R1
7 C3

CL B_ R1
7 C4

CL B_ R1
7 C5

$ 1 I 1 / $
1 I 2 / $ 1
N6 0

$ 1 I 1 / $
1 I 2 / $ 1
N5 8

CL B_ R1
7 C8

CL B_ R1
7 C9

CL B_ R1
7 C1 0

CL B_ R1
7 C1 1

CL B_ R1
7 C1 2

CL B_ R1
7 C1 3

CL B_ R1
7 C1 4

CL B_ R1
7 C1 5

CL B_ R1
7 C1 6

CL B_ R1
7 C1 7

CL B_ R1
7 C1 8

1
4

1
5

1
6

1
4 CL B_ R1

6 C1
CL B_ R1
6 C2

CL B_ R1
6 C3

CL B_ R1
6 C4

F1 5 F1 3 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G6 2

F 1 2 CL B_ R1
6 C9

CL B_ R1
6 C1 0

$ 1 I 1 / $
1 I 1 / $ 1
N5 4

CL B1 1 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / G6 2

CL B_ R1
6 C1 4

CL B_ R1
6 C1 5

CL B_ R1
6 C1 6

CL B_ R1
6 C1 7

CL B_ R1
6 C1 8

1
7

1
6

1
3

1
5 CL B_ R1

5 C1
CL B_ R1
5 C2

CL B9 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 6

F1 4 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 4

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 N1 5

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 3

CL B1 0 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 3

F 1 7 CL B_ R1
5 C1 4

CL B_ R1
5 C1 5

CL B_ R1
5 C1 6

CL B_ R1
5 C1 7

CL B_ R1
5 C1 8

1
3

1
4

1
3

1
2 CL B1 $ 1 I 1 / $

1 I 2 / $ 1
I 8 / G3 0

CL B_ R1
4 C3

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 7

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 6

F 8 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G6 2

F 9 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 1

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 4

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 3

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 2

CL B8 CL B_ R1
4 C1 7

CL B_ R1
4 C1 8

1
3

1
3

1
2

1
1 $ 1 I 1 / $

1 I 2 / $ 1
I 8 / G5 3

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 1

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G5 7

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 5

CL B_ R1
3 C5

F1 1 $ 1 I 1 / $
1 I 2 / $ 1
N1 4

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 4

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 7

CL B6 F 1 9 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 5

CL B7 CL B2 CL B5 CL B_ R1
3 C1 8

1
2

1
2

1
1

1
1 F6 $ 1 I 1 / $

1 I 2 / $ 1
I 8 / G5 4

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 7

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 3

F 1 0 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 3

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
N1 0

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 6

B1 9 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 5

A0

1
1

1
1

1
0

9 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 3

$ 1 I 1 / $
1 I 2 / $ 1
N1 2

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 4

CL B_ R1
1 C6

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 1

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 4

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 4

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 7

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 3

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 7

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 0

1
1

1
0

1
0

1
0 F5 $ 1 I 1 / $

1 I 2 / $ 1
I 8 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 7

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 7

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 6

CL B_ R1
0 C1 1

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 1

CL B3 CL B4 $ 1 I 1 / $
1 I 2 / $ 1
N1 0

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 1

1
0

1
0

9

9 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G6 2

F4 F7 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 3

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
N1 4

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G6 2

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 1

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 7

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 3

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 4

A2 2 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 3

F0

9

9

8

8 $ 1 I 1 / $
1 I 2 / $ 1
N5 6

CL B_ R8
C2

B2 5 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 1

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 3

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / 7 4 1
8 1 - XI L
OG2 1

$ 1 N2 3 8 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 3

A3 1 $ 1 I 1 / $
1 I 1 / $ 1
N1 2

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 7

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 1

CL B1 3 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 4

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G6 2

9

8

7

8 CL B_ R7
C1

CL B_ R7
C2

A2 4 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 0

F2 6 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 4

$ 1 N2 3 7 F 3 1 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 6

B3 1 F 2 3 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 4

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 0

B2 0 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 7

F 2 $ 1 I 1 / $
1 I 2 / $ 1
N5 4

8

8

6

7 CL B_ R6
C1

CL B_ R6
C2

CL B_ R6
C3

F2 5 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 8

$ 1 I 1 / $
1 I 1 / $ 1
N6 0

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 8

F 3 0 CL B_ R6
C1 0

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 8

A2 3 CL B_ R6
C1 4

CL B_ R6
C1 5

CL B_ R6
C1 6

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 3

CL B1 2

7

7

5

4 CL B_ R5
C1

CL B_ R5
C2

CL B_ R5
C3

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G6 2

F2 4 F2 7 F 2 8 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 4

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 3

CL B_ R5
C1 0

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 3

F 2 2 CL B_ R5
C1 3

CL B_ R5
C1 4

CL B_ R5
C1 5

CL B_ R5
C1 6

CL B_ R5
C1 7

$ 1 N2 1

6

6

3

6 CL B_ R4
C1

CL B_ R4
C2

CL B_ R4
C3

CL B_ R4
C4

$ 1 I 1 / $
1 I 1 / $ 1
N5 8

CL B_ R4
C6

CL B_ R4
C7

F 2 9 CL B_ R4
C9

CL B_ R4
C1 0

F 2 1 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G6 2

CL B_ R4
C1 3

CL B_ R4
C1 4

CL B_ R4
C1 5

CL B_ R4
C1 6

CL B_ R4
C1 7

CL B_ R4
C1 8

5

6

4

2 CL B_ R3
C1

CL B_ R3
C2

CL B_ R3
C3

CL B_ R3
C4

CL B_ R3
C5

CL B_ R3
C6

CL B_ R3
C7

CL B_ R3
C8

CL B_ R3
C9

CL B_ R3
C1 0

$ 1 I 1 / $
1 I 1 / $ 1
N5 6

F 2 0 CL B_ R3
C1 3

CL B_ R3
C1 4

CL B_ R3
C1 5

CL B_ R3
C1 6

CL B_ R3
C1 7

CL B_ R3
C1 8

3

2

5

3 CL B_ R2
C1

CL B_ R2
C2

CL B_ R2
C3

CL B_ R2
C4

CL B_ R2
C5

CL B_ R2
C6

CL B_ R2
C7

CL B_ R2
C8

CL B_ R2
C9

CL B_ R2
C1 0

CL B_ R2
C1 1

CL B_ R2
C1 2

CL B_ R2
C1 3

CL B_ R2
C1 4

CL B_ R2
C1 5

CL B_ R2
C1 6

CL B_ R2
C1 7

CL B_ R2
C1 8

4

5

4

3 CL B_ R1
C1

CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

CL B_ R1
C1 1

CL B_ R1
C1 2

CL B_ R1
C1 3

CL B_ R1
C1 4

CL B_ R1
C1 5

CL B_ R1
C1 6

CL B_ R1
C1 7

CL B_ R1
C1 8

3

4

MOD

3

MOD C2 E3 B1 D2 F3 E2 FB2 E1 FB2 DP2 COB AEQ F B2 F B2 J 1 F B3 F B2 K3 DP3 K1 F B3 F B2 DP3 F B2 DP2 DP2 P1 F B2 P2 N3 T 2 R2 P3 U1 T3U1

4

Figure 8.4: 32-bit 74181-based ALU implemented with XACT

161

8 Experimental Results

Draw World: talu32r2-sdi-flow-best.lca (4008PG191-5), xact 5.2.0, Fri Jun 13 19:30:36 1997

1
6

CL KCL K E1 6 C1 7 D1 7 B1 8 E1 7 F1 6 C1 8 E1 8 F1 8 G1 7 G1 8 H1 6 H1 7 H1 8 J 1 8 J 1 7 J 1 6 K1 6 $ 1 N K1 8 L 1 8 CI P $ 1 N M1 8 M1 7 L CI SP3 SP2 SP0 SP1 T 1 7 MOD P1 6 U1 8 T 1 6T 1 6

1
6

1
6

1
7 CL B_ R1

8 C1
CL B_ R1
8 C2

CL B_ R1
8 C3

CL B_ R1
8 C4

CL B_ R1
8 C5

CL B_ R1
8 C6

CL B_ R1
8 C7

CL B_ R1
8 C8

CL B_ R1
8 C9

CL B_ R1
8 C1 0

CL B_ R1
8 C1 1

CL B_ R1
8 C1 2

CL B_ R1
8 C1 3

CL B_ R1
8 C1 4

CL B_ R1
8 C1 5

CL B_ R1
8 C1 6

CL B_ R1
8 C1 7

CL B_ R1
8 C1 8

1
5

1
6

1
4

1
5 CL B_ R1

7 C1
CL B_ R1
7 C2

CL B_ R1
7 C3

CL B_ R1
7 C4

CL B_ R1
7 C5

CL B_ R1
7 C6

CL B_ R1
7 C7

CL B_ R1
7 C8

CL B_ R1
7 C9

CL B_ R1
7 C1 0

CL B_ R1
7 C1 1

CL B_ R1
7 C1 2

CL B_ R1
7 C1 3

CL B_ R1
7 C1 4

CL B_ R1
7 C1 5

CL B_ R1
7 C1 6

CL B_ R1
7 C1 7

CL B_ R1
7 C1 8

1
4

1
5

1
6

1
4 CL B_ R1

6 C1
CL B_ R1
6 C2

CL B_ R1
6 C3

CL B_ R1
6 C4

CL B_ R1
6 C5

CL B_ R1
6 C6

CL B_ R1
6 C7

CL B_ R1
6 C8

CL B_ R1
6 C9

B0 A0 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 6

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / Q7 9
9 1

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 0

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G4 4

CL B1 3 $ 1 I 1 / $
1 I 2 / $ 1
N5 4

1
7

1
6

1
3

1
5 CL B_ R1

5 C1
CL B_ R1
5 C2

CL B_ R1
5 C3

CL B_ R1
5 C4

CL B_ R1
5 C5

CL B_ R1
5 C6

CL B_ R1
5 C7

CL B_ R1
5 C8

CL B_ R1
5 C9

CL B1 CL B6 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 3

F 0 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G4 3

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / Q8 0
8 7

F 2

1
3

1
4

1
3

1
2 CL B_ R1

4 C1
CL B_ R1
4 C2

CL B_ R1
4 C3

CL B_ R1
4 C4

CL B_ R1
4 C5

CL B_ R1
4 C6

CL B_ R1
4 C7

CL B_ R1
4 C8

CL B_ R1
4 C9

B5 CL B7 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G5 6

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / Q7 9
9 1

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 0

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G4 4

F 7 F 5

1
3

1
3

1
2

1
1 CL B_ R1

3 C1
CL B_ R1
3 C2

CL B_ R1
3 C3

CL B_ R1
3 C4

CL B_ R1
3 C5

CL B_ R1
3 C6

CL B_ R1
3 C7

CL B_ R1
3 C8

CL B_ R1
3 C9

B6 CL B8 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G5 3

F 4 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G4 3

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / Q8 0
8 7

F 6

1
2

1
2

1
1

1
1 CL B_ R1

2 C1
CL B_ R1
2 C2

CL B_ R1
2 C3

CL B_ R1
2 C4

CL B_ R1
2 C5

CL B_ R1
2 C6

CL B_ R1
2 C7

CL B_ R1
2 C8

CL B_ R1
2 C9

CL B2 CL B9 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 6

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / Q7 9
9 1

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 0

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G4 4

F 1 1 F 9

1
1

1
1

1
0

9 CL B_ R1
1 C1

CL B_ R1
1 C2

CL B_ R1
1 C3

CL B_ R1
1 C4

CL B_ R1
1 C5

CL B_ R1
1 C6

CL B_ R1
1 C7

CL B_ R1
1 C8

CL B_ R1
1 C9

CL B3 CL B1 0 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 3

F 8 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G4 3

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / Q8 0
8 7

F 1 0

1
1

1
0

1
0

1
0 CL B_ R1

0 C1
CL B_ R1
0 C2

CL B_ R1
0 C3

CL B_ R1
0 C4

CL B_ R1
0 C5

CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

B1 3 CL B1 1 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 6

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / Q7 9
9 1

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 0

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G4 4

F 1 5 F 1 3

1
0

1
0

9

9 CL B_ R9
C1

CL B_ R9
C2

CL B_ R9
C3

CL B_ R9
C4

CL B_ R9
C5

CL B_ R9
C6

CL B_ R9
C7

CL B_ R9
C8

CL B_ R9
C9

CL B4 A1 4 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 3

F 1 2 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 4

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G4 3

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / Q8 0
8 7

F 1 4

9

9

8

8 CL B_ R8
C1

CL B_ R8
C2

CL B_ R8
C3

CL B_ R8
C4

CL B_ R8
C5

CL B_ R8
C6

CL B_ R8
C7

CL B_ R8
C8

CL B_ R8
C9

CL B5 CL B1 2 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / Q7 9
9 1

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G4 4

F 1 9 F 1 7

9

8

7

8 CL B_ R7
C1

CL B_ R7
C2

CL B_ R7
C3

CL B_ R7
C4

CL B_ R7
C5

CL B_ R7
C6

CL B_ R7
C7

CL B_ R7
C8

CL B_ R7
C9

B1 9 A1 8 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 3

$ 1 I 1 / $
1 I 1 / $ 1
N1 0

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 4

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G4 3

$ 1 N2 3 7 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / Q8 0
7 2 8

8

6

7 CL B_ R6
C1

CL B_ R6
C2

CL B_ R6
C3

CL B_ R6
C4

CL B_ R6
C5

CL B_ R6
C6

CL B_ R6
C7

CL B_ R6
C8

CL B_ R6
C9

B2 0 A2 0 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / Q7 9
9 1

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G4 4

F 2 3 F 2 1

7

7

5

4 CL B_ R5
C1

CL B_ R5
C2

CL B_ R5
C3

CL B_ R5
C4

CL B_ R5
C5

CL B_ R5
C6

CL B_ R5
C7

CL B_ R5
C8

CL B_ R5
C9

B2 2 A2 2 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 3

F 2 0 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 4

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G4 3

$ 1 I 1 / $
1 N1 9

F 2 2

6

6

3

6 CL B_ R4
C1

CL B_ R4
C2

CL B_ R4
C3

CL B_ R4
C4

CL B_ R4
C5

CL B_ R4
C6

CL B_ R4
C7

CL B_ R4
C8

CL B_ R4
C9

B2 4 A2 4 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / Q7 9
9 1

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G4 4

F 2 7 F 2 5

5

6

4

2 CL B_ R3
C1

CL B_ R3
C2

CL B_ R3
C3

CL B_ R3
C4

CL B_ R3
C5

CL B_ R3
C6

CL B_ R3
C7

CL B_ R3
C8

CL B_ R3
C9

B2 6 A2 6 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 3

F 2 4 $ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 4

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G4 3

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / Q8 0
8 7

F 2 6

3

2

5

3 CL B_ R2
C1

CL B_ R2
C2

CL B_ R2
C3

CL B_ R2
C4

CL B_ R2
C5

CL B_ R2
C6

CL B_ R2
C7

CL B_ R2
C8

CL B_ R2
C9

B2 8 A2 8 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / Q7 9
9 1

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G4 4

F 3 1 F 2 9

4

5

4

3 CL B_ R1
C1

CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

B3 0 A3 0 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 3

F 2 8 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 4

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G4 3

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / Q8 0
8 7

F 3 0

3

4

B2

3

B2 C2 E3 B1 D2 F3 E2 C1 E1 F1 G2 G1 H3 H2 H1 J 1 J 2 J 3 K3 K2 K1 L 1 L 2 L 3 COB M2 N1 P1 T 1 P2 N3 T 2 R2 P3 AEQ T 3AEQ

