
User-friendly FPGA Design with an Improved
Cadence Opus - Xilinx XACT Interface

Andreas Koch

Technical University Braunschweig

Abteilung Entwurf integrierter Schaltungen (E.I.S.)

Gaußstr. 11, D-38106 Braunschweig, Germany

e-mail: koch@eis.cs.tu-bs.de

Abstract

This paper reports on various means to better integrate the Xilinx kit for FPGA design with

the Cadence Opus framework. Weaknesses of the original implementation are exposed and

methods to remedy them are suggested. The result is a system which presents similar user

interfaces and standardizes procedures both for standard-cell based (e.g.. ES2) as well as

FPGA designs. This simplifies the creation of exercises and tutorial materials for both

environments

1 Introduction

When version 9301 of Cadence Opus with support

for Xilinx FPGAs was delivered, we were looking

forward to a marked increase in productivity and

easier to use student labs, compared to our previous

PC-based FPGA CAD system. We were aiming at

the integration of the FPGA labs with the traditional

semi-custom design labs using Opus. However, our

expectations were not met, since the different sub-

systems failed to co-operate smoothly:

• The simulator, as delivered, was incompatible

with the new licensing scheme and was lacking

crucial features available in the previous version.

• The Xilinx design kit presented a user interface

completely different from the standard Opus GUI,

making the creation of comprehensive tutorials for

students exposed to both semi-custom and FPGA-

based design more difficult. Furthermore, the new

interface was non-intuitive and error-prone, render-

ing it unsuitable for novice users.

• Features which had become cornerstones both for

education and research applications, such as STL

test pattern generation and combined simulation of

schematic and functional views, were unavailable

with the FPGA design kit.

Initial experiments with the most recent release of

Cadence, 9401, suggest that the situation has not

changed appreciably.

Thus, the following recount of our attempt

to improve the integration of the FPGA design kit

with the Opus framework 9301 might be helpful for

others dissatisfied with the current state of the sys-

tem.

2 Setting-up Verilog-XL

Verilog simulation initially did not work at all,

since the 9301 version of Verilog already used the

FlexLM licensing scheme, but was still called from

the interface with the older passcode-file options.

This was easily corrected by removing the option

from all command invocations.

Furthermore, the Verilog provided on the

9301 CD did not contain the Simulation History

Manager (SHM), used for communicating with

other CAD tools (like waveform display and

schematic monitors). In order to build a new ver-

sion of Verilog with SHM, it was necessary to em-

ploy the SHM object file from the previous Verilog

version, since an update was not provided on the

9301 CD, either. Despite these version disparities,

the simulator works fine with the SHM features

added on.

3 Revising the User Interface

The user interface presented during the Opus-Xil-

inx operations consisted of xterm windows pop-

ping up and prompting the user for manual com-

mand input. This was non-intuitive and error-prone,

rendering it unsuitable for novice users.

Instead of running non-interactive com-

mands externally in xterm windows, we now run

the required commands from inside Opus as a hi-

BatchProcess , showing their output in Opus

view windows. Apart from the better visual inte-

gration, this has the advantage that the user can

now use menu commands to manipulate the win-

dow and its contents. For example, the user can use

the mouse and menu-commands to read a log file

reporting on the results of the step just executed.

For interactive operations, like the functional

or timing simulation of a circuit using Verilog, we

run the program using hiBeginProcess encap-

sulated in an Opus Window created with hiEn-

cap . User commands entered in the window are

transmitted to the simulator using h i -

WriteChild , output from the program is dis-

played using hiSetEncapHistory .

4 Unlocking the Power of ISE

While the preceding modifications lead to a func-

tional and usable environment, simulation using the

Xilinx design kit was still markedly different from

other design kits (e.g.. ES2). Even the revised sim-

ulation procedure did not make use of the capabili-

ties provided by the Cadence Interactive Simulation

Environment (ISE) such as STL, simulation history

data, simulation display using cWaves or schematic

monitors and a fully encapsulated Verilog with

complete menu controls. Furthermore, additional

features like circuit hierarchy browsers also make

use of ISE-generated data and thus also remained

unavailable.

However, establishing a complete and stable

ISE binding for simulation of Xilinx-based circuits

proved more difficult than initially expected.

4.1 Modifications to the Verilog Models

First, in order for ISE to find the existing simula-

tion models of the Xilinx library, a new symbolic

link has to be established. The next step is the

transformation of the file and module names of the

models to be consistent with their symbol names

inside the schematic editor Composer. This can

easily be accomplished by a short perl program

which strips the _[34]K suffix from the names

and folds them into lower case.

