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Abstract

This paper examines the use of compact FPGA-based
configurable processors as an alternative to ever-higher
powered general purpose CPUs. It describes sample ap-
plications in which even a very simple configurable proces-
sor outperforms all but very fast general purpose CPUs.
Performance data is given for DES encryption, labeling ob-
jects in black-and-white images, and LZW decompression.
In particular, the design of the labeling co-processor is pre-
sented.

1. Introduction

In the quest for ever more computation capacity, popular
solutions include faster general-purpose CPUs, and faster
special-purpose processing units (DSPs, specialized multi-
media processors, etc.). Both of these approaches share a
fixed internal architecture, and are manipulated solely by
software.

Another, still somewhat exotic alternative is to employ a
reconfigurable processor having a completely flexible inter-
nal architecture that can be finely adapted to each problem.
Such a processor can be realized using Field Programmable
Gate Arrays (FPGAs), a class of chips that allow the com-
position of arbitrary digital circuits from basic logic cells at
runtime. An algorithm for a configurable processor thus
consists of a mix of hardware (the internal architecture)
and software (driver programs or programs executing on the
specialized architecture).

2. SPARXIL architecture

Many configurable processors employ dozens of FP-
GAs to hold large circuits, and rely on massively paral-
lel processing. While these systems achieve very impres-
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sive computational power (even when compared to super-
computers) for algorithms like DNA matching and finger-
print analysis [1], they are often not economical for wide-
spread deployment.

Our SPARXIL architecture for a configurable co-
processor was developed with slightly different aims: It
should consist only of few FPGAs, and dispense with
the expensive programmable routing network that is often
found in the larger systems. However, it should still be
able to efficiently and flexibly support the acceleration of
algorithms over conventional processors. The following is
a brief overview over the architecture, [2] offers a more de-
tailed perspective on the individual design decisions faced.

2.1. Data and address operations

SPARXIL consists only of three Xilinx XC4010 FPGAs,
and two 256k x 32-bit memory banks (Figure 1). This
FPGA type can hold up to 7k-20k gate equivalents, which
are partitioned into 400 configurable logic blocks (CLB).
Since the XC4010 (which was among the largest FPGAs
available in 1993) has I/O capacity for only one regular
32-bit data path, we assigned the invidual chips to specific
tasks: Each of the memory banks has a dedicated FPGA
as address generator (A-FPGA). The data busses of both
memories are connected to the third FPGA, which operates
as data processing unit (D-FPGA). Each A-FPGA can ac-
cess the data bus of its memory, and also the D-FPGA, but
only the centrally placed D-FPGA has simultaneous access
to the data in both memory banks.

This allows us to implement the required wide data path
in the D-FPGA, and shift all addressing logic to the two
A-FPGAs containing data paths for address manipulation.
Since we now have dedicated chips for address operations,
we can easily implement complex address generators offer-
ing, for example, fast indirect addressing and address arith-
metic capable of increment/decrement and scaled indexed
addressing as well as the generation of non-linear address
sequences. The latter can be especially helpful for the effi-
cient implementation of certain matrix operations [3].
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Figure 1. SPARXIL architecture

2.2. Inter-FPGA communication

A dedicated set of 20 control lines each allow the com-
munication between the A-FPGAs and the D-FPGA. These
control lines are used to implement user defined commu-
nication protocols between D- and A-FPGA suited to the
currently running circuit. As long as the communication
between D- and A-FPGAs uses only the dedicated control
lines, and no indirect addressing takes place, the data bus is
available to transfer information between the RAM and the
main data path in the D-FPGA.

If the number of control lines is insufficient, the data
busses may be employed for A- to D-FPGA signaling. In
general, this prevents memory operations during such a con-
trol information transfer, but SPARXIL allows a compro-
mise: If the full 32-bits of the memories are not needed for
a specific application, the unused data bits may be used as
control bits without hindering 16- or 8-bit memory opera-
tions.

2.3. Host interface

SPARXIL attaches to a host workstation. User software
transfers data to and from the co-processor by advising the
host memory management unit (MMU) to map the card on-
board RAM into the user process’ virtual memory space,
allowing the user to access card RAM without regard to
its physical location. Since all accesses are still supervised
by the MMU and operating system, the memory protection
remains inviolate. Thus, algorithms executing on the co-
processor cannot bypass system security measures.