4

Figure 8.5: 32-bit 74181-based ALU implemented with SDI

162

8.4 Address Generator for DES Encryption

Quantity XACT SDI
FlowMap/ILP FlowMap/SA MIS-PGA/ILP

4-LUTs in slice (22) 26 26 24
CLBs in circuit 89 105 105 97
LUT levels in critical path
mapped slice ? 4 4 5
placed circuit 20 15 15 15

Table 8.3: Logic processing statistics for 32-bit ALU

8.3.4 Comments

Since for this experiment, both designflows were permitted to perform their
own logic processing, Table 8.3 shows some additional statistics.

The first column of Table 8.3 shows the results for an entirely XACT-based
design flow. Since XACT processes the entire circuit without respecting slice
boundaries, the number of 4-LUTs per slice can only be estimated, and the
number of LUT levels per slice in the critical path is unknown.

The following points seem interesting: While FlowMap achieves a shorter
critical path at the LUT level than MIS-PGA, the resulting circuit is more
difficult to place and route. The routing delay in the critical path is marginally
worse than that of the more conservative MIS-PGA solution.

When even more aggressive logic optimization methods employing compu-
tationally intensive methods such as kernel extraction (yielding a reduction
to 20 4-LUTs per slice, 81 CLBs total) are applied, the clock speed degrades
even further (slower than 190ns) as the circuit becomes too dense to be routed
efficiently.

A characteristic of the regular layout generated by SDI is its height in-
creasing proportionally to the bit-width (compaction turns folded structures
into simple vertical ones). This can lead to wasted horizontal space (e.g., the
left side of the XC4008 FPGA in Figure 8.5). It might be argued, that the
irregular XACT placement might perform better when operating on a chip
more closely matched to the size of the circuit to be processed. In the case
of the 74181-based ALU, an XC4003 chip has sufficient capacity to hold an
irregular placement (Figure 8.6). However, even then, the performance of the
circuit falls short of the one for SDI generated designs: While the XACT run-
time decreases to 1011s, the best achievable clock period (over 220 runs) still
improves only to 155.1ns.

8.4 Address Generator for DES Encryption

8.4.1 Circuit

UFC-A is part of an address generator for a DES encryptor (based on the
algorithm UFC [Glad97]). Figure 8.7 shows a single bit-slice in BLIF [Sent92]

163

8 Experimental Results

Draw World: talu32r2-4003-best.lca (4003PG120-5), xact 5.2.0, Fri Jun 13 19:40:36 1997

1
2

CL KCL K DP2 L A FB9 FB2 FB1 FB1 DP1 F1 2 DP1 FB1 DP1 FB1 FB3 COB FB3 DP2 DP1 FB2 SP0SP0

1
3

1
2

9 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 3

F9 CL B2 $ 1 I 1 / $
1 I 2 / $ 1
N6 0

F2 9 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G6 2

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 4

F 3 0 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 3

1
1

1
3

1
1

9 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 7

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G5 8

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 1

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G6 2

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 0

F1 5 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G5 8

$ 1 N2 3 8 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 7

1
0

1
1

1
0

8 F8 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 5

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G5 3

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / 7 4 1
8 1 - XI L
OG2 1

F1 4 $ 1 I 1 / $
1 N1 5

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
N1 4

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 4

9

1
0

8

9 $ 1 I 1 / $
1 I 2 / $ 1
N1 4

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 3

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 2

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 7

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 3

F1 6 $ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 8

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / 7 4 1
8 1 - XI L
OG2 1

F2 6

8

9

8

7 $ 1 I 1 / $
1 I 2 / $ 1
I 7 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 2 / $ 1
I 7 / G3 0

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 4

$ 1 N2 3 7 F1 7 $ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 1

$ 1 I 1 / $
1 I 2 / $ 1
I 6 / G3 7

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 6

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G5 3

8

8

6

6 $ 1 I 1 / $
1 I 2 / $ 1
N1 2

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G5 8

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G5 7

$ 1 I 1 / $
1 I 1 / $ 1
N5 4

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G3 3

F2 4 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 7

7

6

5

6 F6 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 7

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 5

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 5

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 8

F1 8 $ 1 I 1 / $
1 I 1 / $ 1
N1 0

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 3

$ 1 I 1 / $
1 I 1 / $ 1
I 7 / G6 2

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G3 7

5

6

4

5 $ 1 I 1 / $
1 I 2 / $ 1
I 8 / G6 2

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 0

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 6

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 3

$ 1 I 1 / $
1 I 2 / $ 1
I 8 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
I 9 / G5 3

F2 0 $ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 2

$ 1 I 1 / $
1 I 1 / $ 1
N1 2

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 3

6

4

4

5 F5 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 7

$ 1 I 1 / $
1 I 2 / $ 1
N1 0

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / 7 4 1
8 1 - XI L
OG2 1

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 0

$ 1 I 1 / $
1 I 1 / $ 1
I 6 / G3 3

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 6

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 3

$ 1 I 1 / $
1 I 1 / $ 1
I 8 / G3 5

5

3

3

2 F4 $ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 8

CL B1 $ 1 I 1 / $
1 I 2 / $ 1
N5 4

$ 1 I 1 / $
1 I 2 / $ 1
I 9 / G5 4

F0 $ 1 I 1 / $
1 I 1 / $ 1
N5 6

F 2 1 F2 3 $ 1 I 1 / $
1 I 1 / $ 1
I 8 / G5 8

2

3

FB4

2

FB4 FB6 FB5 DP5 FB2 DP3 F2 DP7 FB0 DP0 DP2 DP1 FB1 MOD DP9 FB2 DP2 FB2 SP2 DP2SP2

3

Figure 8.6: 32-bit 74181-based ALU implemented with XACT on XC4003

164

8.4 Address Generator for DES Encryption

.model aolff

.inputs Data CIn InitKeytab SelOp10 SelOp11 SelOp2 SelAddr
clockK clockKeyTab clockSB1 clockSB3 clockD clockA

.outputs Address COut

constants
.names GND
0
.names VCC
1

register file
simulate clock enables with different clock signals
.latch Data RegK re clockK 0
.latch Data KeyTab re clockKeytab 0
.latch Data RegSB1 re clockSB1 0
.latch Data RegSB3 re clockSB3 0
.latch Data RegD re clockD 0
.latch Sum RegA re clockA 0

extracted bit-slice (top-level cells only)
.subckt mux2 a=RegK b=KeyTab s=InitKeytab x=Ko
.subckt mux4 a=RegA b=Ko c=RegSB1 d=RegSB3 s0=SelOp10 s1=SelOp11 x=Op1

.subckt xor2 a=Data b=RegD x=XD

.subckt mux2 a=GND b=XD s=SelOp2 x=Op2

.subckt fulladd a=Op1 b=Op2 cin=CIn s=Sum cout=COut

.subckt mux2 a=Ko b=RegA s=SelAddr x=Address

.end

Figure 8.7: Bit-slice of address generator for DES encryption

format. To test the processing of more complex circuits without hard-macros,
we have refrained from using a hard-macro adder, but composed a ripple-carry
adder from basic gates. The resulting circuit consists of 26 16-bit soft-macros.

8.4.2 Processing

Logic processing the extracted bit-slice with TOS-TUM yields an optimized
2 BPLB slice of 16 4-LUTs, with a critical path of 4 4-LUTs. The reassem-
bled circuit is thus composed of 128 LUTs and 96 flip-flops, and placed with
the simulated annealing-based heuristic. XACT, relying on PPR for logic
processing, yields the same number of elements. The circuit is laid out on
an XC4003PG120-5 FPGA.

165

8 Experimental Results

Design Average #Runs Routing delay Total delay %Improvement
flow runtime best worst best worst routing total

XACT 283 285 34.5 39.0 128.2 132.9
SDI 216 41 30.8 33.2 124.4 127.4 11 - 22 3 - 7

Table 8.4: Performance of UFC-A address generator

8.4.3 Performance
Table 8.4 gives the performance data for the layouts created by XACT (Figure
8.8) and SDI (Figure 8.9).

8.4.4 Comments
Despite the noticeable improvement in routing delays, the total speedup re-
alizable by SDI for UFC-A is limited by the number of logic blocks in the
carry chain (18 LUT levels). When examining the two layouts, compare the
mainly horizontal signal flow of the SDI-generated circuit with the mixed hor-
izontal/vertical flow on the XACT solution. By preferring the horizontal, SDI
has a higher routing density in horizontal channels. While the circuit re-
mains routable, future work might actively consider routing congestion for
non-control signals during microplacement (Section 2.7.1).

8.5 Logic Unit of RISC CPU

8.5.1 Circuit
The last example is part of the ALU for the SRISC CPU [Bruc94]. We con-
centrate on registers, logic functions (AND, OR, XOR, XNOR), and the shifter
(left/right shift and rotate, logical and arithmetical modes). Following the in-
tention of SDI to process wider structures, we extended the word size from the
original 8 to 32 bits. Both XACT and SDI target an XC4010PG191-5 FPGA.

8.5.2 Processing
When extending the word size in the XACT design flow, we translated the
ABEL-HDL description of the logic functions and shifter into Verilog, and
synthesized them using the Synopsys FPGA Compiler (with high map efffort)
to the XC4000 architecture [Xili94f]. To implement the registers with maxi-
mum efficiency, we employed the X-BLOX module generators [Xili94a]. After
mapping, the circuit consists of 143 4-LUTs, 38 3-LUTs (XC4000 H-block),
and 64 registers.

In SDI, structure extraction and regularity analysis discovered three dif-
ferent master-slices. All provide the same registers and logic functions. How-
ever, the bottom and top slices contain the special logic used for handling LSB
and MSB in arithmetical and logical shift modes, while the middle slice just

166

8.5 Logic Unit of RISC CPU

Draw World: ufc-xact-best.lca (4003PG120-5), xact 5.2.0, Sun Jun 15 00:28:48 1997