4.2 Modifications to the Composer Symbols

Now that the simulation models can be found by

ISE, the next problems develop: The symbols in-

side Composer have their input ports labelled 1, 2,

3, ... but the simulation models use equivalent

names A, B, C, ... This causes errors during compi-

lation because the numeric labels are not valid Ver-

ilog port names and they don't match the port

names in the models.

This difficulty was overcome by renaming

all ports with numeric port names to their equiva-

lent single-letter label. Two steps are necessary for

the desired result. The first Skill procedure applied

to the library-to-be-converted iterates over all

schematic and symbol cells and changes their ter-

minal names appropriately. The second step, also

implemented in Skill, consists of recursively updat-

ing the connectivity information of each schematic

cell and its subcells by extraction.

4.3 Handling Invisible Global Signals

While the steps described thus far allow ISE simu-

lation of designs consisting only of simple combi-

national cells, sequential cells and tri-state pads

have additional pitfalls

Both XC3000 and XC4000 chips use a chip-

wide global reset signal to initialize all sequential

elements on the chip. On XC4000 chips, an addi-

tional global signal to control the tri-stating of pads

is also provided. These signals are not user-wire-

able and consequently not provided on the Com-

poser symbols. However, since they are essential

for correct simulation, they are contained in the

port lists of the concerned cells' simulation models.

This arrangement leads to errors when

netlisting circuits containing such cells. Since the

ISE Verilog netlister uses only the Composer con-

nectivity information, which is based on explicit

wiring between ports on symbols, it misses the im-

plicit global signals. When using the non-ISE simu-

lation environment as provided by Cadence for

Xilinx-based circuits, the missing signals are filled

in during the EDIF to Verilog translation step.

Since ISE accesses the design database di-

rectly and the detour of an EDIF export is avoided,

another way to add the global signals to the Verilog

netlist has to be devised.

A solution was found in the form of a patch

to the ISE Verilog netlister supplied by Cadence.

The patch is applied by deploying a short Skill pro-

gram with the name of the original Verilog netlister

which loads the renamed original netlister and then

substitutes the procedure hnlVerilog–Print-

ExplicitNetlist. This procedure is respon-

sible for writing connectivity information for a

single cell instance to the Verilog netlist. By keep-

ing a list of the cells which require the addition of

the implicit global signals and checking the in-

stances being netlisted against it, the appropriate

signals can be added to the connectivity informa-

tion. The global signals themselves are provided on

the top level schematic as input pins with prede-

fined names (GSR, GTS, GLOBALRESET_) and

can thus be stimulated during simulation.

This step completes the integration into ISE.

Xilinx-based circuits can now be easily stimulated

using STL, smoothly simulated using the fully en-

capsulated ISE Verilog and comfortably observed

using cWaves (instead of the rather spartan

$gr_waves) and schematic monitors.

Furthermore, mixed simulation of designs

containing schematic as well as Verilog cells is

now possible.

5 Adapting Design Implementation Steps

The solution obtained thus far has the disadvan-

tage, that different libraries are required for simula-

tion in ISE and design implementation using Xilinx

XACT.

The reason is the renaming of ports in the

ISE-compatible symbols. Since the Xilinx design

translation tool EDIF2XNF depends on the numeric

port names unsuitable for simulation, it cannot use

the modified symbols.

However, we managed to work around this

by providing the EDIF-to-Xilinx netlisting process

with configuration files that transparently re-map

names from ISE to XACT conventions, thus elimi-

nating the need for separate libraries. These files,

which have to be placed in the edif[34]000 di-

rectories, are named [34]000.map and are read

by EDIF2XNF during the conversion. The result is

a legal XNF version of the design that can then be

passed to the place and route tools.

6 Conclusions

These alterations achieve a complete integration of

the Xilinx design kit into the Opus framework, en-

abling users to employ similar techniques both in

semi-custom as well as FPGA design. We have

since written a tutorial covering both design styles

which introduces novice users to Opus. This tuto-

rial (written in German) is available from us in La-

TeX source.

In spite of our improvements, we are still not

satisfied with the current state of the Ca-

dence/Xilinx tools. For example, the EDIF export,

which is part of the design implementation process,

is highly error prone in 9301. This can range from

corrupted EDIF files with missing signals to

crashes of the program. Furthermore, the back an-

notation procedure frequently has problems restor-

ing original signal names. The files created are

thus incompatible with previously written test stim-

uli. Unfortunately, both tools are completely be-

yond our control.

We hope to find these fundamental problems

corrected in the brand new (at least for EUROCHIP

members) 9401 release but have not had sufficient

time to conduct conclusive experiments.

Note

If you are interested in obtaining the sources to the

modifications and programs mentioned in this pa-

per, please contact the author at the e-mail address

given at the beginning. We will attempt to port our

environment to 9401 but are unable to give esti-

mates on the timeframe required.