2.4. Automatic reconfiguration

While SPARXIL can cache four entire co-processor con-
figurations on-board, and initiate a reconfiguration with-
out host intervention, this feature has not been used in any
application to date (all fit in a single configuration each).
Furthermore, the need to preserve the FPGA-internal states
in the memory banks, and the slow reconfiguration speed

of roughly 70ms, make this operation less useful practi-
cally than initially conceived. The later constraint could be
lifted by the use of more recent FPGAs (such as the Xilinx
XC6200 series [4]), which allow reconfiguration up to 1000
times as fast [5].

3. Sample applications

In order to evaluate the efficiency of this architecture,
we are in the process of implementing various sample de-
signs, some of which will be discussed in the next sec-
tions. Since SPARXIL is based on 1993’s technology
(Xilinx XC4010PG191-5 FPGAs), performance data will
also be given for a hypothetical implementation using the
faster XC4010EPG191-1 speedgrade currently available.
Furthermore, note that with todays’ technology, a single
XC4036XL FPGA already has more gate capacity than the
entire co-processor, and a single state-of-the-art XC4085XL
chip would more than double SPARXIL’s capacity.

4. Simple DES encryption

Our first trial circuit is a naive implementation of Ultra-
FastCrypt (UFC) [6], a software version of DES. The UFC
processor is a direct mapping of the algorithm to hardware,
no pipelining or other architectural optimizations have been
performed.

Profiling discovered that the algorithm spends 84.9% of
its execution time in a single function that is suitable for
implementation on SPARXIL hardware. The function op-
erates on five lookup tables, needs complex addressing and
contains tight inner loops handling 32 bit wide data.

It fits the SPARXIL architecture quite well: Due to the
reliance of UFC on fast table lookups (precomputed values
for S-box usage), the tables can be distributed over both
memory banks to allow two parallel memory accesses per
clock cycle. Each of the A-FPGAs contains an address gen-
erator that indexes the lookup tables. The two data words
obtained in this manner are then combined in the center D-
FPGA by the XOR-operation typical for DES. Due to the



Platform @MHz �s %SPARXIL-1 speed
SPARXIL-5 16.5 188 49%
SPARXIL-1 34.6 90 100%
SPARC 25 1110 8%
SuperSPARC 85 282 32%
UltraSPARC-II 296 68 132%

Figure 2. DES performance

very simple control flow (only nested loops), each FPGA
contains a local controller without any inter-FPGA com-
munication. The circuit was entered in schematic entry.
When mapped, both address generators (symmetrical) use
137 CLBs each, the data path uses 198 CLBs.

The performance of the circuit is shown in Figure 2.
Note that only the very recent UltraSPARC-II CPU beats
even this trivial SPARXIL design.

5. Labeling objects in B/W images

Our next project was more ambitious: We designed a co-
processor for the recognition and labeling of objects (con-
tiguous regions of adjacent pixels) in black-and-white im-
ages, a task commonly occurring in computer vision appli-
cations (e.g., in robotics). The algorithm implemented is
based on [7]. A more detailed description of the circuit in-
cluding Verilog source code can be found in [8].

5.1. Algorithm
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Figure 3. Sample input image

The algorithm expects as input a monochrome image
composed of 16-bit pixels. The value ‘1’ marks a set fore-
ground pixel, ‘0’ indicates a blank background pixel (Figure
3). The entire object labeling proceeds in three phases:

1. Pixel labeling (or just labeling). Here, we aim to label
adjacentpixels by assigning them the same object ID.
To this end, we scan an operator window (Figure 4)

PP0

P1P3 P2

Operator Window New Pixel

New Neighbour

Figure 4. Operator window

from left to right, and top to bottom, across the image.
Whenever we find a new solitary pixel at the centerP
of the operator window, we assign it a new object ID
i, and make an entrym[i] = i in the mapping table.
If we find multiple adjacent pixels in the window, we
assign the current pixelP the minimum object IDj of
all already labeled pixels in the window. We remem-
ber the previous (larger) object IDsk of the already
labeled pixels together with the new (smaller) valuej

of P in a mapping table asm[k] = j to discover tran-
sitive adjacency relations later. Applied to the sample
input image in Figure 3, this yields the pixel labeling
shown in Figure 5, and the mapping table in Figure 6.
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Figure 5. Pixel labeled input image

2. Transitive flattening. In this phase, we flatten each
entry in the mapping table into its smallest transitively

Object ID Adjacent to
1 1
2 1
3 2
4 4

Figure 6. Mapping table after pixel labeling



Object ID Adjacent to
1 1
2 1
3 1
4 4

Figure 7. Flattened mapping table

reachable object ID (Figure 6). For the example, this
creates the flattened mapping table of Figure 7.