1
2

C1 2C1 2 A1 3 D1 2 C1 3 $ 1 N D1 3 F1 1 E1 3 F1 2 F1 3 G1 3 $ 1 N J 1 3 H1 2 H1 1 K1 3 J 1 2 L 1 3 M1 3 $ 1 N$ 1 N

1
3

1
2

9 CL B_ R1
0 C1

CL B_ R1
0 C2

CL B_ R1
0 C3

CL B_ R1
0 C4

CL B_ R1
0 C5

CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

CL B_ R1
0 C1 0

1
1

1
3

1
1

9 CL B_ R9
C1

$ 1 I 1 / U
1 5 / T OS
_ 1 5

$ 1 I 1 / U
1 5 / T OS
_ 2 3

$ 1 I 1 / U
1 5 / TOS
_ 2 6

$ 1 I 1 / U
1 5 / TOS
_ 3 2

$ 1 N1 7 $ 1 I 1 / U
1 5 / TOS
_ 2 0

$ 1 I 1 / U
1 5 / TOS
_ 2 1

$ 1 I 1 / U
1 5 / TOS
_ 4

CL B_ R9
C1 0

1
0

1
1

1
0

8 CL B_ R8
C1

CL B_ R8
C2

$ 1 I 1 / U
1 4 / T OS
_ 1 5

$ 1 I 1 / U
1 4 / TOS
_ 2 3

$ 1 I 1 / U
1 4 / TOS
_ 2 6

$ 1 I 1 / U
1 4 / TOS
_ 2 2

$ 1 I 1 / $
1 N2 7 0

$ 1 I 1 / U
1 4 / TOS
_ 2 0

$ 1 I 1 / U
1 4 / TOS
_ 2 1

$ 1 I 1 / U
1 4 / TOS
_ 4

9

1
0

8

9 CL B_ R7
C1

CL B_ R7
C2

$ 1 I 1 / U
1 3 / T OS
_ 1 5

$ 1 I 1 / U
1 3 / TOS
_ 2 3

$ 1 I 1 / U
1 3 / TOS
_ 2 6

$ 1 I 1 / U
1 3 / TOS
_ 2 2

$ 1 I 1 / U
1 3 / TOS
_ 2 1

$ 1 I 1 / U
1 3 / TOS
_ 2 0

ADDR1 1 $ 1 I 1 / U
1 3 / TOS
_ 4

8

9

8

7 CL B_ R6
C1

CL B_ R6
C2

$ 1 I 1 / U
1 2 / T OS
_ 1 5

$ 1 I 1 / U
1 2 / TOS
_ 2 3

$ 1 I 1 / U
1 2 / TOS
_ 2 6

$ 1 I 1 / U
1 2 / TOS
_ 3 2

$ 1 I 1 / U
1 3 / REG
A

$ 1 I 1 / U
1 2 / TOS
_ 2 0

$ 1 I 1 / U
1 2 / TOS
_ 2 1

$ 1 I 1 / U
1 2 / TOS
_ 4

8

8

6

6 CL B_ R5
C1

CL B_ R5
C2

$ 1 I 1 / U
8 / T OS_
1 5

$ 1 I 1 / U
8 / TOS_
2 3

$ 1 I 1 / U
8 / TOS_
2 6

$ 1 I 1 / U
8 / TOS_
2 1

$ 1 I 1 / $
1 N2 5 8

$ 1 I 1 / U
8 / TOS_
2 0

ADDR1 $ 1 I 1 / U
8 / TOS_
4

7

6

5

6 CL B_ R4
C1

CL B_ R4
C2

$ 1 I 1 / U
1 1 / T OS
_ 1 5

$ 1 I 1 / U
1 1 / TOS
_ 2 3

$ 1 I 1 / U
1 1 / TOS
_ 2 6

$ 1 I 1 / $
1 N2 6 4

$ 1 I 1 / U
1 1 / REG
A

$ 1 I 1 / U
1 1 / TOS
_ 2 0

$ 1 I 1 / U
1 1 / TOS
_ 2 1

$ 1 I 1 / U
1 1 / TOS
_ 4

5

6

4

5 CL B_ R3
C1

CL B_ R3
C2

$ 1 I 1 / U
9 / T OS_
1 5

$ 1 I 1 / U
9 / TOS_
2 3

$ 1 I 1 / U
9 / TOS_
2 6

$ 1 I 1 / U
1 1 / TOS
_ 2 2

$ 1 I 1 / U
9 / TOS_
2 1

$ 1 I 1 / U
9 / TOS_
2 0

ADDR3 $ 1 I 1 / U
9 / TOS_
4

6

4

4

5 CL B_ R2
C1

CL B_ R2
C2

$ 1 I 1 / U
1 0 / T OS
_ 1 5

$ 1 I 1 / U
1 0 / TOS
_ 2 3

$ 1 I 1 / U
1 0 / TOS
_ 2 6

$ 1 I 1 / U
1 0 / TOS
_ 3 2

$ 1 I 1 / $
1 N2 6 2

$ 1 I 1 / U
1 0 / TOS
_ 2 0

$ 1 I 1 / U
1 0 / TOS
_ 2 1

$ 1 I 1 / U
1 0 / TOS
_ 4

5

3

3

2 CL B_ R1
C1

CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

2

3

D3

2

D3 C2 D2 C1 $ 1 N F 3 F2 E1 $ 1 N G1 H1 H2 J 1 H3 $ 1 N J 2 L 1 K2 N1 L 2N1

3

Figure 8.8: UFC-A address generator implemented with XACT

167

8 Experimental Results

Draw World: ufc-sdi-best.lca (4003PG120-5), xact 5.2.0, Sun Jun 15 00:30:46 1997

1
2

C1 2C1 2 $ 1 N D1 2 C1 3 E1 2 D1 3 $ 1 N E1 3 $ 1 N F1 3 G1 3 H1 3 J 1 3 H1 2 $ 1 N K1 3 J 1 2 L 1 3 M1 3 L 1 2L 1 2

1
3

1
2

9 CL B_ R1
0 C1

CL B_ R1
0 C2

CL B_ R1
0 C3

CL B_ R1
0 C4

CL B_ R1
0 C5

CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

CL B_ R1
0 C1 0

1
1

1
3

1
1

9 CL B_ R9
C1

CL B_ R9
C2

CL B_ R9
C3

CL B_ R9
C4

CL B_ R9
C5

CL B_ R9
C6

CL B_ R9
C7

CL B_ R9
C8

CL B_ R9
C9

CL B_ R9
C1 0

1
0

1
1

1
0

8 $ 1 I 1 / U
8 / T OS_
1 5

$ 1 I 1 / U
8 / T OS_
2 3

$ 1 I 1 / U
8 / T OS_
2 6

$ 1 I 1 / U
9 / T OS_
2 1

$ 1 I 1 / $
1 N2 5 8

$ 1 I 1 / U
8 / TOS_
2 0

$ 1 I 1 / U
8 / TOS_
2 1

$ 1 I 1 / U
8 / TOS_
4

CL B_ R8
C9

CL B_ R8
C1 0

9

1
0

8

9 $ 1 I 1 / U
9 / T OS_
1 5

$ 1 I 1 / U
9 / T OS_
2 3

$ 1 I 1 / U
9 / T OS_
2 6

$ 1 I 1 / U
9 / T OS_
3 2

$ 1 I 1 / U
9 / TOS_
2 9

$ 1 I 1 / U
9 / TOS_
2 0

ADDR3 $ 1 I 1 / U
9 / TOS_
4

CL B_ R7
C9

CL B_ R7
C1 0

8

9

8

7 $ 1 I 1 / U
1 0 / T OS
_ 1 5

$ 1 I 1 / U
1 0 / T OS
_ 2 3

$ 1 I 1 / U
1 0 / T OS
_ 2 6

$ 1 I 1 / U
1 0 / T OS
_ 2 1

$ 1 I 1 / U
1 0 / TOS
_ 2 9

$ 1 I 1 / U
1 0 / TOS
_ 2 0

ADDR5 $ 1 I 1 / U
1 0 / TOS
_ 4

CL B_ R6
C9

CL B_ R6
C1 0

8

8

6

6 $ 1 I 1 / U
1 1 / T OS
_ 1 5

$ 1 I 1 / U
1 1 / T OS
_ 2 3

$ 1 I 1 / U
1 1 / T OS
_ 2 6

$ 1 I 1 / U
1 1 / T OS
_ 3 2

$ 1 I 1 / U
1 1 / TOS
_ 2 9

$ 1 I 1 / U
1 1 / TOS
_ 2 0

$ 1 I 1 / U
1 1 / TOS
_ 2 1

$ 1 I 1 / U
1 1 / TOS
_ 4

CL B_ R5
C9

CL B_ R5
C1 0

7

6

5

6 $ 1 I 1 / U
1 2 / T OS
_ 1 5

$ 1 I 1 / U
1 2 / T OS
_ 2 3

$ 1 I 1 / U
1 2 / T OS
_ 2 6

$ 1 I 1 / U
1 2 / T OS
_ 3 2

$ 1 I 1 / U
1 2 / TOS
_ 2 9

$ 1 I 1 / U
1 2 / TOS
_ 2 0

$ 1 I 1 / U
1 2 / TOS
_ 2 1

$ 1 I 1 / U
1 2 / TOS
_ 4

CL B_ R4
C9

CL B_ R4
C1 0

5

6

4

5 $ 1 I 1 / U
1 3 / T OS
_ 1 5

$ 1 I 1 / U
1 3 / T OS
_ 2 3

$ 1 I 1 / U
1 3 / T OS
_ 2 6

$ 1 I 1 / U
1 3 / T OS
_ 3 2

$ 1 I 1 / $
1 N2 6 8

$ 1 I 1 / U
1 3 / TOS
_ 2 0

$ 1 I 1 / U
1 3 / TOS
_ 2 1

$ 1 I 1 / U
1 3 / TOS
_ 4

CL B_ R3
C9

CL B_ R3
C1 0

6

4

4

5 $ 1 I 1 / U
1 4 / T OS
_ 1 5

$ 1 I 1 / U
1 4 / T OS
_ 2 3

$ 1 I 1 / U
1 4 / T OS
_ 2 6

$ 1 I 1 / U
1 2 / T OS
_ 2 2

$ 1 I 1 / U
1 4 / TOS
_ 2 9

$ 1 I 1 / U
1 4 / TOS
_ 2 0

$ 1 I 1 / U
1 4 / TOS
_ 2 1

$ 1 I 1 / U
1 4 / TOS
_ 4

CL B_ R2
C9

CL B_ R2
C1 0

5

3

3

2 $ 1 I 1 / U
1 5 / T OS
_ 1 5

$ 1 I 1 / U
1 5 / T OS
_ 2 3

$ 1 I 1 / U
1 5 / T OS
_ 2 6

$ 1 I 1 / U
1 5 / T OS
_ 3 2

$ 1 N1 7 $ 1 I 1 / U
1 5 / TOS
_ 2 0

$ 1 I 1 / U
1 5 / TOS
_ 2 1

$ 1 I 1 / U
1 5 / TOS
_ 4

CL B_ R1
C9

CL B_ R1
C1 0

2

3

D3

2

D3 C2 D2 C1 D1 F 3 F2 E1 $ 1 N G1 $ 1 N H2 J 1 H3 K1 J 2 $ 1 N K2 N1 L 2N1

3

Figure 8.9: UFC-A address generator implemented with SDI

168

8.6 Discussion

Design Average #Runs Routing delay Total delay %Improvement
flow runtime best worst best worst routing total

XACT 1131 37 15.6 20.2 44.6 49.1
SDI 259 225 12.3 12.5 39.3 39.8 12 - 40 12 - 20

Table 8.5: Performance of 32-bit SRISC logic unit

provides an upward/downward shifting functionality. Thus, for the word size
extension we simply replicate the middle slice 14 times instead of twice (using
a 2 BPLB target topology to match the external adder/subtractor).

For logic processing in SDI, we again used TOS-TUM. In this manner, we
obtained 9 4-LUTs for the bottom slice. The simpler middle slice consists only
of 6 4-LUTs, and the top slice of 8 4-LUTs. The entire logic unit contains
101 4-LUTs and 64 registers. Horizontal microplacement in SDI is performed
using simulated annealing.

8.5.3 Performance

Table 8.5 gives the performance data for the layouts created by XACT (Figure
8.10) and SDI (Figure 8.11).

8.5.4 Comments

Due to its regular, but more complicated structure, which in addition is free
of long inter-slice critical paths (carry chains) limiting the speed-up poten-
tial, the SRISC logic unit is well suited to acceleration by SDI. Even when it
is compared against an XACT solution also employing regular module gen-
eration techniques, the intra-module regularity provided by X-BLOX cannot
compete with the inter-module view afforded by the SDI strategy.

8.6 Discussion
Since SDI mainly operates on a physical level, it cannot overcome speed limi-
tations due to the logical or architectural nature of a design. However, within
these limits, the gains achievable by primarily optimizing placement3 are still
appreciable. Even though the improvement may only be a few percent, this
might make the difference between a design fulfilling the performance re-
quirements on a given speedgrade of FPGA, or the need for a faster, but more
expensive chip.

For those circuits better suited to regular optimization (e.g., the two ALUs),
the performance gains can be quite substantial. As a secondary effect, the ex-
ploitation of regularity also reduces tool runtimes significantly. As shown for
the SRISC logic unit, the stand-alone module generators currently available

3 While the placement is also optimized for control routing, no actual routing is performed in
SDI.

169

8 Experimental Results

Draw World: ralu32-best.lca (4010PG191-5), xact 5.2.0, Sun Jun 15 02:34:11 1997

1
6

B1 7B1 7 E1 6 C1 7 D1 7 B1 8 E1 7 F1 6 C1 8 D1 8 $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N J 1 6 K1 6 K1 7 K1 8 L 1 8 L 1 7 L 1 6 M1 8 M1 7 N1 8 P1 8 N1 7 R1 8 T1 8 P1 7 N1 6 T1 7 R1 7 P1 6 U1 8 T1 6T1 6

1
6

1
6

1
7 CL B_ R2

0 C1
CL B_ R2
0 C2

CL B_ R2
0 C3

CL B_ R2
0 C4

$ 1 I 1 3 9
/ AND6 2
_ _ 1 _ 0 _
1

A< 0 > C_ SHI F
T

AOXOXN
O/ N2 5 6

CL B_ R2
0 C9

CL B_ R2
0 C1 0

CL B_ R2
0 C1 1

CL B_ R2
0 C1 2

CL B_ R2
0 C1 3

CL B_ R2
0 C1 4

CL B_ R2
0 C1 5

CL B_ R2
0 C1 6

CL B_ R2
0 C1 7

CL B_ R2
0 C1 8

CL B_ R2
0 C1 9

CL B_ R2
0 C2 0

1
5

1
6

1
4

1
5 CL B_ R1

9 C1
CL B_ R1
9 C2

CL B_ R1
9 C3

CL B_ R1
9 C4

$ 1 I 1 3 9
/ AND5 6
_ _ 4 _ 0 _
1

$ 1 I 1 3 9
/ AND6 0
_ _ 2 _ 0 _
1

SHFOUT
< 0 >

$ 1 I 1 3 9
/ AND6 1
_ _ 1 _ 0 _
1

$ 1 I 1 3 9
/ AND6 3
_ _ 0 _ 0 _
1

AL U_ OU
T< 1 >

AL U_ OU
T< 0 >

CL B_ R1
9 C1 2

CL B_ R1
9 C1 3

CL B_ R1
9 C1 4

CL B_ R1
9 C1 5

CL B_ R1
9 C1 6

CL B_ R1
9 C1 7

CL B_ R1
9 C1 8

CL B_ R1
9 C1 9

CL B_ R1
9 C2 0

1
4

1
5

1
6

1
4 CL B_ R1

8 C1
CL B_ R1
8 C2

CL B_ R1
8 C3

CL B_ R1
8 C4

$ 1 I 1 3 9
/ AND5 8
_ _ 3 _ 0 _
1

$ 1 I 1 3 9
/ AND5 4
_ _ 5 _ 0 _
1

$ 1 I 1 3 9
/ AND5 9
_ _ 2 _ 0 _
1

$ 1 I 1 3 9
/ AND5 7
_ _ 3 _ 0 _
1

$ 1 I 1 3 9
/ AND5 3
_ _ 5 _ 0 _
1

AL U_ OU
T< 5 >

AL U_ OU
T< 2 >

AL U_ OU
T< 3 >

CL B_ R1
8 C1 3

CL B_ R1
8 C1 4

CL B_ R1
8 C1 5

CL B_ R1
8 C1 6

CL B_ R1
8 C1 7

CL B_ R1
8 C1 8

CL B_ R1
8 C1 9

CL B_ R1
8 C2 0

1
7

1
6

1
3

1
5 CL B_ R1

7 C1
CL B_ R1
7 C2

CL B_ R1
7 C3

CL B_ R1
7 C4

$ 1 I 1 3 9
/ AND5 2
_ _ 6 _ 0 _
1

$ 1 I 1 3 9
/ AND5 0
_ _ 7 _ 0 _
1

$ 1 I 1 3 9
/ AND5 5
_ _ 4 _ 0 _
1

$ 1 I 1 3 9
/ AND4 9
_ _ 7 _ 0 _
1

$ 1 I 1 3 9
/ AND5 1
_ _ 6 _ 0 _
1

AL U_ OU
T< 6 >

AL U_ OU
T< 4 >

AL U_ OU
T< 7 >

CL B_ R1
7 C1 3

CL B_ R1
7 C1 4

CL B_ R1
7 C1 5

CL B_ R1
7 C1 6

CL B_ R1
7 C1 7

CL B_ R1
7 C1 8

CL B_ R1
7 C1 9

CL B_ R1
7 C2 0

1
3

1
4

1
4

1
3 CL B_ R1

6 C1
CL B_ R1
6 C2

CL B_ R1
6 C3

CL B_ R1
6 C4

$ 1 I 1 3 9
/ AND4 8
_ _ 8 _ 0 _
1

$ 1 I 1 3 9
/ AND4 4
_ _ 1 0 _ 0
_ 1

Z_ D $ 1 I 1 3 9
/ AND4 7
_ _ 8 _ 0 _
1

$ 1 I 1 3 9
/ AND4 5
_ _ 9 _ 0 _
1

AL U_ OU
T< 8 >

CL B_ R1
6 C1 1

CL B_ R1
6 C1 2

CL B_ R1
6 C1 3

CL B_ R1
6 C1 4

CL B_ R1
6 C1 5

CL B_ R1
6 C1 6

CL B_ R1
6 C1 7

CL B_ R1
6 C1 8

CL B_ R1
6 C1 9

CL B_ R1
6 C2 0

1
5

1
4

1
3

1
2 CL B_ R1

5 C1
CL B_ R1
5 C2

CL B_ R1
5 C3

CL B_ R1
5 C4

$ 1 I 1 3 9
/ AND4 2
_ _ 1 1 _ 0
_ 1

$ 1 I 1 3 9
/ AND4 6
_ _ 9 _ 0 _
1

$ 1 I 1 3 9
/ AND4 1
_ _ 1 1 _ 0
_ 1

$ 1 I 1 3 9
/ AND4 3
_ _ 1 0 _ 0
_ 1

AL U_ OU
T< 9 >

AL U_ OU
T< 1 0 >

AL U_ OU
T< 1 1 >

CL B_ R1
5 C1 2

CL B_ R1
5 C1 3

CL B_ R1
5 C1 4

CL B_ R1
5 C1 5

CL B_ R1
5 C1 6

CL B_ R1
5 C1 7

CL B_ R1
5 C1 8

CL B_ R1
5 C1 9

CL B_ R1
5 C2 0

1
3

1
3

1
2

1
1 CL B_ R1

4 C1
CL B_ R1
4 C2

CL B_ R1
4 C3

CL B_ R1
4 C4

B< 1 2 > $ 1 I 1 3 9
/ AND3 8
_ _ 1 3 _ 0
_ 1

SHFOUT
< 3 1 >

$ 1 I 1 3 9
/ AND3 9
_ _ 1 2 _ 0
_ 1

$ 1 I 1 3 9
/ AND3 7
_ _ 1 3 _ 0
_ 1

AL U_ OU
T< 1 2 >

AL U_ OU
T< 1 3 >

CL B_ R1
4 C1 2

CL B_ R1
4 C1 3

CL B_ R1
4 C1 4

CL B_ R1
4 C1 5

CL B_ R1
4 C1 6

CL B_ R1
4 C1 7

CL B_ R1
4 C1 8

CL B_ R1
4 C1 9

CL B_ R1
4 C2 0

1
2

1
2

1
1

1
1 CL B_ R1

3 C1
CL B_ R1
3 C2

CL B_ R1
3 C3

CL B_ R1
3 C4

B< 1 4 > $ 1 I 1 3 9
/ AND3 2
_ _ 1 6 _ 0
_ 1

ZERO_ I
/ OR3

AOXOXN
O/ N2 5 3

$ 1 I 1 3 9
/ AND3 5
_ _ 1 4 _ 0
_ 1

CL B_ R1
3 C1 0

CL B_ R1
3 C1 1

CL B_ R1
3 C1 2

CL B_ R1
3 C1 3

CL B_ R1
3 C1 4

CL B_ R1
3 C1 5

CL B_ R1
3 C1 6

CL B_ R1
3 C1 7

CL B_ R1
3 C1 8

CL B_ R1
3 C1 9

CL B_ R1
3 C2 0

1
1

1
1

1
0

9 CL B_ R1
2 C1

CL B_ R1
2 C2

CL B_ R1
2 C3

CL B_ R1
2 C4

B< 1 6 > $ 1 I 1 3 9
/ AND3 4
_ _ 1 5 _ 0
_ 1

$ 1 I 1 3 9
/ AND2 9
_ _ 1 7 _ 0
_ 1

$ 1 I 1 3 9
/ AND3 1
_ _ 1 6 _ 0
_ 1

$ 1 I 1 3 9
/ AND3 3
_ _ 1 5 _ 0
_ 1

AL U_ OU
T< 1 4 >

AL U_ OU
T< 1 5 >

AL U_ OU
T< 1 6 >

CL B_ R1
2 C1 3

CL B_ R1
2 C1 4

CL B_ R1
2 C1 5

CL B_ R1
2 C1 6

CL B_ R1
2 C1 7

CL B_ R1
2 C1 8

CL B_ R1
2 C1 9

CL B_ R1
2 C2 0

1
1

1
0

1
0

1
0 CL B_ R1

1 C1
CL B_ R1
1 C2

CL B_ R1
1 C3

CL B_ R1
1 C4

B< 1 8 > $ 1 I 1 3 9
/ AND2 8
_ _ 1 8 _ 0
_ 1

$ 1 I 1 3 9
/ AND3 0
_ _ 1 7 _ 0
_ 1

$ 1 I 1 3 9
/ AND2 7
_ _ 1 8 _ 0
_ 1

$ 1 I 1 3 9
/ AND2 5
_ _ 1 9 _ 0
_ 1

AL U_ OU
T< 1 7 >

CL B_ R1
1 C1 1

CL B_ R1
1 C1 2

CL B_ R1
1 C1 3

CL B_ R1
1 C1 4

CL B_ R1
1 C1 5

CL B_ R1
1 C1 6

CL B_ R1
1 C1 7

CL B_ R1
1 C1 8

CL B_ R1
1 C1 9

CL B_ R1
1 C2 0

1
0

1
0

9

9 CL B_ R1
0 C1

CL B_ R1
0 C2

CL B_ R1
0 C3

CL B_ R1
0 C4

B< 2 0 > $ 1 I 1 3 9
/ AND2 6
_ _ 1 9 _ 0
_ 1

$ 1 I 1 3 9
/ AND2 1
_ _ 2 1 _ 0
_ 1

$ 1 I 1 3 9
/ AND2 3
_ _ 2 0 _ 0
_ 1

AL U_ OU
T< 1 8 >

$ 1 I 1 3 9
/ AND2 4
_ _ 2 0 _ 0
_ 1

AL U_ OU
T< 2 0 >

CL B_ R1
0 C1 2

CL B_ R1
0 C1 3

CL B_ R1
0 C1 4

CL B_ R1
0 C1 5

CL B_ R1
0 C1 6

CL B_ R1
0 C1 7

CL B_ R1
0 C1 8

CL B_ R1
0 C1 9

CL B_ R1
0 C2 0

9

9

8

8 CL B_ R9
C1

CL B_ R9
C2

CL B_ R9
C3

CL B_ R9
C4

B< 2 2 > $ 1 I 1 3 6
/ U1 2 3 /
GAT E1

ZERO_ I
/ OR6

$ 1 I 1 3 9
/ AND1 9
_ _ 2 2 _ 0
_ 1

$ 1 I 1 3 9
/ AND1 7
_ _ 2 3 _ 0
_ 1

$ 1 I 1 3 9
/ AND2 0
_ _ 2 2 _ 0
_ 1

AL U_ OU
T< 2 2 >

CL B_ R9
C1 2

CL B_ R9
C1 3

CL B_ R9
C1 4

CL B_ R9
C1 5

CL B_ R9
C1 6

CL B_ R9
C1 7

CL B_ R9
C1 8

CL B_ R9
C1 9

CL B_ R9
C2 0

9

8

7

8 CL B_ R8
C1

CL B_ R8
C2

CL B_ R8
C3

CL B_ R8
C4

I NBUS<
2 4 >

$ 1 I 1 3 9
/ AND1 8
_ _ 2 3 _ 0
_ 1

ZERO_ I
/ OR9

$ 1 I 1 3 9
/ AND1 5
_ _ 2 4 _ 0
_ 1

$ 1 I 1 3 9
/ AND1 3
_ _ 2 5 _ 0
_ 1

$ 1 I 1 3 9
/ AND1 6
_ _ 2 4 _ 0
_ 1

AL U_ OU
T< 2 3 >

AL U_ OU
T< 2 4 >

CL B_ R8
C1 3

CL B_ R8
C1 4

CL B_ R8
C1 5

CL B_ R8
C1 6

CL B_ R8
C1 7

CL B_ R8
C1 8

CL B_ R8
C1 9

CL B_ R8
C2 0

8

8

6

7 CL B_ R7
C1

CL B_ R7
C2

CL B_ R7
C3

CL B_ R7
C4

B< 2 6 > $ 1 I 1 3 9
/ AND1 4
_ _ 2 5 _ 0
_ 1

$ 1 I 1 3 9
/ AND1 2
_ _ 2 6 _ 0
_ 1

$ 1 I 1 3 9
/ AND9 _
_ 2 7 _ 0 _
1

$ 1 I 1 3 9
/ AND1 1
_ _ 2 6 _ 0
_ 1

AL U_ OU
T< 2 6 >

AL U_ OU
T< 2 5 >

CL B_ R7
C1 2

CL B_ R7
C1 3

CL B_ R7
C1 4

CL B_ R7
C1 5

CL B_ R7
C1 6

CL B_ R7
C1 7

CL B_ R7
C1 8

CL B_ R7
C1 9

CL B_ R7
C2 0

7

7

5

4 CL B_ R6
C1

CL B_ R6
C2

CL B_ R6
C3

CL B_ R6
C4

B< 2 8 > AL U_ OU
T< 2 1 >

$ 1 I 1 3 9
/ AND1 _
_ 3 1 _ 0 _
1

$ 1 I 1 3 9
/ AND5 _
_ 2 9 _ 0 _
1

$ 1 I 1 3 9
/ AND7 _
_ 2 8 _ 0 _
1

AL U_ OU
T< 2 8 >

CL B_ R6
C1 1

CL B_ R6
C1 2

CL B_ R6
C1 3

CL B_ R6
C1 4

CL B_ R6
C1 5

CL B_ R6
C1 6

CL B_ R6
C1 7

CL B_ R6
C1 8

CL B_ R6
C1 9

CL B_ R6
C2 0

6

6

6

5 CL B_ R5
C1

CL B_ R5
C2

CL B_ R5
C3

CL B_ R5
C4

B< 3 0 > $ 1 I 1 3 9
/ AND4 _
_ 3 0 _ 0 _
1

$ 1 I 1 3 9
/ AND6 _
_ 2 9 _ 0 _
1

$ 1 I 1 3 9
/ AND3 _
_ 3 0 _ 0 _
1

$ 1 I 1 3 9
/ AND1 0
_ _ 2 7 _ 0
_ 1

CL B_ R5
C1 0

CL B_ R5
C1 1

CL B_ R5
C1 2

CL B_ R5
C1 3

CL B_ R5
C1 4

CL B_ R5
C1 5

CL B_ R5
C1 6

CL B_ R5
C1 7

CL B_ R5
C1 8

CL B_ R5
C1 9

CL B_ R5
C2 0

5

4

3

6 CL B_ R4
C1

CL B_ R4
C2

CL B_ R4
C3

CL B_ R4
C4

CL B_ R4
C5

CL B_ R4
C6

AL U_ OU
T< 3 1 >

AL U_ OU
T< 2 9 >

AL U_ OU
T< 2 7 >

CL B_ R4
C1 0

CL B_ R4
C1 1

CL B_ R4
C1 2

CL B_ R4
C1 3

CL B_ R4
C1 4

CL B_ R4
C1 5

CL B_ R4
C1 6

CL B_ R4
C1 7

CL B_ R4
C1 8

CL B_ R4
C1 9

CL B_ R4
C2 0

5

6

4

2 CL B_ R3
C1

CL B_ R3
C2

CL B_ R3
C3

CL B_ R3
C4

CL B_ R3
C5

CL B_ R3
C6

CL B_ R3
C7

AL U_ OU
T< 3 0 >

CL B_ R3
C9

CL B_ R3
C1 0

CL B_ R3
C1 1

CL B_ R3
C1 2

CL B_ R3
C1 3

CL B_ R3
C1 4

CL B_ R3
C1 5

CL B_ R3
C1 6

CL B_ R3
C1 7

CL B_ R3
C1 8

CL B_ R3
C1 9

CL B_ R3
C2 0

3

2

5

3 CL B_ R2
C1

CL B_ R2
C2

CL B_ R2
C3

CL B_ R2
C4

CL B_ R2
C5

CL B_ R2
C6

CL B_ R2
C7

CL B_ R2
C8

CL B_ R2
C9

CL B_ R2
C1 0

CL B_ R2
C1 1

CL B_ R2
C1 2

CL B_ R2
C1 3

CL B_ R2
C1 4

CL B_ R2
C1 5

CL B_ R2
C1 6

CL B_ R2
C1 7

CL B_ R2
C1 8

CL B_ R2
C1 9

CL B_ R2
C2 0

4

5

4

3 CL B_ R1
C1

CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

CL B_ R1
C1 1

CL B_ R1
C1 2

CL B_ R1
C1 3

CL B_ R1
C1 4

CL B_ R1
C1 5

CL B_ R1
C1 6

CL B_ R1
C1 7

CL B_ R1
C1 8

CL B_ R1
C1 9

CL B_ R1
C2 0

3

4

$ 1 I

3

$ 1 I C2 E3 B1 D2 F3 E2 C1 D1 F2 E1 F1 G2 G1 H3 H2 H1 J 1 J 2 J 3 K3 K2 K1 L 1 L 2 L 3 M1 M2 N1 P1 N2 R1 T1 P2 N3 T2 R2 P3 U1 T3U1