3. Object merging. Finally, we use the flattened map-
ping table to merge object segments that were transi-
tively adjacent into single objects, assigning them the
smallest object ID found during flattening (Figure 8).
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Figure 8. Merged object segments using flat-
tened mapping table

As output, the image has been labeled in-place: Each of
the 16-bit words now contains the object number this pixel
belongs to. Furthermore, the number of labeled objects can
be determined by reading the mapping tablem and counting
the number of entries withm[i] = i (in the example, 2).

5.2. Hardware implementation

In order to exploit the parallelism inherent in the algo-
rithm, and to allow efficient pipelining, the following parti-
tioning was chosen: The image is held in the left memory
bank, while the mapping table occupies the right one. This
assignment allows the pipelined schedule shown in Figure
9 for pixel labeling. The flattening and merging phases do
not profit from the separate memories, their schedules are
simply sequential.

5.3. Design flow

A C implementation of the algorithm was used for refer-
ence during the entire design cycle. Next, an RTL Verilog
model was composed. It describes the fundamental units of

R-RAMInternalL-RAM

OP6: test pixel

OP9: write label

OP2: test neighbour

OP3: read label

OP8: write pixel

OP4: test label

OP7: new label

OP1: read neighbour

OP3: read label

OP5: read pixel

OP2: test neighbour

OP1: read neighbour

OP8: write pixel

OP4: test label

OP9: write label

OP3: read label

OP3: read label

P
ix

el
 la

be
lin

g
F

la
tte

ni
ng

O
bj

ec
t m

er
gi

ng

Figure 9. Schedules

the design , and was used to test the pipelining and memory
access schemes.

This model was then refined by considering the actual
SPARXIL architecture: The functionality is now distrib-
uted over the D- and A-FPGAs: The logic dealing with
the image has been put in the left A-FPGA, while the logic
dealing with the mapping table is implemented in the right
A-FPGA. This assignment puts logic close to the data it
processes (Figure 10). In this design, the number of inter-
FPGA signals exceeded the number of control lines. But,
since all data processed is only 16 bits wide, the unused
part of the 32-bit inter-FPGA data busses were available for
increased control bandwidth.

Between each design phase, the models were verified
against each other, and the C reference. The second model
(written in a style amenable to synthesis) was then submit-
ted to the Synopsys FPGA Compiler for implementation.
The resulting netlist was placed and routed by the Xilinx
XACT tool suite. Post-layout simulations against the sec-
ond Verilog model demonstrated the correct operation of
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Figure 10. Hardware architecture

the entire circuit. The complete design uses 185 CLBs in
the left A-FPGA, 344 CLBs in the D-FPGA, and 124 CLBs
in the right A-FPGA.

The performance data for the labeling problem is shown
in Figure 11. The more intricate hardware design bears
fruit, in that even a 1993’s SPARXIL-5 easily beats even
a state-of-the-art CPU.

6. Further examples

We are currently in the process of implementing co-
processor designs for LZW decompression (promising pre-
liminary performance data in Figure 12), and an accelerator
for the TIERRA [9] artificial life simulator.

7. Conclusion

SPARXIL demonstrates that even simple FPGA-based
reconfigurable processors can offer considerable speedups
over conventional CPUs. When high-performance compu-
tation without the inflexibility of custom silicon is required,
it might be worthwhile to consider an economical FPGA-
based co-processor implementing problem-specific archi-
tectures, instead of a more expensive standard CPU with
hardwired internals.
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Platform @MHz ms %SPARXIL-1 speed
SPARXIL-5 10.9 74 43%
SPARXIL-1 25.2 32 100%
SPARC 25.0 3044 1%
SuperSPARC 85.0 480 8%
UltraSPARC-II 296.0 151 21%

Figure 11. Object labeling performance

Platform @MHz ms %SPARXIL-1 speed
SPARXIL-5 9.5 492 67%
SPARXIL-1 14.2 329 100%
SPARC 25.0 5151 6%
SuperSPARC 85.0 1012 33%
UltraSPARC-II 296.0 266 124%

Figure 12. LZW decompression performance