4

Figure 8.10: SRISC logic unit implemented with XACT

170

8.6 Discussion

Draw World: rsditop32-best.lca (4010PG191-5), xact 5.2.0, Sun Jun 15 02:00:29 1997

1
6

B1 7B1 7 E1 6 C1 7 D1 7 B1 8 E1 7 F1 6 C1 8 D1 8 F1 7 E1 8 $ 1 N G1 7 G1 8 H1 6 H1 7 H1 8 J 1 8 J 1 7 J 1 6 K1 6 K1 7 K1 8 L 1 8 L 1 7 L 1 6 M1 8 M1 7 N1 8 P1 8 N1 7 R1 8 T1 8 P1 7 N1 6 T1 7 R1 7 P1 6 U1 8 T1 6T1 6

1
6

1
6

1
7 CL B_ R2

0 C1
CL B_ R2
0 C2

CL B_ R2
0 C3

CL B_ R2
0 C4

CL B_ R2
0 C5

CL B_ R2
0 C6

CL B_ R2
0 C7

CL B_ R2
0 C8

CL B_ R2
0 C9

CL B_ R2
0 C1 0

CL B_ R2
0 C1 1

CL B_ R2
0 C1 2

CL B_ R2
0 C1 3

CL B_ R2
0 C1 4

CL B_ R2
0 C1 5

CL B_ R2
0 C1 6

CL B_ R2
0 C1 7

CL B_ R2
0 C1 8

CL B_ R2
0 C1 9

CL B_ R2
0 C2 0

1
5

1
6

1
4

1
5 CL B_ R1

9 C1
CL B_ R1
9 C2

CL B_ R1
9 C3

CL B_ R1
9 C4

CL B_ R1
9 C5

CL B_ R1
9 C6

CL B_ R1
9 C7

CL B_ R1
9 C8

CL B_ R1
9 C9

CL B_ R1
9 C1 0

CL B_ R1
9 C1 1

CL B_ R1
9 C1 2

CL B_ R1
9 C1 3

CL B_ R1
9 C1 4

CL B_ R1
9 C1 5

CL B_ R1
9 C1 6

CL B_ R1
9 C1 7

CL B_ R1
9 C1 8

CL B_ R1
9 C1 9

CL B_ R1
9 C2 0

1
4

1
5

1
6

1
4 CL B_ R1

8 C1
CL B_ R1
8 C2

CL B_ R1
8 C3

CL B_ R1
8 C4

CL B_ R1
8 C5

CL B_ R1
8 C6

CL B_ R1
8 C7

CL B_ R1
8 C8

CL B_ R1
8 C9

CL B_ R1
8 C1 0

CL B_ R1
8 C1 1

CL B_ R1
8 C1 2

CL B_ R1
8 C1 3

CL B_ R1
8 C1 4

CL B_ R1
8 C1 5

CL B_ R1
8 C1 6

CL B_ R1
8 C1 7

CL B_ R1
8 C1 8

CL B_ R1
8 C1 9

CL B_ R1
8 C2 0

1
7

1
6

1
3

1
5 $ 1 I 1 / $

1 I 5 / TO
S_ 0

$ 1 I 1 / $
1 I 5 / TO
S_ 1

$ 1 I 1 / $
1 I 5 / TO
S_ 5

$ 1 I 1 / $
1 I 5 / TO
S_ 6

OBUS< 1
>

CL B_ R1
7 C6

CL B_ R1
7 C7

CL B_ R1
7 C8

CL B_ R1
7 C9

CL B_ R1
7 C1 0

CL B_ R1
7 C1 1

CL B_ R1
7 C1 2

CL B_ R1
7 C1 3

CL B_ R1
7 C1 4

CL B_ R1
7 C1 5

CL B_ R1
7 C1 6

CL B_ R1
7 C1 7

CL B_ R1
7 C1 8

CL B_ R1
7 C1 9

CL B_ R1
7 C2 0

1
3

1
4

1
4

1
3 $ 1 I 1 / $

1 I 2 / TO
S_ 5

$ 1 I 1 / $
1 I 2 / TO
S_ 4

$ 1 I 1 / $
1 I 2 / TO
S_ 3

$ 1 I 1 / $
1 I 2 / TO
S_ 0

OBUS< 2
>

CL B_ R1
6 C6

CL B_ R1
6 C7

CL B_ R1
6 C8

CL B_ R1
6 C9

CL B_ R1
6 C1 0

CL B_ R1
6 C1 1

CL B_ R1
6 C1 2

CL B_ R1
6 C1 3

CL B_ R1
6 C1 4

CL B_ R1
6 C1 5

CL B_ R1
6 C1 6

CL B_ R1
6 C1 7

CL B_ R1
6 C1 8

CL B_ R1
6 C1 9

CL B_ R1
6 C2 0

1
5

1
4

1
3

1
2 $ 1 I 1 / $

1 I 3 / TO
S_ 5

$ 1 I 1 / $
1 I 3 / TO
S_ 4

$ 1 I 1 / $
1 I 3 / TO
S_ 3

$ 1 I 1 / $
1 I 3 / TO
S_ 0

OBUS< 4
>

CL B_ R1
5 C6

CL B_ R1
5 C7

CL B_ R1
5 C8

CL B_ R1
5 C9

CL B_ R1
5 C1 0

CL B_ R1
5 C1 1

CL B_ R1
5 C1 2

CL B_ R1
5 C1 3

CL B_ R1
5 C1 4

CL B_ R1
5 C1 5

CL B_ R1
5 C1 6

CL B_ R1
5 C1 7

CL B_ R1
5 C1 8

CL B_ R1
5 C1 9

CL B_ R1
5 C2 0

1
3

1
3

1
2

1
1 $ 1 I 1 / $

1 I 1 1 8 /
TOS_ 5

$ 1 I 1 / $
1 I 1 1 8 /
TOS_ 4

$ 1 I 1 / $
1 I 1 1 8 /
TOS_ 3

$ 1 I 1 / $
1 I 1 1 8 /
TOS_ 0

OBUS< 6
>

CL B_ R1
4 C6

CL B_ R1
4 C7

CL B_ R1
4 C8

CL B_ R1
4 C9

CL B_ R1
4 C1 0

CL B_ R1
4 C1 1

CL B_ R1
4 C1 2

CL B_ R1
4 C1 3

CL B_ R1
4 C1 4

CL B_ R1
4 C1 5

CL B_ R1
4 C1 6

CL B_ R1
4 C1 7

CL B_ R1
4 C1 8

CL B_ R1
4 C1 9

CL B_ R1
4 C2 0

1
2

1
2

1
1

1
1 $ 1 I 1 / $

1 I 1 1 9 /
TOS_ 5

$ 1 I 1 / $
1 I 1 1 9 /
TOS_ 4

$ 1 I 1 / $
1 I 1 1 9 /
TOS_ 3

$ 1 I 1 / $
1 I 1 1 9 /
TOS_ 0

OBUS< 8
>

$ 1 N2 3 CL B_ R1
3 C7

CL B_ R1
3 C8

CL B_ R1
3 C9

CL B_ R1
3 C1 0

CL B_ R1
3 C1 1

CL B_ R1
3 C1 2

CL B_ R1
3 C1 3

CL B_ R1
3 C1 4

CL B_ R1
3 C1 5

CL B_ R1
3 C1 6

CL B_ R1
3 C1 7

CL B_ R1
3 C1 8

CL B_ R1
3 C1 9

CL B_ R1
3 C2 0

1
1

1
1

1
0

9 $ 1 I 1 / $
1 I 1 8 6 /
TOS_ 5

$ 1 I 1 / $
1 I 1 8 6 /
TOS_ 4

$ 1 I 1 / $
1 I 1 8 6 /
TOS_ 3

$ 1 I 1 / $
1 I 1 8 6 /
TOS_ 0

OBUS< 1
0 >

CL B_ R1
2 C6

CL B_ R1
2 C7

CL B_ R1
2 C8

CL B_ R1
2 C9

CL B_ R1
2 C1 0

CL B_ R1
2 C1 1

CL B_ R1
2 C1 2

CL B_ R1
2 C1 3

CL B_ R1
2 C1 4

CL B_ R1
2 C1 5

CL B_ R1
2 C1 6

CL B_ R1
2 C1 7

CL B_ R1
2 C1 8

CL B_ R1
2 C1 9

CL B_ R1
2 C2 0

1
1

1
0

1
0

1
0 $ 1 I 1 / $

1 I 1 8 5 /
TOS_ 5

$ 1 I 1 / $
1 I 1 8 5 /
TOS_ 4

$ 1 I 1 / $
1 I 1 8 5 /
TOS_ 3

$ 1 I 1 / $
1 I 1 8 5 /
TOS_ 0

OBUS< 1
2 >

$ 1 I 4 / O
R3

CL B_ R1
1 C7

CL B_ R1
1 C8

CL B_ R1
1 C9

CL B_ R1
1 C1 0

CL B_ R1
1 C1 1

CL B_ R1
1 C1 2

CL B_ R1
1 C1 3

CL B_ R1
1 C1 4

CL B_ R1
1 C1 5

CL B_ R1
1 C1 6

CL B_ R1
1 C1 7

CL B_ R1
1 C1 8

CL B_ R1
1 C1 9

CL B_ R1
1 C2 0

1
0

1
0

9

9 $ 1 I 1 / $
1 I 2 1 3 /
TOS_ 5

$ 1 I 1 / $
1 I 2 1 3 /
TOS_ 4

$ 1 I 1 / $
1 I 2 1 3 /
TOS_ 3

$ 1 I 1 / $
1 I 2 1 3 /
TOS_ 0

OBUS< 1
4 >

CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

CL B_ R1
0 C1 0

CL B_ R1
0 C1 1

CL B_ R1
0 C1 2

CL B_ R1
0 C1 3

CL B_ R1
0 C1 4

CL B_ R1
0 C1 5

CL B_ R1
0 C1 6

CL B_ R1
0 C1 7

CL B_ R1
0 C1 8

CL B_ R1
0 C1 9

CL B_ R1
0 C2 0

9

9

8

8 $ 1 I 1 / $
1 I 2 1 2 /
TOS_ 5

$ 1 I 1 / $
1 I 2 1 2 /
TOS_ 4

$ 1 I 1 / $
1 I 2 1 2 /
TOS_ 3

$ 1 I 1 / $
1 I 2 1 2 /
TOS_ 0

OBUS< 1
6 >

CL B_ R9
C6

CL B_ R9
C7

CL B_ R9
C8

CL B_ R9
C9

CL B_ R9
C1 0

CL B_ R9
C1 1

CL B_ R9
C1 2

CL B_ R9
C1 3

CL B_ R9
C1 4

CL B_ R9
C1 5

CL B_ R9
C1 6

CL B_ R9
C1 7

CL B_ R9
C1 8

CL B_ R9
C1 9

CL B_ R9
C2 0

9

8

7

8 $ 1 I 1 / $
1 I 2 4 0 /
TOS_ 5

$ 1 I 1 / $
1 I 2 4 0 /
TOS_ 4

$ 1 I 1 / $
1 I 2 4 0 /
TOS_ 3

$ 1 I 1 / $
1 I 2 4 0 /
TOS_ 0

OBUS< 1
8 >

CL B_ R8
C6

CL B_ R8
C7

CL B_ R8
C8

CL B_ R8
C9

CL B_ R8
C1 0

CL B_ R8
C1 1

CL B_ R8
C1 2

CL B_ R8
C1 3

CL B_ R8
C1 4

CL B_ R8
C1 5

CL B_ R8
C1 6

CL B_ R8
C1 7

CL B_ R8
C1 8

CL B_ R8
C1 9

CL B_ R8
C2 0

8

8

6

7 $ 1 I 1 / $
1 I 2 3 9 /
TOS_ 5

$ 1 I 1 / $
1 I 2 3 9 /
TOS_ 4

$ 1 I 1 / $
1 I 2 3 9 /
TOS_ 3

$ 1 I 1 / $
1 I 2 3 9 /
TOS_ 0

OBUS< 2
0 >

$ 1 I 4 / O
R6

CL B_ R7
C7

CL B_ R7
C8

CL B_ R7
C9

CL B_ R7
C1 0

CL B_ R7
C1 1

CL B_ R7
C1 2

CL B_ R7
C1 3

CL B_ R7
C1 4

CL B_ R7
C1 5

CL B_ R7
C1 6

CL B_ R7
C1 7

CL B_ R7
C1 8

CL B_ R7
C1 9

CL B_ R7
C2 0

7

7

5

4 $ 1 I 1 / $
1 I 2 6 7 /
TOS_ 5

$ 1 I 1 / $
1 I 2 6 7 /
TOS_ 4

$ 1 I 1 / $
1 I 2 6 7 /
TOS_ 3

$ 1 I 1 / $
1 I 2 6 7 /
TOS_ 0

OBUS< 2
2 >

CL B_ R6
C6

CL B_ R6
C7

CL B_ R6
C8

CL B_ R6
C9

CL B_ R6
C1 0

CL B_ R6
C1 1

CL B_ R6
C1 2

CL B_ R6
C1 3

CL B_ R6
C1 4

CL B_ R6
C1 5

CL B_ R6
C1 6

CL B_ R6
C1 7

CL B_ R6
C1 8

CL B_ R6
C1 9

CL B_ R6
C2 0

6

6

6

5 $ 1 I 1 / $
1 I 2 6 6 /
TOS_ 5

$ 1 I 1 / $
1 I 2 6 6 /
TOS_ 4

$ 1 I 1 / $
1 I 2 6 6 /
TOS_ 3

$ 1 I 1 / $
1 I 2 6 6 /
TOS_ 0

OBUS< 2
4 >

CL B_ R5
C6

CL B_ R5
C7

CL B_ R5
C8

CL B_ R5
C9

CL B_ R5
C1 0

CL B_ R5
C1 1

CL B_ R5
C1 2

CL B_ R5
C1 3

CL B_ R5
C1 4

CL B_ R5
C1 5

CL B_ R5
C1 6

CL B_ R5
C1 7

CL B_ R5
C1 8

CL B_ R5
C1 9

CL B_ R5
C2 0

5

4

3

6 $ 1 I 1 / $
1 I 2 9 4 /
TOS_ 5

$ 1 I 1 / $
1 I 2 9 4 /
TOS_ 4

$ 1 I 1 / $
1 I 2 9 4 /
TOS_ 3

$ 1 I 1 / $
1 I 2 9 4 /
TOS_ 0

OBUS< 2
6 >

$ 1 I 4 / O
R9

CL B_ R4
C7

CL B_ R4
C8

CL B_ R4
C9

CL B_ R4
C1 0

CL B_ R4
C1 1

CL B_ R4
C1 2

CL B_ R4
C1 3

CL B_ R4
C1 4

CL B_ R4
C1 5

CL B_ R4
C1 6

CL B_ R4
C1 7

CL B_ R4
C1 8

CL B_ R4
C1 9

CL B_ R4
C2 0

5

6

4

2 $ 1 I 1 / $
1 I 2 9 3 /
TOS_ 5

$ 1 I 1 / $
1 I 2 9 3 /
TOS_ 4

$ 1 I 1 / $
1 I 2 9 3 /
TOS_ 3

$ 1 I 1 / $
1 I 2 9 3 /
TOS_ 0

OBUS< 2
8 >

CL B_ R3
C6

CL B_ R3
C7

CL B_ R3
C8

CL B_ R3
C9

CL B_ R3
C1 0

CL B_ R3
C1 1

CL B_ R3
C1 2

CL B_ R3
C1 3

CL B_ R3
C1 4

CL B_ R3
C1 5

CL B_ R3
C1 6

CL B_ R3
C1 7

CL B_ R3
C1 8

CL B_ R3
C1 9

CL B_ R3
C2 0

3

2

5

3 $ 1 I 1 / $
1 I 4 / TO
S_ 1

$ 1 I 1 / $
1 I 4 / TO
S_ 8

$ 1 I 1 / $
1 I 4 / TO
S_ 5

$ 1 I 1 / $
1 I 4 / TO
S_ 6

OBUS< 3
1 >

CL B_ R2
C6

CL B_ R2
C7

CL B_ R2
C8

CL B_ R2
C9

CL B_ R2
C1 0

CL B_ R2
C1 1

CL B_ R2
C1 2

CL B_ R2
C1 3

CL B_ R2
C1 4

CL B_ R2
C1 5

CL B_ R2
C1 6

CL B_ R2
C1 7

CL B_ R2
C1 8

CL B_ R2
C1 9

CL B_ R2
C2 0

4

5

4

3 CL B_ R1
C1

CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

CL B_ R1
C1 1

CL B_ R1
C1 2

CL B_ R1
C1 3

CL B_ R1
C1 4

CL B_ R1
C1 5

CL B_ R1
C1 6

CL B_ R1
C1 7

CL B_ R1
C1 8

CL B_ R1
C1 9

CL B_ R1
C2 0

3

4

B2

3

B2 $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N $ 1 N D1 $ 1 N E1 F1 G2 G1 H3 H2 H1 J 1 J 2 J 3 K3 K2 K1 L 1 L 2 L 3 M1 M2 N1 P1 N2 R1 T1 P2 N3 T2 R2 P3 U1 T3U1

4

Figure 8.11: SRISC logic unit implemented with SDI

171

8 Experimental Results

for many FPGA families (Xilinx X-BLOX, Actel ACTgen, Atmel generators)
lose much optimization potential as compared to the wider scope enjoyed by a
strategy such as SDI.

The evaluation process was complicated by three main aspects: First, the
lack of an established suite of benchmark circuits for datapath structures.
Second, the need to manually isolate datapaths in the sample circuits used.
While this was still possible for simpler designs available as schematics, it
proved to be unmanageable for designs specified using RTL-level HDL. And
third, due to the immaturity of the floorplanner (Section 4.10), many design
tasks (especially design integration and netlist generation) had to be per-
formed manually.

While the last difficulty is “easily” remediable by creating a more robust
floorplanner, the second problem offers much potential for future research
(Chapter 9). Assuming the existence of an “automatic HDL datapath extrac-
tor”, the first problem could then be solved by simply extracting regularity
from various academic and industrial designs currently only available as HDL
descriptions.

172

9 Summary and Future Work

After describing the limitations of current CAD tools for FPGAs, especially
with regard to processing the datapath structures common to many CPU and
DSP designs, this work introduced SDI, a novel approach to increase datapath
circuit performance.

SDI comprises a specialized suite of easily extensible CAD tools coordi-
nated by a comprehensive strategy. Our leitmotiv is the direct mapping of
datapath architecture to physical layout. The front-end tools of SDI (module
generators offering implementation alternatives, floorplanner, structure ex-
traction, regularity analysis) are optimized for the processing of regular data-
paths. They either preserve a known bit-sliced structure (module generators,
floorplanner), or regenerate it in a larger context (structure extraction, regu-
larity analysis). The back-end tools (module generators generating layouts or
netlists, compaction, microplacement) then map the regular architecture to a
regular layout optimized for the specific target FPGA. To this end, traditional
logic synthesis and technology mapping techniques are fully embedded in the
optimized design flow.

SDI is thus specialized on both the highest and lowest abstraction levels:
Architectural features of datapaths, such as external control signals fanning
out to multiple bit-slices, or inter-bit-slice signals, are directly considered as
such during layout generation. In addition, FPGA-specific intricacies, like fast
carry chains, on-chip memory blocks, and hybrid symmetrical/hierarchical in-
terconnection networks are also taken advantage of in hard-macros to maxi-
mize low-level performance.

Despite the limitations of the current SDI implementation, with some com-
ponents only being academic prototypes, and the lack of standard benchmark
circuits, experimental results obtained for a number of representative designs
are very promising. Structures that are either very simple (not much regular-
ity to exploit), or that are limited by long inter-bit-slice (serial) critical paths
can only be accelerated by a few percent. Circuits with a more complex regu-
lar structure (multiple different slices, larger slices), however, can gain over
30% in performance. For an optimization occuring at the very low abstrac-
tion level of physical layout, these improvements are quite respectable1. As a
secondary benefit, the computation times for SDI are also far shorter than for
conventional processing.

Even the smaller performance gains become appreciable when consider-

1 E.g., the maximum gains for a novel performance-driven FPGA router [AlRo96] are be-
tween 2% - 18%, with an average of 10%.

173

9 Summary and Future Work

ing the discrete speedgrades in which FPGA chips are sold. The few percent
of SDI-optimized performance can make the difference between the perfor-
mance requirements being met with a lower speedgrade, or the need to use
a faster and more expensive chip. The performance improvement then trans-
lates directly into an economical gain, growing in proportion to the production
volume.

While working on, and experimenting with, SDI, we discovered numerous
areas for further research and development. To actually enable the use of
SDI in a production setting, a fresh implementation of the floorplanner is ab-
solutely required. In this reimplementation, the VLSI specifics should be em-
phasized over the optimization aspects of the problem. Furthermore, for ease
of use, the input format should be changed from the proprietary SNF to a stan-
dardized format, such as a structural hardware description language (HDL,
e.g., VHDL, Verilog), or EDIF. The performance of SDI-optimized designs
could probably be further improved by a more active consideration of routing
congestion, both during logic processing and microplacement. To cover the
first area, a routability-oriented technology mapper such as [ScKC94] might
be integrated. In the second area, basic congestion handling could be added
to the microplacer, possibly remaining restricted to the more detailed vertical
placement phase. Due to the risk of the resulting more complex ILP mod-
els becoming intractable, this step might also necessitate the switch to an
annealing-based heuristic for vertical placement. If even shorter computa-
tion times for SDI were required, the currently untapped potential of parallel
processing could be exploited. As described on numerous occasions in the
main text, many of the operations following circuit regularities may be per-
formed simultaneously and independently of each other.

Especially during the experimental measurement phase, the following is-
sue became painfully apparent: The premise of letting the user manually sep-
arate the regular datapath from the irregular controller, while feasible during
the era of schematic design entry, is no longer realistic with the continuing
trend towards the higher abstraction levels. What is required is an automatic
extraction of regular structures from an RTL-HDL description. Such a tool
would then allow the clean integration of SDI into future design flows heav-
ily relying on high-level synthesis [GDWL92] [Holt93] [Lin97] and hardware-
software co-design [HEHB94] [EHBY96].

Furthermore, the compaction and microplacement components of SDI could
most likely be embedded in such a synthesis system to allow the “on-the-fly”
generation of regular modules from unstructured netlists. Current synthesiz-
ers, such as DesignCompiler [Syno96a], rely on hardcoded module generators
(e.g., DesignWare [Syno96b]) to create regular structures. When encountering
a subcircuit not covered by an existing generator, the logic is generated in an
unstructured manner. But the SDI compaction and microplacement phases
are specialized on optimizing subcircuits (compaction relies on local logic syn-
thesis), and then restoring regularity by microplacement. In this manner, any
kind of regular logic (discovered by the “datapath extractor” suggested above)
could be synthesized into a regular module. The efficiency would most likely

174

be degraded over that of a dedicated module generator, but still be improved
over an unoptimized irregular structure.

From a software engineering point of view, the SDI project demonstrated
the power of building on existing frameworks: The module generators and
floorplanner were implemented as stand-alone tools using C++, but without
emphasis on object-oriented design aspects. The remaining tools, such as
compaction, microplacement, various utility functions (timing analysis, XNF
netlist generation etc.) were embedded into the well-established SIS system.
Even though “only” C was used as their implementation language, the clean
and consistent design of SIS improved developer productivity and code re-
liability immensely. Unfortunately, SIS is already showing its age, e.g., by
supporting only flat structures, and the awkward handling of sequential ele-
ments. Furthermore, with its roots firmly in the logic synthesis area, adding
the operations and data structures required for physical design automation
tasks, such as placement and routing, result in a kind of “impedance mis-
match” due to the different circuit views. It would be beneficial for the entire
EDA community if a more modern successor were developed. By actually
employing current object-oriented techniques [Booc94] [GHJV95] [Koch97a],
a robust, easily extensible framework offering multiple hierarchical design
views (e.g., behavioral, structural, physical) and consistent basic services (e.g.,
HDL export/import, timing analysis etc.) could be developed. This ground-
work could spare EDA researchers and developers everywhere the effort to
start all new projects “from scratch”.

To conclude, while the fundamental approach of SDI to improve circuit
performance by the exploitation of regularity has already proved successful,
the project was also quite fertile in showing many new venues for further
research. We especially recommend that the possibilities for integration with
high-level synthesis, and of a unified EDA software framework, be pursued
further.

175

9 Summary and Future Work

176

Bibliography

[3Com95] 3Com Corp, “3Com Selects Actel FPGAs for LAN Logic Integra-
tion, Gate Array Migration Path”, in [Acte95a], pp. 11-27 1

[ACCK96] Amerson, R., Carter, R., Culbertson, W., Kuekes, P., Snider, G.,
“Plasma: An FPGA for Million Gate Systems”, Proc. FPGA 1996,
pp. 10-16 2.3.1

[Acte95a] Actel Corp, “FPGA Data Book and Design Guide”, Databook, Sun-
nyvale 1995 2, 2.3.1, 95

[Acte96] Actel Corp., “Actel’s Reprogrammable SPGAs”, Preliminary Ad-
vance Information, Sunnyvale 1996 2

[AlRo96] Alexander, M.J., Robins, G., “New Performance-Driven FPGA
Routing Algorithms”, IEEE Trans. on CAD, Vol. 15, No. 12, De-
cember 1996, pp. 1505-1516 1

[Algo92] Algotronix Ltd., “CAL1024 Product Brief”, Datasheet, Edinburgh
1992 2.3.1

[Alte96] Altera Corp., “MAX9000 Programmable Logic Device Family”,
Datasheet, San Jose 1996 2

[Alte95] Altera Corp., “FLEX 10K Embedded Programmable Logic Family,
ver. 1”, Datasheet, San Jose 1995 2, 2.3.1, 2.7.3

[AMDI90] AMD Inc., “PALASM-XL Reference Manual”, EDA Software Doc-
umentation, San Jose 1990 3

[AMDI96] AMD Inc, “The MACH 5 Family”, Datasheet, Sunnyvale 1996 2

[Atme94] Atmel Corp., “Atmel Configurable Logic Design & Applications
Book”, Databook, San Jose 1994 2.3.1, 2.3.1

[ATTM94] AT&T Microelectronics, “ORCA FPGA Development System”,
EDA Software Documentation, Allentown 1994 2.2

[ATTM95] AT&T Microelectronics, “AT&T Field-Programmable Gate Ar-
rays”, Databook, Allentown 1995 2, 2.3.1

[BaCM92] Babba, B., Crastes, M., Saucier, G., “Input driven synthesis on
PLDs and PGAs”, Proc. EDAC 1992, pp. 48-52 2.7.3

177

Bibliography

[BaSe88a] Barth, R., Serlet, B., “A Structural Representation for VLSI De-
sign”, Proc. 25th DAC 1988, pp. 237-242

[BaSe88b] Barth. R., Serlet, B., Sindhu, P., “Parametrized Schematics”, Proc.
25th DAC 1988, pp. 243-249 3.1, 3.1.3, 3.2.3

[BaMS88c] Barth, R., Monier, L., Serlet, B., “PatchWork: Layout from
Schematic Annotations”, Proc. 25th DAC 1988, pp. 250-255 3.1.1

[Bart95] Barth, P., “A Davis-Putnam Based Enumeration Algorithm for
Linear Pseudo-Boolean Optimization”, Memo MPI-I-95-2-003,
Max-Planck-Institut für Informatik, Saarbrücken 1995 7.2, 7.2,
7.3.1, 7.3.1, 7.3.3

[Bart96] Barth, P., “Logic-Based 0-1 Constraint Programming”, Kluwer
1996 7.2, 7.3.1, 7.3.1, 8.1

[BeCo93] Benhamou, F., Colmerauer, A., “Constraint Logic Programming”,
MIT Press 1993 7.2

[BEKS95] Benner, T., Ernst, R., Könenkamp, I., Schüler, P., Schaub, H.-
C., “A Prototyping System for Verification and Evaluation in
Hardware-Software Cosynthesis”, Proc. 6th Int’l Workshop on
Rapid System Prototyping 1995 1

[BDRA93] Bolsens, I., DeWulf, R., Renaudin, M., Airiau, R., Betts, A., “Al-
ternative Implementations of SMILE using Cathedral & VHDL”,
Proc. 4th EUROCHIP 1993, pp. 248-253 3

[BeGr93] Ben Ammar, L., Greiner, A., “A High Density Datapath Compiler
Mixing Random Logic with Optimized Blocks”, Proc. EDAC 1993,
pp. 194-198 2.3.1, 3.1.1, 3.2.3

[BFRV92] Brown, S., Francis, R., Rose, J., Vranesic, Z., “Field-
Programmable Gate Arrays”, Kluwer 1992 2, 2, 2.3.1

[BhHi92] Bhat, N. B., Hill, D. D., “Routable Technology Mapping for LUT
FPGAs”, Proc. ICCD 1992, pp. 95-98

[Brow96] Brown, S., “FPGA Architectural Research: A Survey”, IEEE De-
sign & Test, Vol. 13, No. 4, 1996, pp. 9-15

[BrRo96] Brown, S., Rose, J., “FPGA and CPLD Architectures: A Tutorial”,
IEEE Design & Test, Vol.13, No. 2, 1996, pp. 42-57. 2

[Bode97] Bodenstein, M., “Anwendung und Optimierung eines
Plazierungssystems f"ur FPGAs basierend auf einem fuzzyges-
teuerten Genetischen Algorithmus”, Diploma Thesis, TU
Braunschweig, Abt. E.I.S., 1997 2.5, 4, 4.9, 4.9, 10

178

Bibliography

[Booc94] Booch, G., “Object-Oriented Analysis and Design with Applica-
tions, 2nd ed.”, Addison-Wesley 1994 3.3.7, 34

[BoSW90] Bower, W., Seaquist, C., Wolf, W., “A Framework for Industrial
Layout Generators”, Proc. 27th DAC 1990, pp. 419-424 3.1.3,
3.3.7, 3.3.7

[BrMR94] Brand, H.J., Müller, D., Rosenstiel, W., “Specification and Syn-
thesis of Complex Arithmetic Operators for FPGAs”, in Field Pro-
grammable Logic – Architectures, Synthesis and Applications, ed.
by Hartenstein R.W., Servits, M.Z., Springer 1994, pp. 78-88 2.4,
3.1, 3.1.2

[Bruc94] Bruch, C., “Entwurf und Aufbau eines Specialized Reduced In-
struction Set Computers (SRISC)”, Diploma Thesis, University of
Siegen, 1994 10, 8.5.1

[BuAK96] Buell, D.A., Arnold, J.M., Kleinfelder, W.J., “Splash 2 – FPGAs in
a Custom Computing Machine”, IEEE Computer Society Press,
1996 1, 2

[CGPP91] Compan, A., Greiner, A., Pecheux, F., Petrot, F., “GENVIEW:
A Portable Source-Level Desbugger for MacroCell Generators”,
Proc. ICCAD 1991, pp. 408-412 3.1.3

[ChCh93] Chih-Liang, E.C., Chin-Yen, H., “SEFOP: A Novel Approach to
Data Path Module Placement”, Proc. ICCAD 1993, pp. 178-181
2.2

[Chip97] Chip Express Inc., “QYH500 Specifications”,
http://www.chipexpress.com, Santa Clara 1997 2

[ChRo92] Chung, K., Rose, J., “TEMPT: Technology Mapping for the Ex-
ploration of FPGA Architectures with Hard-Wired Connections”,
Proc. 29th DAC 1992, pp. 361-367 3.3.7

[ChYu93] Chau-Shen, C., Yu-Wen, T., “Combining Technology Mapping and
Placement for Delay-Optimization in FPGA Designs”, Proc. IC-
CAD 1993, pp. 123-127

[CNSD90] Cai, H., Note, S., Six, P., DeMan, H., “A Data Path Layout Assem-
bler for High-Performance DSP Circuits”, Proc. 27th DAC 1990,
pp. 306-311 2.3.1

[CoDi94] Cong, J., Ding, Y., “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs”, IEEE Trans. on CAD, Vol. 13, No. 1, January 1994, pp.
1-12 6.5.1, 8.1

179

Bibliography

[CoDi96] Cong, J., Ding, Y., “Combinational Logic Synthesis for LUT-Based
Field Programmable Gate Arrays”, ACM Trans. on Design Au-
tomation of Electronic Systems, Vol. 1, No. 2, April 1996, pp. 145-
204 5, 6.5

[Cple94] CPLEX Optimization Inc., “Using the CPLEX Callable Library”,
User Manual, Incline Village (NV) 1994 7.3.2, 7.3.2, 8.1

[Cros94] Crosspoint Inc, “CP20K Field Programmable Gate Arrays”, Data-
book, Santa Clara 1994 2

[CuoL96] Cuong-Chan, V., Lewis, D.M., “Area-Speed Tradeoffs for Hierar-
chical Field-Programmable Gate Arrays”, Proc. FPGA 1996, pp.
51-57 2.3.1

[Demi94] DeMicheli, G., “Synthesis and Optimization of Digital Circuits”,
McGraw-Hill 1994

[DeNe87] Devadas, S., Newton, R.A., “Topological Optimization of Multiple-
Level Array Logic”, IEEE Trans. on CAD, Vol. 6, No. 11, Novem-
ber 1987, pp. 915-941 3.1.1

[Deo74] Deo, N., “Graph Theory with Applications to Engineering and
Computer Science”, Prentice-Hall 1974 5, 6.4

[Ditt95] Dittmer, J., “Parametrisierbare Modulgeneratoren für die FPGA-
Familie Xilinx XC4000: Arithmetik mit der Hard-Carry-Logik
und Speichermodule”, Diploma Thesis, TU Braunschweig, Abt.
E.I.S., July 1995 2.4, 4, 3.1.3, 3.3, 4.7.1, 4.7.4

[EbCF96] Ebeling, C., Cronquist, D.C., Franklin, P., “RaPiD – Reconfig-
urable Pipelined Datapath”, Proc. 6th FPL 1996, pp. 126-135 2

[EIA93] Electronics Industry Association (EIA), “Library of Parametrized
Modules (LPM)”, EIA/IS-103, May 1993 3

[EHBY96] Ernst, R., Henkel, J., Benner, T., Ye, W. Holtmann, U., Her-
rmann, D., Trawny, M., “The COSYMA Environment for Hard-
ware/Software Cosynthesis of Small Embedded Systems”, Micro-
processors and Microsystems, Vol. 20, No. 3, May 1996, pp. 159-
166 34

[EsKu96] Esbensen, H., Kuh, E.S., “EXPLORER: An Interactive Floorplan-
ner for Design Space Exploration”, Proc. EDAC 1996, pp. 356-361
2.5, 4.8

[Fiel95] Fields, C.A., “Proper Use of Hierarchy in HDL-Based High Den-
sity FPGA Design”, in Field-Programmable Logic and Applica-
tions, Proc. 5th FPL 1995, ed. by Moore, W., Luk, W., Springer
1996, pp. 168-177

180

Bibliography

[Frost93] Frost, R., “EBSA C Library Documentation”, User Manual, San
Diego Super Computing Center (SDSC) 1993 7.4.2, 8.1

[GDWL92] Gajski, D., Dutt, N., Wu, A., Lin, S., “High Level Synthesis”,
Kluwer 1992 34

[GHJV95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Pat-
terns”, Addison-Wesley 1995 3.3.7, 34

[Glad97] Glad, M, “GNU crypt 2.0.4”, ftp://ftp.ifi.uio.no/pub/gnu/glibc-
crypt-2.0.4.tar.gz, 1997 8.4.1

[Gold89] Goldberg, D.E., “Genetic Algorithms in Search, Optimization and
Machine Learning”, Addison-Wesley 1989 2.5, 4

[GrPe97] Greiner, A., Pêcheux, F., “ALLIANCE: A com-
plete set of CAD tools for teaching VLSI design”,
ftp://ftp.ibp.fr/ibp/softs/masi/alliance/OVERVIEW.ps, 1996
2.3.1, 7

[GrSt94] Groeneveld, P., Stravers, P., “Ocean: the sea-of-gates design sys-
tem”, http://cas.et.tudelft.nl/software/ocean/ocean.html, 1994
2.3.1

[GuSm86] Gu, J., Smith, K.F., “KD2: An Intelligent Circuit Module Genera-
tor”, Proc. ICCD 1986, pp. 470-475 3.1.1

[HEHB94] Henkel, J., Ernst, R., Holtmann, U., Benner, T., “Adaptation of
Partitioning and High-Level Synthesis in Hardware/Software Co-
Synthesis”, Proc. ICCAD 1994, pp. 96-100 34

[Holt93] Holtmann, U., “High-Level Synthese mit BSS für den Einsatz im
Hardware/Software Co-Design”, Proc. 6th. E.I.S., Workshop 1993,
pp. 208-217 34

[HiSi88] Hirsch, M., Siewiorek, D., “Automatically Extracting Structure
from a Logical Design”, Proc. ICCAD 1988, pp. 456-459

[Hwan79] Hwang, K., “Computer Arithmetic”, Wiley & Sons 1979, p. 121
8.3.1

[IsYo87] Ishikawa, M., Yoshimura, T., “A New Module Generator with
Structural Routers and a Graphical Interface”, Proc. ICCAD
1987, pp. 436-439 3.1.1

[King84] Kingsley, C., “A Hierarchical, Error-Tolerant Compactor”, Proc.
21st DAC 1984, pp. 126-132 3.1.1

[KoCS90] Kong, J., Chan, P.K., Schlag, M., “EQN2XNF”, Manual Page, UC
Santa Cruz, Computer Engineering, 1990 30, 8.1

181

Bibliography

[KoGo94] Koch, A., Golze, U., “A Universal Co-Processor for Workstations”
in More FPGAs, ed. by Moore, W., Luk,W., Oxford 1994, pp. 317-
328 2, 2.3.2

[Koch96a] Koch, A., “Structured Design Implementation - A Strategy for
Implementing Regular Datapaths on FPGAs”, Proc. 4th Interna-
tional Symposium on FPGAs 1996, pp. 151-157 32

[Koch96b] Koch, A., “Module Compaction in FPGA-based Regular Data-
paths”, Proc. 33rd DAC 1996, p. 471-476 6, 32

[Koch97a] Koch, A., “Objekt-orientierte Modellierung von hybriden
Hardware-Software-Systemen am Beispiel des “European
Home System” (EHS) Standards”, Proc. 8. E.I.S. Workshop 1997,
pp. 204-212 34

[Koch97b] Koch, A., “Practical Experiences with the SPARXIL Co-
Processor”, 31st Asilomar Conference on Signals, Systems, and
Computers, 1997 2

[Law85] Law, H.S., et al., “An Intelligent Composition Tools for Regular
and Semi-Regular VLSI Structures”, Proc. ICCAD 1985, pp. 169-
171 3.1.1

[Law96] Lawrence, A.E., “Macro Support for Xilinx Architecture”,
Draft, ftp://ftp.ox.ac.uk/pub/users/adrian/xmacros.ps.gz, Ox-
ford Hardware Compilation Group 1996 3.1.2, 3.1.3, 3.3.5

[LeWE96] Legl, C., Worth, B., Eckl, K., “A Boolean Approach to
Performance-Directed Technology Mapping for LUT-Based FPGA
Designs”, Proc. 33rd DAC 1996, p. 730-733 6.5.1, 8.1

[Leng86] Lengauer, T., “Exploiting Hierarchy in VLSI Design”, Proc.
Aegean Workshop on Computing, LNCS Vol. 227, Springer 1986
2.2, 20

[Leng90] Lengauer, T., “Combinatorial Algorithms for Integrated Circuit
Layout”, Wiley-Teubner 1990 5

[LeTa93] Lee, M.A., Takagi, H., “Dynamic Control of Genetic Algorithms
using Fuzzy Logic Techniques”, Proc. 5th ICGA 1993, pp. 76-83

[Lin97] Lin, Y.-L., “Recent Developments in High-Level Synthesis”, ACM
Trans. on Design Automation of Electronic Systems, Vol. 2, No. 1,
January 1997, pp. 2-21 34

[LuDS95] Lu, A., Dagless, E., Saul, J., “DART: Delay and Routability Driven
Technology Mapping for LUT Based FPGAs”, Proc. ICCD 1995,
pp. 409-414

182

Bibliography

[Marp90] Marple, D., “A Hierarchy Preserving Hierarchical Compactor”,
Proc. 27th DAC 1990, pp. 375-381 2.6.5

[MaJO96] Marnane, W.P., Jordan, C.N., O’Reilly, F.J., “Compiling Regular
Arrays onto FPGAs”, in Field-Programmable Logic and Applica-
tions, Proc. 5th FPL 1995, ed. by Moore, W., Luk, W., Springer
1996, pp. 179-187 3.1.3, 3.1.3, 3.2.1, 3.3.5

[MaWa90] Matsumoto, N., Watanabe, Y., et al., “Datapath Generator Based
on Gate-Level Symbolic Layout”, Proc. 27th DAC 1990, pp. 388-
393 3.1.1

[Maye72] Mayeda, W., “Graph Theory”, Wiley 1972 5

[McWi78] McWilliams, T.M., Widdoes, L.C., “SCALD: Structured Computer-
Aided Logic Design”, Proc. 15th DAC 1978, pp. 271-277 3

[Meye97] Meyer, K., “Entwurf eines FPGA-basierten Co-Prozessors zur
Objekt-Etikettierung in der Bilderkennung”, Diploma Thesis, TU
Braunschweig, Abt. E.I.S., 1997 2

[MSBS91a] Murgai, R., Shenoy, N., Brayton, R.K., Sangiovanni-Vincentelli,
A., “Performance Directed Synthesis for Table Look Up Program-
mable Gate Arrays”, Proc. ICCAD 1991, pp. 572-575 8.1

[MSBS91b] Murgai, R., Shenoy, N., Brayton, R.K., Sangiovanni-Vincentelli,
A., “Improved Logic Synthesis Algorithms for Table Look Up Ar-
chitectures”, Proc. ICCAD 1991, pp. 564-567 2.7.3

[Murg93] Murgai, R., “Logic Synthesis for Field-Programmable Gate Ar-
rays”, Ph.D. Thesis, UC Berkeley 1993 3.3.7

[MuBS95] Murgai, R., Brayton, K., Sangiovanni-Vincentelli, A., “Logic Syn-
thesis for Field-Programmable Gate Arrays”, Kluwer 1995 5, 6.5

[Mukh86] Mukherjee, A., “Introduction to nMOS & CMOS VLSI Systems
Design”, Prentice Hall 1986

[NaBK95] Naseer, A.R., Balakrishnan, M., Kumar, A., “Delay Minimal
Mapping of RTL Structures onto LUT Based FPGAs”, in Field-
Programmable Logic and Applications, Proc. 5th FPL 1995, ed.
by Moore, W., Luk, W., Springer 1996, pp. 139-146 2.2

[NaKK94] Nauk, D., Klawonn, F., Kruse, R., “Neuronale Netze und Fuzzy-
Systeme”, Vieweg 1994 2.5

[NZKK94] Noffz, K-H., Zoz, R., Kugel, A., Klefenz, A., Männer, R., “Die En-
able Machine – Ein Echtzeitmustererkennungssystem auf FPGA-
Basis”, Proc. GI/ITG Workshop “Architekturen für hochintegrierte
Schaltungen” 1994, ed. Hartmut Schmeck, Universität Karlsruhe
(AIFB), Report 303, pp. 67-69 1

183

Bibliography

[OdHN87] Odawara, G., Hiraide, T., Nishina, O., “Partitioning and Place-
ment Technique for CMOS Gate Arrays”, IEEE Trans. on CAD,
Vol. CAD-6, No. 3, May 1987, pp. 355-363 2.2

[Omon94] Omondi, A.R., “Computer Arithmetic Systems”, Prentice-Hall
1994, p. 154 3.2.1

[Page95] Page, I., “Constructing Hardware-Software Systems from a
Single Description”, submitted to VLSI Signal Processing,
ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Ian.Page/hwsw.ps.gz,
July 1995 3.1.2

[Pmel96] Pilkington Micro-electronics Ltd., “Pilkington FPGA Preliminary
Data”, Data Sheet, Northwich Cheshire 1995 2.3.1

[PBLS91] Pangrle, B.M., Brewer, F.D., Lobo, D.A., Seawright, A., “Relevant
Issues in High-Level Connectitvity Synthesis”, Proc. 28th DAC
1991, pp. 607-610 3.3.6

[Putz95a] Putzer, H., “Ein fuzzy-gesteuerter Genetischer Algorithmus
mit Anwendungsmöglichkeiten auf das Plazierungsproblem bei
FPGA-Chips”, Diploma Thesis, TU Braunschweig, Abt. E.I.S.,
1995 2.2, 2.5, 4

[Putz95b] Putzer, H., “Ein Fuzzy-Gesteuerter Genetischer Algorithmus
mit Anwendungsmöglichkeiten auf das Plazierungsproblem bei
FPGA-Chips”, 7. E.I.S. Workshop 1995, pp. 265-269

[Qds96a] Quickturn Design Systems Inc, “Hughes Relies on
Emulation To Verify New Telecommunications Ar-
chitecture: billions of vectors emulated in minutes”,
http://www.quickturn.com/prod/success/hughes.htm, Moun-
tain View 1996 1, 1, 1

[Qds96b] Quickturn Design Systems Inc, “Quickturn Emulator Dramat-
ically Cuts Debug Time for New Sun Microsystems’ Proces-
sor”, http://www.quickturn.com/prod/success/Sun.htm, Moun-
tain View 1996 1, 1

[Qds96c] Quickturn Design Systems Inc, “System Real-
izer Family of Modular Emulation Systems”,
http://www.quickturn.com/prod/realizer/realizer.htm, Moun-
tain View 1996 1

[Quic95] QuickLogic Corp., “pASIC2 FPGA Family Technology White Pa-
per”, Tech Report, Santa Clara 1995 2.3.1

[Raba85] Rabaey, J.M. et al., “An integrated automated layout generation
system for DSP circuits”, IEEE Trans. on CAD, Vol. 4, No. 7, July
1985, pp. 285-296 2.3.1, 7

184

Bibliography

[RoSe96] Roy, K., Sechen, C., “A Timing-Driven Partitioning System for
Multiple FPGAs”, VLSI design, Vol. 4, No. 4, 1996, pp. 309-328

[RuPS91] Ruppeiner, G., Pedersen, J.M., Salamon, P., “Ensemble approach
to simulated annealing”, Journal de Physique I, 1 (1991), pp. 455-
470 10, 7.4.1, 7.4.3, 8.1

[SaCh94] Saab, Y., Cheng-Hua Chen, “An Effective Solution to the Linear
Placement Problem”, VLSI Design, Vol. 2, No. 2, pp. 117-129 2.5,
10

[Sade95] Sadewasser, H., “Parametrisierbare Modulgeneratoren für die
FPGA-Familie Xilinx XC4000: Logikfunktionen Schieberegister
und Multiplizierer”, Diploma Thesis, TU Braunschweig, Abt.
E.I.S., July 1995 2.4, 4, 3.1.3, 3.3, 4.7.1, 4.7.4

[ScKC94] Schlag, M., Kong, J., Chan, P.K., “Routability-Driven Technology
Mapping for Lookup Table-Based FPGA’s”, IEEE Trans. on CAD,
Vol. 13, No. 1, January 1994, pp. 13-26 34

[SeSa85] Sechen, C., Sangiovanni-Vincentelli, A. “The TimberWolf place-
ment and routing package”, IEEE J. Solid-State Circuits, SC-
20(2), pp. 510-522, 1985

[Sent92] Sentovich, E.M. et al., “SIS: A System for Sequential Circuit Syn-
thesis”, Electr. Res. Lab. Memo No. UCB/ERL M92/41, Dept. of
EE and CS, UC Berkeley 4 May 1992 3.3.7, 6.5.1, 8.1, 8.4.1

[ShBh96] Shi, J., Bhatia, D., “Macro Block Based FPGA Floorplanning”,
submitted for Proc. ICCD 1996

[Sher95] Sherwani, N., “Algorithms for VLSI Physical Design Automation,
2nd ed.”, Kluwer 1995 5

[Shro82] Shrobe, H.E., “The data path generator”, Proc. Conf. on Adv. Re-
search in VLSI 1982, pp. 175-181 2.3.1

[Shun89] Shung, C.S. et al., “An Integrated CAD System for Algorithm-
Specific IC Design”, Proc. Intl. Conf. on System Design 1989

[SrPa94] Srinivas, M., Patnaik, L.M., “Genetic Algorithms: A Survey”,
IEEE COMPUTER, June 1994, pp. 17-26 4

[Sung83] Sungho Kang, “Linear Ordering and Application to Placement”,
Proc. 20th DAC 1983, pp. 457-464 2.5

[Syno96a] Synopsys Inc., “Design Compiler Reference Manual”, EDA Soft-
ware Documentation, Mountain View 1996 6.5.1, 8.1, 34

[Syno96b] Synopsys Inc., “DesignWare Developer Guide”, EDA Software
Documentation, Mountain View 1996 34

185

Bibliography

[SYYH92] Suzuki, G., Yamamoto, T., Yuyama, K., Hirasawa, K., “MOSAIC:
A Tile-Based Datapath Layout Generator”, Proc. ICCAD 1992, pp.
166-169 3.1.1

[Texa97] Texas Instruments Corp., “TGC6000 Gate Array Specification”,
http://www.ti.com/sc/docs/asic/gate/tgc6000.htm, 1997 2

[View94a] Viewlogic Systems Inc., “Using Powerview”, EDA Software Docu-
mentation, Marlboro 1994 30, 8.1

[View94b] Viewlogic Systems Inc., “Viewgen Reference Manual”, EDA Soft-
ware Documentation, Marlboro 1994 30, 8.1

[Will93] Williams, H.P., “Model Building in Mathematical Programming”,
Wiley 1993 7.2, 26, 7.3.2

[Xili94a] Xilinx Inc., “X-BLOX User Guide”, EDA Software Documentation,
San Jose 1994 2.4, 3.1.2, 3.1.3, 8.1, 8.5.2

[Xili94b] Xilinx Inc., “XACT Reference Guide, Vol. I: XACT Performance”,
EDA Software Documentation, San Jose 1994 8.1

[Xili94c] Xilinx Inc., “XACT Reference Guide, Vol. II: PPR”, EDA Software
Documentation, San Jose 1994 2.8, 3.1.2, 8.1

[Xili94d] Xilinx Inc., “XACT Reference Guide, Vol. III: XDELAY”, EDA
Software Documentation, San Jose 1994 8.1

[Xili94e] Xilinx Inc., “The Programmable Logic Data Book, 2nd ed.”, Data-
book, San Jose 1994 4.7.1

[Xili94f] Xilinx Inc., “XACT Xilinx Synopsys Interface FPGA User Guide”,
EDA Software Documentation, San Jose 1994 8.1, 8.5.2

[Xili95a] Xilinx Inc., “Xilinx Netlist Format (XNF) Specification”, EDA
Software Documentation, San Jose 1995 30

[Xili95b] Xilinx Inc., “Viewlogic Interface Guide”, EDA Software Documen-
tation, San Jose 1995 30, 8.1

[Xili96a] Xilinx Inc., “XC5200 Field Programmable Gate Arrays, Version
4.01”, Datasheet, San Jose 1996 2, 2.7.3

[Xili96b] Xilinx Inc., “XC6200 Field Programmable Gate Arrays, Version
1.0”, Datasheet, San Jose 1996 2, 2.3.1, 2.7.3

[Xili96c] Xilinx Inc., “XC4000 Field Programmable Gate Arrays”,
Datasheet, San Jose 1996 2

[Xili96d] Xilinx Inc., “FPGAs Go Down Under in an ISDN Terminal
Adapter”, XCELL, No. 21, pp. 6-7, San Jose 1996 1

186

Bibliography

[Xili97] Xilinx Inc., “The Future of FPGAs”, White Paper, San Jose 1997
2, 1

[YuWY93] Yu-Wen, T., Wu, A.C.H, Youn-Long, L., “A Cell Placement Pro-
cedure That Utilizes Circuit Structural Properties”, Proc. EDAC
1993, pp. 189-193 2.2

187

Abbreviations

ALU Arithmetic-Logic Unit

ASIC Application-Specific Integrated
Circuit

BPC Bits-Per-CLB

BPLB Bits-Per-Logic Block

CAD Computer Aided Design

CLB Configurable Logic Block

CPU Central Processing Unit

DNA Deoxyribonucleic Acid

DSP Digital Signal Processor

EBSA Ensemble-Based Simulated
Annealing

ECO Engineering Change Order

EDA Electronic Design Automation

EDIF Electronic Design Interchange
Format

EEPROM Electrically Erasable Read-
Only Memory

EPROM Erasable Programmable Read-
Only Memory

FCCM Field-Programmable Custom
Computing Machine

FF Flipflop

FPGA Field-Programmable Gate Ar-
ray

GA Genetic Algorithm

GAL Generic Array Logic

HDL Hardware Description Language

HLL Horizontal Long Line

HZ H-Zone

ILP Integer Linear Program

IOB Input/Output Block

LB Logic Block

LCA Logic Cell Array

LPGA Laser-Programmable Gate Ar-
ray

LPM Library of Parametrized Macros

LSB Least-Significant Bit

LUT Lookup Table

MIS Multilevel Interactive Synthe-
sis

mmS Merged Master-Slice

MPGA Mask-Programmable Gate
Array

MS Master Slice

MSB Most-Significant Bit

MSC Master-Slice Candidate

NRE Non-Recurring Engineering

omS Optimized Master-Slice

OPBDP Optimization by Pseudo-Boolean
Davis-Putnam enumeration

188

Abbreviations

PAL Programmable Array Logic

PCB Printed Circuit Board

PE Processing Element

PGA Programmable Gate Array

PI Primary Input

PIP Programmable Interconnection
Point

PLA Programmable Logic Array

PLD Programmable Logic Device

PO Primary Output

PPR Partition Place Route

PROM Programmable Read-Only Mem-
ory

RAM Random-Access Memory

RISC Reduced Instruction Set Com-
puter

RLCA Relocatable Logic Cell Array

RLOC Relative Location Constraint

rMSC Raw Master-Slice Candidate

ROM Read-Only Memory

RPM Relationally Placed Macro

RTL Register-Transfer Logic

SA Simulated Annealing

SDI Structured Design Implemen-
tation

SIS Sequential Interactive Synthe-
sis

SM Switch Matrix

SNF Simple Netlist Format

SPARC Scalable Processor Architec-
ture

SPLD Simple Programmable Logic
Device

SRAM Static Random-Access Mem-
ory

TBUF Tristate Buffer

TOS-TUM Technology Oriented Syn-
thesis - Tech. Univ. Munich

TTN Two-Terminal Net

UI Unit Input

UO Unit Output

VHDL Very High-Speed Integrated
Circuit Hardware Description
Language

VLL Vertical Long Line

VZ V-Zone

XNF Xilinx Netlist Format

189

